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ABSTRACT This paper proposes a novel predefined time nonsingular terminal slidingmode control (TSMC)
based on radial basis function neural network (RBFNN) for nonlinear systems. Firstly, a new lemma of
tunable predefined time stability (PTS) is proposed, where the introduction of an adjustable parameter can
adjust the stability time of the system and makes the design of the controller more flexible. Secondly,
based on the proposed lemma, a new control method is proposed, which not only guarantees the PTS of
the system, but also solves the singularity problem of the traditional TSMC and the problem of unknown
model information. Finally, through comparative simulation, it is verified that the proposed method has good
control performance.

INDEX TERMS Terminal sliding mode control, predefined time control, neural network control, robust
nonlinear control, nonsingular control.

I. INTRODUCTION
In this era of rapid development of science and technology,
people need to keep improving the performance of actual
industrial systems. Any actual physical system is more or
less nonlinear, such as hydraulic servo system [1], robot
control system [2], multi-agent [3], spacecraft system [4]
and so on. Control methods for nonlinear systems have
sprung up rapidly, such as backstepping control [5], [6],
sliding mode control (SMC) [4], [7], [8], adaptive control
[9], etc. Among them, SMC has been widely studied by
scholars due to its strong robustness and ability to handle
disturbances [10], [11].

However, SMC can only ensure asymptotic stability, and
its convergence time cannot be estimated, which seriously
affects control efficiency. Tasks such as emergency rescue,
missile launch, and rocket launch need to be completedwithin
the specified time, otherwise significant losses will be caused,
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which limits the application of SMC. Therefore, while ensur-
ing that the system achieves the expected control objectives,
it is also necessary to ensure that the convergence time (CT)
is within the predefined range as much as possible. In order
to meet the above requirements, Bhat et al. [12] proposed the
concept of finite time control. Compared with asymptotic sta-
bility, it improves the convergence speed of the system states
and enables them to converge within a finite time. Reference
[13] added a linear term to sliding surface to enable the system
states to converge at a faster rate and provided an expression
for the CT. However, the CT of finite time control algorithms
depends on the initial states of the system. If the initial values
of the system are not appropriate, it will seriously affect the
stability. Fortunately, Polyakov et al. [14] proposed a fixed
time control method, ensuring that the upper bound of the
CT is a constant. However, the relationship between control
parameters and CT is often complex, and the estimation
of CT is too conservative. To further solve this problem,
a predefined time control algorithm was proposed, which can
predetermine the convergence time boundary [15]. Due to this
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major advantage, predefined time control algorithms have
been applied in practical systems such as aerospace [16] and
underwater robots [17]. Reference [18] proposed a prede-
fined time SMC algorithm to ensure that the arrival phase
in SMC is predefined time stable. Reference [19] designed
a predefined time attitude tracking controller for the attitude
tracking problem of rigid spacecraft. Reference [20] proposed
a predefined time attitude stability control scheme for aircraft
attitude stability.

Based on the above literature and reading other relevant
literature, we find that the following difficulties still need
to be addressed: (1) The controllers designed in References
[19] and [20] have negative exponential terms, which can
lead to the singular problem. If this problem is not solved,
in some cases the amplitude of the controller will be very
large, which does not match the actual situation. Therefore,
this paper addresses the singular problem while ensuring
PTS of the system. (2) Most of the existing literature on
predefined time stability (PTS) has not considered the issue
of unknownmodel information. AlthoughRBFNN is unilized
to approximate terms with unknown model information in
[21], [22], and [23], only finite time or fixed time stability
can be ensured, which upper bound of CT is influenced by the
initial states or controller parameters. This paper will further
research how to achieve PTS using RBFNN, while keeping
the upper bound of CT set by the user themselves. (3) When
the system stabilizes within the predefined time range, the
actual CT is not adjustable. For example, if the user sets a
predefined time of 8 s, the actual CT of the system needs
to meet T < 8s, and the actual CT may be 1 s, 4 s or 7 s.
How to design an algorithm to adjust the actual CT and make
the predefined time closer to the user requirement is a major
challenge.

Based on the above analysis and discussion, this paper
proposes a novel predefined time nonsingular TSMC based
on RBFNN. The main contributions are as follows:

(1) Based on the tunable PTS definition, this paper pro-
poses a new tunable PTS lemma. Compared with Lemma 1,
the proposed lemma introduces adjustable parameters, mak-
ing the design of the controller more flexible and can adjust
the actual CT of the system.

(2) Based on the proposed lemma, this paper designs a new
control method to ensure that the system can achieve PTS
during both sliding and arrival stages.

(3) Inspired by the Reference [24], this paper proposes a
new method by introducting a saturation function (SF). Thus
we not only solve the singular problems, but also guarantee
the predefined time stability of the system, which is not
considered in Reference [24].

(4) In this paper, a new controller based on RBFNN is
designed, which not only solves the problem of unknown
model information, but also ensures that the system con-
verges to the sliding surface in a predefined time. A complet
proof of PTS based on Lyapunov method is presented
here.

II. PREPARATION AND PROBLEM FORMULATION
A. KEY DEFINITIONS AND LEMMAS
Consider a nonlinear system:

ẋ = f (x, t) x(0) = x0 (1)

where x ∈ Rn represents the system states. Function: f :

Rn → Rn is nonlinear and continuous, and f (0) = 0.
Lemma 1 [15]: For the system (1), if there is a Lyapunov

function V (x), it satisfies the following conditions

V̇ ≤ −
π

αTc
(V 1− α

2 + V 1+ α
2 ) (2)

Then the system (1) is predefined time stable. Tc > 0 is the
predefined time, 0 < α < 1.
Definition 1 [15]: If the equilibrium point of the system

(1) is stable in a finite-time, and T : Rn → R satisfies:
T (x0, µ) ≤ Tc, ∀x0 ∈ Rn, then the equilibrium point of the
system (1) is considered to be tunable predefined-time stable,
Tc is a predefined time. µ represents a tunable parameter.
Remark 1: Compared with fixed time control, the upper

bound of the convergence time of the proposed method in this
paper is set by the user, which is independent of the controller
parameters. Compared with traditional PTS, the advantage of
tunable PTS not only ensures the predefined time stability,
but also enables the actual CT of the system to be adjustable.
Lemma 2: If there exists a positive definite function V (x)

for the system (1) defined on the set U , for any x ∈ U0\{0},
the set U0 ⊆ U , V (x) satisfies the following formula

V̇ ≤ −
π

αµTc
(V 1− α

2 + µ2V 1+ α
2 ) (3)

where 0 < α < 1, Tc > 0, µ > 0.
Then the system (1) is tunable predefined-time stable. Tc

is the predefined-time.
Proof 1: According to Eq. (3), we can obtain

−
π

αµTc
dt ≥

dV

V 1− α
2 + µ2V 1+ α

2
(4)

Assuming T ∗ is the stable time of system (1), i.e. V (T ∗) =

0 and V (0) = v0 > 0.
Integrating from 0 to T ∗, one gets

−
π

αµTc

∫ T ∗

0
dt ≥

∫ V (T ∗)

V (0)

dV

V 1− α
2 + µ2V 1+ α

2
(5)

Then

π

αµTc

∫ T ∗

0
dt ≤

∫ v0

0

dV

V 1− α
2 + µ2V 1+ α

2

≤

∫ v0

0

V
α
2 −1dV

1 + µ2V α

≤
2

αµ

∫ v0

0

dµV
α
2

1 + µ2V α
(6)

Then
π

αµTc
T ∗

≤
2

αµ
arctan(µv

α
2
0 ) (7)
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According to the properties of the function arctan(x), its
maximum value is π

2 , we can obtain

T ∗
≤ Tc

2
π
arctan(µv

α
2
0 ) ≤ Tc (8)

Then the system (1) is tunable predefined time stable. Tc is
the predefined time. This ends the proof.
Remark 2: Compared with Lemma 1, the proposed

Lemma 2 introduces an adjustable parameter µ, which not
only ensures predefined time stability, but also can adjust the
actual CT by adjusting the value ofµ. Whenµ = 1, Lemma 1
is a special case of Lemma 2. According to Eq. (2), in spite
of the control gain α exists, the upper bound Tc of the CT is
set by the user in advance and cannot be changed. Here the
major role of α is to stabilize the system. According to the
property of the predefined time stability, the value range of α

is limited and the adjustable range is very small. Therefore,
the adjustable parameterµ introduced in this article. It makes
the actual CT of the system can be adjusted by adjusting
parameter µ, which conforms to the Definition 1.
Remark 3: In actual control engineering, we expect to

know the time of system stability. For the finite time control
and fixed time control, we can obtain the upper bound of the
convergence time, but the upper bound values obtained by
the above methods are either related to the system states or to
the controller parameters. The advantage of predefined time
control is that the upper bound of the convergence time is
set by the user and is independent of the system states and
controller parameters. For example, if we require the task to
be completed within 8 s, we need to set the parameter Tc to
8s in the predefined time algorithm, which is set by the user
according to the actual needs.
Lemma 3: If there exists a positive definite function V (x)

for the system (1) defined on the set U , for any x ∈ U0\{0},
the set U0 ⊆ U , V (x) satisfies the following formula

V̇ ≤ −
π

αµTc
(V 1− α

2 + µ2V 1+ α
2 ) + η (9)

where µ > 0, 0 < α < 1, Tc > 0, 0 < η < ∞.
Then the system (1) converges to a small domain

∐
close to the origin in a predefined time

√
2Tc.

∐
={

x ∈
n
∣∣∣∣V ≤ min

{(
2ηαµTc

π

) 2
2−α

,
(
2ηαµ2Tc

π

) 2
2+α

}}
.

Proof 2: According to Eq. (9), one can obtain

V̇ ≤ −
π

αµTc
(
1
2
V 1− α

2 + µ2V 1+ α
2 ) + (η −

π

αµTc

1
2
V 1− α

2 )

(10)

or

V̇ ≤ −
π

αµTc
(V 1− α

2 +
1
2
µ2V 1+ α

2 ) + (η −
π

αµTc

µ2

2
V 1+ α

2 )

(11)

For Eq. (10), when V 1− α
2 >

2αµηTc
π

, one can obtain V̇ ≤

−
π

αµTc
( 12V

1− α
2 + µ2V 1+ α

2 ). So the system (1) converges to

this region V 1− α
2 >

2αµηTc
π

in
√
2Tc.

FIGURE 1. Saturation function.

For Eq. (11), when V 1+ α
2 >

2ηαµTc
πµ2 , one can obtain V̇ ≤

−
π

αµTc
(V 1− α

2 +
1
2µ

2V 1+ α
2 ). So the system (1) converges to

this region V 1+ α
2 >

2ηαµTc
πµ2 in

√
2Tc.

The detailed derivation of Proof 2 is similar to Lemma 2,
so it is not presented here.
Lemma 4 [25]: If x1, x2, · · · xN are positive scalars and

0 < c < 1, d > 1, then one can obtain

(
N∑
i=1

|xi|)c ≤

N∑
i=1

|xi|c

N 1−d (
N∑
i=1

|xi|)d ≤

N∑
i=1

|xi|d (12)

B. PROBLEM FORMULATION
Most systems such as robots and spacecraft are second-order
nonlinear systems. Hence we take the following form as the
model [26].

ẋ1 = x2
ẋ2 = f0(x) + g0(x)u+ E(x, t) (13)

where x = [x1, x2] ∈ R2 denotes the states, f0(x) is a non-
linear function, g0(x) represents a known nonlinear smooth
function, u specifies the controller input, E(x, t) denotes the
external disturbance.
Assumption 1 [19]: The system uncertainties and distur-

bances are bounded: |E(x, t)| ≤ D, D > 0.
The goal of control is to design a control law u to make the

system trajectory reach the desired trajectory.
The tracking error is

e1 = x1 − x1d
e2 = x2 − ẋ1d (14)

where x1d is the expected value of x1.

105572 VOLUME 11, 2023



C. Jia, X. Liu: Tunable Predefined Time Nonsingular TSMC Based on Neural Network for Nonlinear Systems

FIGURE 2. The structure of RBFNN.

Combining formula (13) and (14), one has

ė1 = e2
ė2 = f0(x) + g0(x)u+ E(x, t) − ẍ1d (15)

III. A NEW PREDEFINED-TIME NONSINGULAR SMC
To ensure that e1 converges in a predefined time during the
sliding stage, we design a terminal sliding surface (TSS) as
follows

s = ė1 + b1|e1|1−αsign(e1) + b2|e1|1+αsign(e1) (16)

where b1 = ( 12 )
1−α/2 π

αµ1T1
, b2 = ( 12 )

1+α/2 µ1π
αT1

, µ1 > 0,
0 < α < 1, T1 > 0.

Taking the derivative of Eq. (8), we can obtain

ṡ = ė2 + b1(1 − α)|e1|−αe2 + b2(1 + α)|e1|αe2 (17)

Substituting Eq.(15) into Eq.(17) to obtain the equivalent
controller as

ueq = −g0−1(x)[f0(x) − ẍ1d + b1(1 − α)|e1|−αe2
+ b2(1 + α)|e1|αe2] (18)

However, it can be seen that Eq. (18) contains a negative
power term |e1|−αe2, which will lead to singularity when
e1 = 0, e2 ̸= 0. In addition, it is difficult to obtain
high-precision model information f0(x) in the actual control
process.

Inspired by Reference [24], a SF is introduced into the
controller to solve singular problems. The SF in the Figure 1
is defined as Eq. (19)

sat(x) =

{
x x ≤ h
hsign(x) x > h

(19)

where h is a positive constant.
Then, the equivalent control law ueq can be rewritten as

ueq1 = −g0−1(x)[f0(x) − ẍ1d + sat[b1(1 − α)|e1|−αe2]

+ b2(1 + α)|e1|αe2] (20)

The use of the SF limits the amplitude of the singular term
|e1|−αe2.
Inspired byReference [27], a RBFNN in Fig. 2 is employed

to deal with f0(x).

The RBFNN algorithm is

hj(x) = exp(

∥∥x − cj
∥∥2

2b2j
) (21)

f0(x) = W ∗T h(x) + ε (22)

where x is the input of the RBFNN, j is the jth node of the
hidden layer of the RBFNN, h(x) = [hj(x)]T is the output
of the Gaussian basis function, W ∗ is the ideal weight of the
RBFNN. And ε is the approximation error of the RBFNN,
which satisfies ε ≤ |ε|max.

The model information is approximated by the RBFNN,
which is in the form of

f̂0(x) = Ŵ T h(x) (23)

W̃ = Ŵ −W ∗ (24)

where Ŵ = [Ŵ1, Ŵ2, · · · , Ŵm] is the actual weight value. W̃
is the estimation error of the RBFNN weight.

Then, Eq. (20) can be rewritten as

uxeq = −g0−1(x)[f̂0(x) − ẍ1d + b1e2
+ sat[b2(1 − α)|e1|−αe2] + b3(1 + α)|e1|αe2] (25)

Therefore, the controller of the system is

u = uxeq + usw (26)

usw =−g0−1(x)[k1|s|1−βsign(s)+k2|s|1+βsign(s)+Ksign(s)]

(27)

where k1 = ( 12 )
1−β/2 π

βµ2T2
,, k2 = ( 12 )

1+β/2 µ2π
βT2

, β ∈ (0, 1),
µ2 > 0, T2 > 0, K > 0.

The block diagram of the proposed method can be found
in Figure 3.
Remark 4: The existence of the Ksign(s) in the control

law (27) may cause chattering. In order to reduce chattering,
χ (δ, s) =

eδs−1
eδs+1 is used to replace the sign function [28],

δ > 0.

IV. STABILITY ANALYSIS
For convenient of presentation, we define the following form

M = {(e1, e2) : b1(1 − α)|e1|−αe2 ≤ h}

N = {(e1, e2) : b1(1 − α)|e1|−αe2 > h} (28)

Theorem 1: Assuming there is a positive constant K that
satisfies K > |E(x, t)| + |ε|max and an adaptive law Eq. (25),
the system (15) uses the controller (26), (25), (23), (27),
the sliding variable will converge to a neighbor of zero in a
predefined time

√
2T2.

Proof 3: Taking into account

f0(x) − f̂0(x) = W ∗T h(x) + ε − Ŵ T h(x) = −W̃ T h(x) + ε

(29)

Construct the Lyapunov function by

V1 =
1
2
s2 +

1
2γ
W̃ T W̃ (30)

where γ > 0.
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FIGURE 3. The block diagram of the predefined time nonsingular TSMC.

Taking derivative of Eq.(30),we have:

V̇1 = s · ṡ+
1
γ
W̃ T ˙̂W

= s[ė2 + b1(1 − α)|e1|−αe2 + b2(1 + α)|e1|αe2]

+
1
γ
W̃ T ˙̂W

= s[f0(x) + g0(x)u+ E(x, t) − ẍ1d
+ (b1(1 − α)|e1|−αe2 + b2(1 + α)|e1|αe2)]

+
1
γ
W̃ T ˙̂W (31)

When (e1, e2) are in the area M, we can obtain

sat[b1(1 − α)|e1|−αe2] = b1(1 − α)|e1|−αe2 (32)

Substituting Eq. (26) into Eq. (31), we can obtain

V̇1 = s[f0(x) − f̂0(x) − k1|s|1−βsign(s)

− k2|s|1+βsign(s) − Ksign(s) + E(x, t)]

= −k1|s|2−β
− k2|s|2+β

− |s| (K − E(x, t) − ε)

+ W̃ T [
1
γ

˙̂W − sh(x)] (33)

The adaptive law is set to
˙̂W = γsh(x) (34)

Let K > |E(x, t)| + |ε|max, we can obtain

V̇1 ≤ −k1|s|2−β
− k2|s|2+β

≤ −k1
∣∣∣s2∣∣∣1− β

2
− k1

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1−
β
2

− k2
∣∣∣s2∣∣∣1+ β

2
− k2

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1+
β
2

+ k1

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1−
β
2

+ k2

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1+
β
2

≤ −k1
∣∣∣s2∣∣∣1− β

2
− k1

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1−
β
2

− k2
∣∣∣s2∣∣∣1+ β

2
− k2

∣∣∣∣ 1γ W̃ T W̃

∣∣∣∣1+
β
2

+ � (35)

where � = k1
∣∣∣ 1γ W̃ T W̃

∣∣∣1− β
2

+ k2
∣∣∣ 1γ W̃ T W̃

∣∣∣1+ β
2

> 0.
From Lemma 4, it can be seen that

V̇1 ≤ −
π

βµ2T2
(V11−

β
2 + µ2

2V1
1+ β

2 ) + � (36)

According to Lemma 3, the sliding variable will converge
to a neighbor of zero in a predefined time

√
2T2.

Remark 5: The setting method of � is widely present in
existing literature, for example, zi in Reference [29] is a
function related to the adaptive rates and is bounded. As is
well known, the weight update rates of RBFNN are bounded.
� is a function related to adaptive laws of the RBFNN,
therefore it is bounded.

When (e1, e2) are in the area N, from Eq.(15), we can
obtain

e1(t) = e1(0) +

∫ t

0
e2(τ )dτ (37)

When e2(t) > 0, e1(t) will increase monotonically. When
e2(t) < 0, e1(t) will decrease monotonically. Described by
Reference [24], (e1, e2) will leave the area M and not stay in
that area forever. The existence of the area N doesn’t impact
the results of the stability analysis, the introduction of the SF
doesn’t degenerate the control performance, the time to travel
through the area N is a very small proportion of the CT.

In summary, the sliding variable converges to a neighbor
of zero in a predefined time

√
2T2. This completes the proof.

Theorem 2: When the TSS s will converge to a neighbor
of zero, the tracking error will converge to the origin in a
predefined time T1.
Proof 4: The domain is arbitrarily small by designing

appropriate parameters [29]. When the domain is approxi-
mately zero, s(e1) = 0, we can obtain

ė1 = −b1|e1|1−αsign(e1) − b2|e1|1+αsign(e1) (38)

Construct the Lyapunov function by

V2 =
1
2
e21 (39)
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FIGURE 4. The cure of tracjectory.

FIGURE 5. Tracking error.

The time derivative of the Eq.(39)

V̇2 = e1ė1
= e1[−b1|e1|1−αsign(e1) − b2|e1|1+αsign(e1)]

= −b1|e1|2−α
− b2|e1|2+α

= −
π

αµ1T1
(V21−

α
2 + µ1

2V21+
α
2 ) (40)

According to Lemma 2, the tracking error converges within
a predefined time T1. This ends the proof.

V. SIMULATION VERIFICATION
In order to verify the advantages of the proposed method,
we select a inverted pendulum model for simulation verifi-
cation, the dynamic system is as follows [27]

ϕ̈ =
g sinϕ − mclϕ̇2 cosϕ sinϕ

/
(m+ mc)

l[4
/
3 − mccos2ϕ

/
(m+ mc)]

+
[cosϕ

/
(m+ mc)]u

l[4
/
3 − mccos2ϕ

/
(m+ mc)]

+ d(t) (41)

where ϕ is angular displacement, u is control input. d =

sin(10t) + cos(t), m = 1kg, mc = 0.1kg, l = 0.5m,

FIGURE 6. TSliding surface.

g = 9.8m
/
s2. The initial value of the states are ϕ(0) =

π
60 ,

ϕ̇(0) = 0. Use appropriate control method to make ϕ(t)
move according to the desired trajectory ϕd = 0.1 sin(t).
The Controller parameters are: T1 = 0.5, µ1 = 3, α = 0.4,
h = 0.5, T2 = 1, µ2 = 3, β = 0.4, δ = 400.

Now we compare the proposed method with the nonsin-
gular fixed time control. The compared control method has
certain similarities with the proposed control method, such
as items with an index greater than 1, items with an index
less than 1, and the use of a SF.

The detailed expression for nonsingular fixed time control
are as follows [28]

s = ė1 + c1|e1|ϑ1sign(e1) + c2|e1|ϑ2sign(e1) (42)

u = −g0−1(x)[f0(x) − ẍ1d + sat(c1ϑ1|e1|ϑ1−1ė1)

+ c2ϑ2|e1|ϑ2−1ė1 + c3|s|ϑ3sign(s)

+ c4|s|ϑ4sign(s) + D2sign(s)] (43)

where c1, c2, c3, c4,D2 > 0,ϑ1 =
m1+1
2 +

1−m1
2 sign(|e1|−1),

ϑ2 =
m2+1
2 +

m2−1
2 sign(|e1|−1), ϑ3 =

n1+1
2 +

1−n1
2 sign(|s|−

1), ϑ4 =
n2+1
2 +

n2−1
2 sign(|s| − 1), 0 < m1, n1 < 1,

m2, n2 > 1.
Figure 4 shows the curve of trajectory tracking, indicating

that all controllers can achieve the expected goals, but the pro-
posed method is the earliest to achieve the desired trajectory.
Figure 5 shows the curve of tracking error, which indicates
that the proposed control method has a short CT and small
steady-state error.

Figure 6 shows the curve of the sliding surface, indicating
that the proposed controlmethod has the shortest convergence
time and the best steady-state error. Figure 7 shows that the
control output curve of the proposed method is the smoothest
and meets the requirements of actual control engineering.

Figure 8 shows the convergence time of sliding variable
and tracking error under different controllers. The actual
convergence time is within the designed convergence time,
and the designed convergence time does not depend on the
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FIGURE 7. Control input.

FIGURE 8. Convergence time.

FIGURE 9. Approximate error of RBFNN.

parameters of the controller, which is more in line with the
requirements of actual control engineering.

Figure 9 and 10 respectively show the approximation error
and weight update law of RBFNN, indicating that RBFNN
has a good ability to approximate nonlinear functions, and
the approximation error is within the allowable range.

FIGURE 10. The weight W of RBFNN.

FIGURE 11. Tracking error under different µ1.

Figure 11 shows that by adjusting a parameter µ1, the
actual CT of the tracking error can be changed.Whenµ1 = 2,
the CT is longer than µ1 = 1. When µ1 = 0.5, the CT is
shorter than µ1 = 1.

VI. CONCLUSION
This paper proposes a novel predefined time nonsingular
TSMC based on RBFNN, which ensures that the tracking
error can be predefined time stable in both the arrival and
sliding stages. RBFNN is used to approximate nonlinear
functions to solve the problem of unknown system model
information. And the singular problem of TSMC was solved
by using a SF. Finally, the proposed method has been veri-
fied to have good control performance through comparative
simulation. However, faults will occur in actual control engi-
neering, and fault-tolerant control will be further analyzed in
future work.
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