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ABSTRACT The length of the communication cables is a significant indicator of signal integrity. The
associated scattering parameters characteristics of a communication cable effectively enable its length
estimation. This paper proposes a novel machine learning-based algorithm that utilizes Support Vector
Machines (SVM) to predict and classify cable lengths. Specifically, the algorithm employs an SVM
Regression Model (SVR) and an SVM Classification Model (SVC) to predict and classify cable lengths
based on their S-parameters (S21 measurements). As the data under investigation are inseparable, linear,
and high-dimensional, SVM has been implemented. The current approach was implemented to verify the
length of two datasets, underground and overground cables, with different environmental conditions. The
present research introduces an innovative machine-learning algorithm that employs an S-parameter-centric
methodology to predict variations in communication cable lengths. Specifically, the SVR model achieved
R2 values of approximately 0.987 for underground cables and 0.991 for overground cables. Meanwhile,
the SVC model demonstrated varying levels of accuracy, with optimal performance seen in five classes for
underground cables and four classes for overground cables. The SVMmodel efficiently extracts and weighs
features for high-accuracy predictions in nonlinear, multiclass scenarios, making it the optimal model for
this work.

INDEX TERMS Classification, prediction, cable length, S-parameters, machine-learning method.

I. INTRODUCTION
The cable access network encompasses many potential prob-
lem areas that could be ameliorated throughmachine learning
techniques [1]. Prior to their utilization, the cable’s reference
number must be ascertained, which can be derived from
information imprinted on the outer jacket or available in
accompanying data sheets [2]. Nevertheless, these labels may
become illegible or unattainable over time or due to other
influencing factors, particularly in the context of subterranean
cables. Owing to the similarities in appearance among numer-
ous cables, their differentiation through visual inspection
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proves challenging [3]. Consequently, it is essential to employ
prediction/classification methodologies to examine and ana-
lyze the cables under consideration [4].

The motivation for this work is to address the cable predic-
tion challenge associated with the Ground-based Radio Array
Facility (GRAF) at UAE University, as depicted in Figure 1.
The GRAF comprises a 256-element interferometer array
designed to operate within the 50–300MHz frequency range.
The antennas, arranged in a pseudorandom configuration, are
grouped into 16 clusters, each feeding an analog beamformer.
This setup allows the array to track celestial objects through
16 in-field beamformers.

Cable prediction is critical for this setup because determin-
ing the length of the underground wire during signal research
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TABLE 1. Dataset format.

FIGURE 1. The Ground-Based Radio Array Facility (GRAF) at UAE
university.

is not always feasible, given that the phased array antenna
is 150 meters away from the control room. Therefore, the
main challenge will be the need to estimate the length of the
installed cables.

Scattering parameters have been used to estimate the
communication cable features in several works. The pro-
posed methodologies consider the magnitude and phase
of scattering parameters as cable features, in addition to
length and frequency. Hollaus et al. have proposed a
frequency-based transmission line parameter combined with
time domain modeling to extract the effective cable param-
eters of unshielded conductors [5]. The method utilized
transmission (S12) and reflection (S11) scattering parame-
ters to generate the corresponding lumped element models.
Bader et al. have demonstrated the use of support vector
machine algorithms for the identification of communication
cables [6]. They have utilized the S11 parameter as predictor
features while considering cable length, type, and connectors
as classes [7]. They specifically classified 101 frequencies
and ten cables using the KNN classifier. The obtained results
demonstrated a 99% prediction accuracy of the classifier.

Said et al. have proposed a deep learning-based fault classifi-
cation and location for underground cables. They utilized the
one-dimensional convolutional neural network (1D-CNN)
and a binary support vector machine (BSVM) to classify
the fault type and locate it in real-time scenarios with a
99.6% accuracy [8], [9]. Mishra et al. have presented a tree-
based machine-learning technique combined with random
forest algorithms to categorize various permanent faults in
an underground cable. Their suggested approach provides a
rapid and accurate fault classification evaluation of the fault
current. 98.8% [10].

This work predicts and classifies the length of communi-
cation cables using a machine-learning method. Based on the
corresponding S-parameters measurements.

II. S-PARAMETERS MEASUREMENTS
The S-parameter matrix describes the characteristics of the
electrical cable as a two-port network [11]. It consists of four
parameters: S11, S12, S21 and S22. Each parameter has magni-
tude, and phase provides a relationship between the incident,
reflected, and transmitted waves over a specific range of fre-
quencies. These parameters can be used to extract transmis-
sion cable characteristics such as permittivity, cable length,
and quality. The S-parameters are deemed standard and pop-
ular parameters for frequency range analysis, self-reflection,
and power transmission between endpoints [11]. Both
S11 and S22 are employed for self-reflection, but their signif-
icance may not be sufficient for feature selection. S21 or S12
are of particular importance as it represents the power trans-
mission from port 1 to port 2. The corresponding scattering
parameters for the two sets of cables have been measured
using the Rohde and Schwarz ZNL6 - Vector Network
Analyzer [12].

III. DATASET PREPARATION
The procedure of dataset preparation, coupled with per-
tinent feature selection, is crucial in any classification
algorithm, as it considerably impacts prediction accu-
racy. This section comprehensively outlines the approach
undertaken for dataset preparation and feature selection.
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FIGURE 2. Measured S21 parameter. (a) magnitude in dB for cable above ground (Group X). (b) phase in degree for cable over ground
(Group X). (c) magnitude in dB for cable underground (Group Y). (d) phase in degree for cable underground (Group Y).

FIGURE 3. Actual cable distribution for (a) Group Y and (b) Group X.

Initially, the frequency range was adjusted from 100 kHz
to 200 MHz. Within this range, 2000 frequencies were
captured as frequency observations. Subsequently, seven
parameters were gathered for the 30 pairs of Group X and
Group Y cables under investigation. These seven parameters

include the frequency, cable length, magnitude, and phase.
Group X comprises 30 underground cables, while Group Y is
placed above the ground. Consequently, 60,000 observations
pertaining to the seven features based on the four distinct
classes specified in Table 1 were collected to construct the
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necessary dataset. The measured S21 parameter versus fre-
quency for both Group X and Group Y is plotted in Figure 2.

Figure 2(a) depicts the magnitude versus frequency for
different lengths. The magnitude decreases as the frequency
goes up. The phase changes from −180 to 180, as shown
in Figure 2(b). Figure 2(c) represents the magnitude versus
frequency for different lengths for Group Y. By comparing
Figure 2(a) with 2(c), cables in Group Y exhibit higher qual-
ity than in Group X because they are protected from harsh
environmental conditions. Also, the corresponding measured
phase for Group Y, in Figure 2(d), exhibits a more uni-
form pattern distribution than the one for Group X. The
actual length distribution for Group X and Group Y cables
are depicted in Figure 3. Group Y cables range between
98.97 to 102.65 meters, while Group X cables range between
64.88 to 97.73 meters.

Table 1 demonstrates that 2,000 distinct frequencies within
the range of 100 kHz to 200 MHz were considered for each
of the 30 unique pairs of Group X and Group Y cables in
this study. As a result, a total of 60,000 observations were
gathered. The primary objective of this research is to predict
and classify the various lengths of communication cables
based on their S-parameter values. Table 2 provides a com-
prehensive overview of themethodological framework for the
machine learning models to be employed in this study. It out-
lines the two primary models—Support Vector Regression
(SVR) and Support Vector Classification (SVC)—along with
the specific input features that will be utilized for analysis.
Additionally, the table indicates the anticipated output vari-
ables for each model and delineates the analytical paradigm
under which each operates. This structured representation
aims to offer a clear and concise roadmap for the ensuing
modeling and simulation activities.

TABLE 2. Features, range of cable lengths, and classes.

IV. PROPOSED SVM MODELS
Support Vector Machines (SVM) is a class of super-
vised learning algorithms that have gained prominence in
classification and regression tasks [13]. The core princi-
ple behind SVM is the construction of hyperplanes in a
multi-dimensional space that distinctly categorizes the input
data points into classes or estimates continuous values in
the context of regression [14]. In this work, we propose a
novel application of Support Vector Machines (SVM) with

a polynomial kernel to predict and classify the physical cable
lengths of two distinct groups of communication cables. The
prediction and classification tasks are based on the S21 mea-
surements (magnitude, phase, and frequency) as outlined in
Table 1. Consequently, an SVM Regression Model (SVR)
and an SVM Classification model (SVC) are proposed. This
section provides a detailed description of the two models.

A. PROBLEM FORMULATION
Given a dataset (x1, y1) , (x2, y2) , . . . , (xN , yN ), where each
xi denotes an input feature vector (comprising frequency,
magnitude, and phase) and yi is its associated output (cable
length). The objective is twofold:

• Regression: Predict a continuous value for the cable
length.

• Classification: Categorize the cables into predefined
classes based on specific criteria.

B. SVM REGRESSION (SVR) FORMULATION
Given our dataset, where each xirepresents a feature vector
encapsulating the S21 parameters (magnitude, phase, and fre-
quency) for a specific cable and yi is its corresponding cable
length, the SVM regression model seeks to predict this length
by solving the following optimization problem:

min
w,b,ξ,ξ∗

(
1
2
wTw+ C

∑n

i=1

(
ξi + ξ∗

i
))

, (1)

subject to : yi − w.xi − b ≤ ϵ + ξi, (2)

w.xi − b+ yi ≤ ϵ + ξi ≤ ϵ + ξ∗
i , (3)

ξi, ξ
∗
i ≥ 0∀i, (4)

where
• w is the weight vector, determining the orientation of the
hyperplane. In our context, it represents how each ele-
ment in the S21 feature vector influences the prediction
of cable length,

• b is a bias term that adjusts the position of the hyperplane
relative to the origin, acting as a baseline or intercept in
our cable length prediction,

• ξi, and ξ∗
i are two slack variables, accounting for

instances where the prediction error exceeds ϵ. They
accommodate cables whose S21 parameters might be
notably challenging for accurate prediction,

• C is a regularization parameter that controls the bal-
ance between a low training data error and maintaining
a narrow margin, effectively balancing the prediction
accuracy with complexity, and

• ϵ sets the acceptable error margin, permitting our pre-
dictions to deviate by this amount from the actual value
without incurring a penalty; in our problem’s context,
it is the allowable deviation in meters from the actual
cable length.

C. SVM CLASSIFICATION (SVC) FORMULATION
The SVM classification (SVC) model seeks to find a hyper-
plane that distinctly categorizes the cables, while permitting
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some flexibility for noisy or challenging data points. The
optimization problem can be articulated as:

min
w,b,ξ

(
1
2
wTw+ C

∑n

i=1
ξi

)
, (5)

subject to : yi (w.xi + b) ≥ 1 − ξi, (6)

ξi ≥ 0∀i, (7)

where w and b denote the weight vector and bias, respec-
tively. Specifically, w signifies how each element in the
S21 feature vector contributes to the cable’s classification,
whereas b establishes a foundational baseline for this clas-
sification process. Accommodating for instances where a
cable’s S21 parameters pose classification challenges or to
account for noisy data points, ξi are introduced as slack
variables. Additionally, the parameter C acts as a bal-
ancing factor. It harmonizes the pursuit of a substantial
margin—ensuring robust classification—with the imperative
to minimize classification inaccuracies, particularly pertinent
for cables proximate to the decision hyperplane.

D. KERNEL TRICK
In order to predict the cable lengths based on their S21
parameters, an essential consideration is the nature of the
relationship between these parameters (predictors) and the
actual cable lengths (responses. Support Vector Machines
(SVM) employ a mechanism known as the ‘‘kernel trick’’ to
capture and represent complex relationships in the data [15].
This technique maps the input data into a higher-dimensional
space, thereby facilitating the capture of complex relation-
ships. In this study, we have chosen to employ a polynomial
kernel defined as

K (u, v) = (u.v+ c0)p , (8)

where c0 operates as an independent coefficient in the kernel,
calibrating the kernel function. On the other hand, the param-
eter p defines the degree of the polynomial. This notably
offers insights into the complexity and depth of the nonlinear
relationships the model can detect. Bymodulating the degree,
we can influence the model’s capacity to capture complex
patterns inherent in the data. Both u and v are feature vectors,
and the kernel function is computing a similarity measure
between them. For instance, during training, u might be
xi and vmight be xj, two different data points from the training
set.

E. DECISION FUNCTION
After solving the optimization problem for SVM, the model
makes predictions based on the decision function. This func-
tion calculates a weighted sum of kernel evaluations between
a new data point and the support vectors from the training set.

The decision function is mathematically expressed as:

f (x) =

n∑
i=1

αiK (x, xi) + b, (9)

where αi are the Lagrange multipliers obtained from the dual
optimization problem. For classification, f (x) determines
the class label (cable length class) based on its sign. For
regression, it provides the predicted value (predicted cable
length). The Kernel function, K (x, xi), computes the simi-
larity between the input vector x and a training vector xi.

F. PROPOSED SVM ALGORITHM
The following steps elucidate a rigorous SVM-basedmethod-
ology tailored to calculate f (x) in (9), and hence predict/
classify the cables in the testing set:

1. Data Preparation: Extract S21 parameters—
magnitude, phase, and frequency—from the dataset.
Each parameter serves as a feature for the SVM
regression/Classification model.

2. Combining Features: For every cable, concatenate its
magnitude and phase data, resulting in a single feature
vector.

3. Data Splitting: Partition the dataset into training and
test sets, typically using 80% of the data for training
and 20% for testing.

4. Feature Scaling: Normalize the data features to a
similar scale, ensuring no particular feature dispro-
portionately influences the model. This step ensures
that each feature contributes equally to the model’s
prediction/classification.

5. Model Training: Using the training set, train an SVM
regression or classification models with a polynomial
kernel. This involves solving the optimization problems
in (1)-(4) and (5)-(7), respectively, with the help of
tools like GridSearchCV to determine the best hyper-
parameters.

6. Hyperparameter Tuning: Utilize tools like Grid-
SearchCV or RandomizedSearchCV to identify the
optimal hyperparameters for the SVM model.

7. Prediction/Classification: Apply the trained model to
the test set to predict cable lengths.

8. Performance Evaluation: Use metrics like Mean
Absolute Error (MAE), Mean Squared Error (MSE),
R2 (for regression), and Accuracy, Precision, Recall,
and F1-Score (for classification) to assess the model’s
effectiveness.

9. Optimization: Based on the results from the per-
formance evaluation, refine and optimize the model
further, if necessary. This could involve feature engi-
neering, selecting a different kernel for SVM, re-tuning
hyperparameters, or even gathering more data.

10. Final Prediction/Classification: Make the final pre-
dictions or classifications with the optimized model.

Figure 4 depicts a flowchart illustrating the SVM-based
methodology tailored for predicting and classifying cable
lengths based on S21 parameters.
In our study, we opted for a cable-wise data split. This

means all data from a single cable is either used for training
or testing, but not both. The reason? Cables can have unique
patterns and by using this split method, we ensure the model
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FIGURE 4. SVM-based methodology flowchart.

learns to predict new cables it has not seen before, rather than
just memorizing patterns from known cables. This approach
tests the model’s ability to handle real-world scenarios that
might encounter unfamiliar cables.

V. PERFORMANCE MEASURES
In order to quantify the performance of the SVM regres-
sion model (SVR) and the SVM classification model (SVC),
a suite of metrics has been adopted, as detailed in Table 2.
These performance metrics offer a comprehensive evalua-
tion of our classification models, enabling us to discern the
model’s strengths and areas of improvement. It is noteworthy
to mention that in the context of the table, TP stands for
True Positives, FP represents False Positives, Pc indicates
the Number of Correct Predictions, and Pt signifies the Total
Predictions made.

VI. SIMULATION RESULTS
The proposed SVM Regression Model (SVR) and SVM
Classification Model (SVC), detailed in Section IV-F, were
applied to the dataset comprising the S21 measurements
described in Table 1. A polynomial kernel was utilized for
both models. This section details the obtained simulation
results.

TABLE 3. Performance measures used to assess the SVR and SVC models.

A. SVM REGRESSION (SVR) RESULTS
The proposed SVMRegression Model (SVR) was first tested
on Group Y (underground cables) and then on Group X
(Cables laid above ground). Figures 5 and 6 show the
scatter plots that visually compare the predicted vs. actual
cable lengths obtained when applying the SVR model to
Group Y and Group X, respectively. The diagonal dashed line
represents the ideal scenario where predictions are perfect
(i.e., each predicted value matches the actual value). The
blue dots represent each test cable’s actual length against its
predicted length.

The proximity of the predictions to the diagonal line,
substantiated by Figures 5 and 6, suggests that the SVM
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FIGURE 5. Actual versus predicted cable lengths for Group Y using SVR.

FIGURE 6. Actual versus predicted cable lengths for Group X using SVR.

regression model with a polynomial kernel provides accurate
predictions for most test cables in both groups. This further
demonstrates the feasibility of employing SVRwith S21 mea-
surements to predict the physical length of communication
cables.

Table 3 provides a detailed evaluation of the SVR model’s
capability in predicting the lengths of Group Y and Group X
cables.

TABLE 4. Performance metrics for the SVR model on Groups Y and X.

The R2 value of approximately 0.98 and 0.991 suggests the
model has a high level of explanatory power on the test set

for Group X and Group Y, respectively. Overall, the model
performs well in predicting cable lengths based on their
S21 measurements for both sets of cables.
The choice of a polynomial kernel further enhances the

model’s flexibility to capture nonlinear patterns inherent in
the dataset. The meticulous hyperparameter tuning process
ensured the model’s balance between bias and variance,
leading to robust predictive performance.

However, like all models, SVM regression has its lim-
itations. The choice of hyperparameters, especially the
regularization parameterC and the epsilon-insensitive tube ϵ,
plays a crucial role in the model’s performance. Their optimal
values were contingent on the current dataset and might need
recalibration if applied to a different dataset or under varied
conditions.

It is worth noting that there are differences in the perfor-
mance metrics between the two groups. The slightly higher
error metrics for Group X may be attributed to the inherent
differences in above-ground cables’ physical and environ-
mental characteristics compared to buried ones.

B. SVM CLASSIFICATION (SVC) RESULTS
The proposed SVM Classification Model (SVC) was sim-
ilarly tested on cable Groups Y and X. Table 4 comprehen-
sively evaluates the model’s performance across varying class
granularities.

TABLE 5. Performance metrics of the SVC model for different numbers of
classes in Groups Y and X cables.

Based on the results shown in Table 3, dividing the data
into 5 classes yielded the best performance for Group Y. This
means that using 5 classes appears to be the most effective
approach for predicting cable lengths for Group Y cables
based on their S21 measurements. Figure 7 displays the
obtained corresponding confusion matrix for the 5-classes
case, with a dominant diagonal trend, indicating a high pro-
portion of accurate classifications. On the other hand, using
4 classes gave the best performance for Group X, achieving
100% in accuracy, precision, recall, and F1-Score, as evi-
denced by the obtained confusion matrix shown in Figure 8.
As we increased the number of classes, the performance
dropped. This led us to choose 4 classes as optimal.
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The heatmap in Figures 7 and 8 visually represents the
confusion matrix, showing the number of correctly and
incorrectly predicted instances per class. The diagonal of the
matrix represents the correct predictions, while other entries
indicate misclassifications. Therefore, Figure 7 indicates
that the model made no misclassifications on Group Y for
the 5-classes case, as all predictions are on the diagonal.
Furthermore, the corresponding values for precision, recall,
and F1-score for the latter two cases, as shown in Table 3,
provide a detailed perspective on the model’s performance
for each class.

FIGURE 7. Confusion matrix for the SVC model on Group Y.

FIGURE 8. Confusion matrix for the SVC model on group X.

Comparing the 5-classes model to the previous 4-classes
model for Group Y, introducing an additional class seemingly
provides a more granular categorization of cable lengths.
A more segmented classification can capture subtle differ-
ences in cable lengths more effectively. Additionally, the
perfect scores across all performance metrics in the 5-classes
model suggest that the division of data into these classes is
inherently more representative of the underlying data distri-
bution and the relationships between the S21 measurements
and the actual cable lengths.

In general, as the number of classes increases, the chal-
lenge of distinguishing between neighboring classes also
grows, especially if the differences between the classes are
subtle. Additionally, there might be a risk of having fewer
samples per class, reflected in the declining performance
metrics in Table 5.

While more classes give a more detailed classification,
balancing granularity and model performance is essential.
The model’s performance in some classes has dropped com-
pared to the previous models. It is crucial to decide on the
number of classes based on both the granularity required and
the model’s performance in those classes.

VII. CONCLUSION
This work proposes a novel application of Support Vector
Machines (SVM) to predict and classify cable lengths based
on S21 measurements for two distinct groups of commu-
nication cables. An SVM regression model (SVR) with a
polynomial kernel is built to precisely predict continuous
cable lengths derived from the S21 measurements (magni-
tude, phase, and frequency). The model’s performance was
thoroughly evaluated using several measures, all of which
validated the model’s robustness and proficiency in predict-
ing the physical length of communication cables understudy.
By solving the optimization problem, the SVM ensures a
balance between model complexity and prediction accuracy,
making it a versatile tool for diverse predictive modeling
tasks.

Furthermore, an SVM classification model (SVC) is built
to classify cable lengths into distinct classes. Beginning with
a simplistic four-class model, we expanded the categoriza-
tion to encapsulate up to 10 classes. The methodology was
underpinned by 1) integration of the magnitude and phase
data for holistic representation, 2) Strategically defined class
boundaries to ensure distinctive categorization, and 3) imple-
mentation of SVM equipped with a polynomial kernel. The
model’s effectiveness was then assessed using several per-
formance measures, complemented by detailed confusion
matrices and classification reports. Based on the simulation
results, the SVC model’s accuracy exhibited an inversely
proportional relationship with the number of classes, reveal-
ing the complexities associated with differentiating closely
spaced lengths.

The findings from this study emphasize the versatility and
robustness of SVM in deciphering cable length attributes
from S21 measurements. However, the challenge posed by
increased classification granularity emphasizes the need for
further refinement. Future research may consider investi-
gating more sophisticated machine learning architectures,
innovative feature engineering techniques, or employing a
richer dataset, especially for lengths with more significant
classification challenges.

This manuscript provides a foundational framework for
employing SVM in cable length prediction and classification.
The insights and results pave the way for continued advance-
ments in this research avenue.
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