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ABSTRACT High-precision segmentation of tobacco leaves is a prerequisite for analysis of phenotypic
information. Challenges such as mutual occlusion and fuzzy edges make leaf segmentation difficult. This
paper proposes an improved algorithm based on the Mask Region-based Convolutional Neural Networks
(MASK RCNN) model and an instance segmentation method based on the SAM model to address these
challenges. First, the MASK RCNN model is enhanced by incorporating a feature fusion layer and a hybrid
attention mechanism, which improves the segmentation performance. The improved MASK RCNN model
achieves an Avg.MIoU metric of approximately 85.10%, which is an improvement of 11.10% over the
original algorithm. It also achieves an Avg.MPA metric of about 84.94%, indicating an improvement of
10.84%. Second, the Segment Anything Model (SAM) model is presented for the first time for tobacco
leaf segmentation, providing empirical support for its application in the tobacco field. The SAM model
demonstrates accurate segmentation of tobacco leaf images at different growth stages, demonstrating
its good generality. In conclusion, the proposed methods effectively address the challenges in tobacco
leaf segmentation, resulting in improved accuracy and performance. These techniques provide significant
technical support for tobacco leaf phenotype research.

INDEX TERMS Tobacco leaf, occlusion, mask region-based convolutional neural networks (MASK
RCNN), SAM, image segmentation.

I. INTRODUCTION
In plant phenotype research, obtaining accurate measure-
ments of organ-associated phenotypes is critical [1]. Leaf
segmentation is a key component in the acquisition of plant
phenotype information [2]. Automating leaf instance seg-
mentation and accurately extracting leaf shape has emerged
as a prominent direction in plant phenotype research [3].
Traditional methods for leaf phenotype extraction rely on
manual measurements and expert knowledge, which are
time-consuming and subjective. With the advancement of
plant functionalomics and breeding research, traditional phe-
notype observation has become a major bottleneck hindering
progress. High-precision segmentation of plant stems and
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leaves is a challenging problem in plant phenotype research
due to the blurring phenomenon. Plant phenotypic analysis is
a scientific research field that involves the quantitative mea-
surement of observable plant traits in response to the dynamic
interaction between genotype and environmental conditions.
It plays a critical role in understanding the effects of the
environment on cultivated plants and has wide applications
in areas such as plant breeding [4], crop monitoring [5],
and disease prevention [6]. Traditional analysis of plant phe-
notypes relies on labor-intensive and error-prone manual
measurements. However, the development of digital imag-
ing and computer vision technologies allows non-intrusive
and automated quantification of plant traits from images.
Automatic segmentation of plant leaves is a fundamental
requirement for achieving image-based plant phenotyping
goals. Leaf segmentation can typically be performed at
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two levels of granularity: category-level and instance-level.
Category-level segmentation primarily involves separating
pixels belonging to the leaf category from the background,
while instance-level segmentation goes further by segmenting
individual leaves from each other. Instance-level leaf segmen-
tation enables fine-grained measurements of individual leaf
area, leaf count, and leaf growth rate, which are highly bene-
ficial for responsive plant growth monitoring and regulation.
However, variability in leaf shape and appearance, persistent
self-occlusion, and varying imaging conditions often pose
significant challenges to instance-level leaf segmentation,
even in controlled environments. In contrast, category-level
leaf segmentation is relatively simpler and can well approxi-
mate the overall size of plants. Therefore, in many application
scenarios, such as plant growth monitoring [7] and yield
prediction [8], category-level leaf segmentation is a more fea-
sible and practical approach. In summary, plant phenotypic
analysis involves the quantitative measurement of plant traits
that result from the interaction between genotype and envi-
ronmental factors. The use of digital imaging and computer
vision techniques enables the automated segmentation of
plant leaves, providing valuable references for plant growth
monitoring and yield prediction.

A. CONTRIBUTIONS
To address the above issues, this paper focuses on tobacco,
a model plant, and proposes two efficient and accu-
rate methods for tobacco leaf segmentation. The first
method is an improved algorithm based on the MASK
RCNN (Mask Region-based Convolutional Neural Net-
works) model. The second method introduces the Segment
Anything model (SAM), which is applied to tobacco leaf
segmentation for the first time. By exploring these two
approaches, this study aims to improve the efficiency and
accuracy of tobacco leaf segmentation and provide valuable
insights for plant phenotype research.

The main contributions of this work are as follows: The
improved algorithm, which is based on the MASK RCNN
model, has the following advantages.

• A feature fusion layer introduced in the MASK RCNN
model integrates original features, fractal features, and
edge features.

• The omnidirectional gradient-based stylized edge
extraction algorithm is used to extract the edge texture
of tobacco leaves. With a wider perceptual field, it can
capture edge relationships between distant pixels.

• Fractal features have the ability to represent multiple
scales, model self-similarity, and are not limited by
image resolution. They also exhibit robustness to noise
and disturbances in the data.

• In the feature encoding stage of the mask segmentation
network structure of MASK RCNN, a hybrid atten-
tion mechanism is added to effectively combine the
channel attention mechanism with the spatial attention
mechanism.

The tobacco segmentation algorithm based on the SAM
model has the following advantages.
• Powerful Perceptual Field, the SAM model is able to
capture the spatial dependencies between different loca-
tions in an image within the perceptual field through a
self-attentive mechanism.

• The SAM model exhibits a flexible feature representa-
tion similar to Transformer. It can dynamically learn the
importance of different locations in an image and focus
on the correlation between various elements, thereby
adjusting the feature representation adaptively.

• The SAM model employs a multi-scale feature fusion
strategy in the decoder section. This approach inte-
grates features from various levels of the encoder to
generate a more comprehensive and multi-scale feature
representation.

• The SAM model is designed with a focus on compu-
tational efficiency, taking into account the avoidance
of complex operations commonly found in traditional
methods.

The remaining part of the paper is organized as follows:
Section II presents the literature survey of related works.

Section III presents the basic framework and improvement
process of MASK RCNN is introduced Section IV presents
the SAM model to realize the process of tobacco segmen-
tation. The analysis of the segmentation effect and accuracy
of two models is presented in Section V. Subsequently, the
improved algorithm is discussed in section IV.

II. RELATED WORK
In recent years, both domestic and international scholars
have conducted extensive research on leaf instance seg-
mentation. Traditional methods in this field mainly rely
on classical image processing techniques. For example,
Pape et al. [9] proposed a method that combines leaf color
and texture features for leaf segmentation, Viaud et al. [10]
utilized the watershed method for leaf instance segmenta-
tion, andYin et al. [11] extended themulti-leaf alignment and
tracking framework to instance segmentation using chamfer
matching. However, these traditional methods often have
limitations in terms of accuracy.

With the advancements in deep learning, researchers
have started applying deep learning models to leaf instance
segmentation to improve accuracy and performance. The
Leaf Segmentation Challenge held at the European Con-
ference on Computer Vision in 2014 provided a publicly
available dataset (CVPPP) for related studies in plant phe-
notyping [6]. Scholars have conducted numerous studies
on leaf instance segmentation strategies using this dataset.
Romera et al. [12] initially proposed a recurrent instance seg-
mentation algorithm based on recurrent neural networks
but achieved limited results. Subsequently, some researchers
improved this algorithm by incorporating Conditional Ran-
dom Fields (CRF) as post-processing, which led to improved
segmentation results, yet the overall segmentation effect
remained restricted. Ren et al. [13] introduced an end-to-end
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recurrent neural network architecture with an attention mech-
anism specifically designed for leaf instance segmentation.
This algorithm successfully addressed partial occlusion prob-
lems and significantly improved fine segmentation outcomes.
Another study byWard et al. [7] explored the use of synthetic
data for plant imaging. They synthesized 3D plant models
through domain randomization, generated rendered synthetic
data samples, and employed the Mask RCNN model for
training on the synthetic dataset. Kuznichov et al. [14] pro-
posed a copy-and-paste data augmentation algorithm based
on the Mask RCNN model. This technique involves copying
selected regions of interest from source images and pasting
them into random locations within the same image while
blending them with the target location based on mask infor-
mation. This operation facilitates the generation of more
training samples, leading to improved performance of the
Mask RCNN model for plant detection and segmentation
tasks in agricultural settings. However, it is worth noting that
these methods often require extensive image preprocessing as
part of the image enhancement techniques involved.

Overall, the application of deep learning models has
shown promising results in improving the accuracy of leaf
segmentation. While some approaches necessitate image
preprocessing, they have demonstrated remarkable advance-
ments in this field. These studies have made significant
progress in image segmentation usingMASKRCNNmodels,
but they have also encountered some limitations. For exam-
ple,MASKRCNNmodels are highly dependent on annotated
data and require a large amount of training data with accu-
rate segmentation annotations to achieve good performance.
However, acquiring and annotating such datasets can require
a lot of work and expertise. The results are poor for small
targets. Because the MASK RCNN model uses the Region
Proposal Network, the network may not be accurate enough
to localize and segment small targets. This is because it is
often difficult to generate stable candidate frames for small
targets. Unstable processing of complex backgrounds: The
MASK RCNN model may miss segmentation or segmen-
tation when processing images with complex backgrounds.
This is because texture and color variations in complex back-
grounds can interfere with the model’s ability to accurately
detect targets.

This paper addresses the existing limitations of MASK
RCNN at the current stage and proposes corresponding
improvements. MASK RCNN is a deep learning algorithm
specifically designed for instance segmentation, which can
simultaneously perform multi-target detection and instance
segmentation. In this paper, based on MASK RCNN,
a boundary extraction algorithm is proposed to generate
effective boundary features to improve the clarity of the
tobacco leaf boundary. In addition, the fractal features are
fused into the network by using the fractal dimension to
represent the self-similarity of tobacco leaves at different
scales, which improves the fractal feature description capa-
bility of the network. A feature fusion layer is also added
to the network to fuse the boundary features and fractal

features into the original feature map. Meanwhile, the FCN
(Fully Convolutional Network) structure in MASK RCNN
is adjusted and a hybrid attention module is introduced to
reduce the loss of detail information of the tobacco leaves
caused by the convolutional operation. In addition, this paper
also applies the SAM to tobacco segmentation for the first
time and demonstrates that it can be successfully applied to
the agricultural field, i.e., tobacco segmentation.

III. TOBACCO INSTANCE SEGMENTATION BASED ON
IMPROVED MASK RCNN MODEL
A. MASK RCNN MODEL BASE FRAME
The backbone network of the MASK RCNN algorithm [15]
usually uses a residual network, ResNet, to gradually extract
the low-level features and high-level features of the leaf
images from the bottom layers to the top layers. Then,
the feature pyramid networks (FPNs) are used to trans-
fer the high-level features to the bottom-level features for
feature fusion and to form the feature map into the region
proposal networks (RPNs). The RPN searches the feature
map for regions containing the target at different scales and
generates region proposal boxes. For each proposal box, the
RPN outputs two results, a foreground/background classifi-
cation and a foreground bounding box. Next, the suggestion
boxes are classified and a mask and bounding box are gen-
erated. The classifier is used for specific classification of
the suggestion frame and fine tuning of the bounding box to
achieve the target detection function. Finally, a Fully Convo-
lutional Network (FCN) is used to generate the mask for the
suggestion frame, complete the image instance segmentation,
and generate a pixel-level mask for the target. The above
is the main process of the MASK RCNN algorithm, which
achieves accurate target detection and instance segmentation
through multi-stage processing combined with feature fusion
and region suggestion network. The specific network struc-
ture is shown in Fig.1.

B. ENHANCED MASK RCNN
1) EXTRACTION OF BOUNDARY FEATURES
There is a covering phenomenon between the tobacco leaves,
and the leaves have low contrast, which leads to unclear
boundaries between the leaves, this paper refers to the styl-
ized edge extraction algorithm based on omnidirectional
gradient [16], the method based on omnidirectional gradient
can efficiently extract the edge information of the image and
can be combinedwith the visual effect of human perception of
the stylized processing. The algorithm is computed by using
a flexible convolution kernel radius and a special law, as long
as the convolution radius r is large enough, the gradient
direction of a pixel is accurate enough, and the omnidirec-
tional gradient can be obtained by synthesizing the gradient
values in multiple directions. And it overcomes the disad-
vantage of classical edge extraction algorithms that require
manual thresholding. Classical edge detection operators such
as Soble and Canny can only detect edges in two directions:
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FIGURE 1. MASK RCNN structure diagram.

FIGURE 2. Comparison of Convolution Factors. (a) Soble edge detection
operator (b) Method in this paper.

horizontal and vertical. The example of the convolution factor
pair is shown in Fig.2.

As shown in equation (1), Gθ can be normalized to 8 gra-
dient directions.
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The extraction results of the classical edge-detection oper-
ator with the method of this paper are shown in Fig.3.

2) FRACTAL FEATURE EXTRACTION
To further improve the segmentation accuracy of the MASK
RCNN network for tobacco, the quality of feature extraction
is particularly important. If the features of the region to be
segmented are not obvious, the segmentation accuracy of the
network will be reduced. Therefore, this paper introduces
fractal features into MASK RCNN to improve the segmenta-
tion accuracy. In order to distinguish different leaves, the size
of the fractal dimension and the distribution in a certain

FIGURE 3. Comparison of boundary extraction algorithms.(a) original
picture (b) Prewitt (c) Roberts (d) soble (e) this paper.

region can be used for calculation. In this paper, we use
the fractal interpolation function to map the image into a
rational fractal surface and calculate its box dimension to
obtain the fractal dimension [17]. The specific calculation
method is shown below.

S =


∣∣sτ−1(1) ∣∣ ∣∣sτ−1(1) ∣∣ . . .

∣∣sτ−1(1) ∣∣∣∣sτ−1(2) ∣∣ ∣∣sτ−1(2) ∣∣ · · · ∣∣sτ−1(2) ∣∣
...

...
...

...∣∣sτ−1(N 2)

∣∣ ∣∣sτ−1(N 2)

∣∣ . . .
∣∣sτ−1(N 2)

∣∣


N 2×N 2

(2)

As shown in equation (2), S is the scale factor
matrix; τ (i,j)=(i-1)×N+j representing the enumeration of set
{(i, j) : i, j = 1, 2, . . . ,N }, and τ−1(N ) is used to map τ (i, j)
to position (i, j). The fractal dimension’s box dimension D is
denoted:

D =
{
1+ logN λ, λ > N ,

2, λ ≤ N .
(3)

λ = ρ(S) =
N 2∑
k=1

s−1τ (k) =

N∑
i=1

N∑
j=1

si,j (4)
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Si,j as a scale factor, then equation (3) can be transformed to
be:

D =

 1+ logN
N∑
i=1

N∑
j=1

∣∣si,j∣∣ , N∑
i=1

N∑
j=1

∣∣si,j∣∣ > N ,

2, others.
(5)

FIGURE 4. Fractal feature extraction map. (a) original picture (b) feature
image.

The fractal dimension of the entire image is mapped onto
a matrix of fractal features, and then the image of the fractal
features is displayed, as shown in Fig.4.

3) FEATURE FUSION
To fuse boundary features and fractal features into the feature
map, a feature fusion layer is introduced. This layer consists
of two parts, the cropping layer and the fusion operation,
which are used to fuse the boundary features, fractal features,
and original features. Specifically, we first crop the boundary
feature map and the fractal feature map using a 1× 1 convo-
lution operation to ensure that their feature dimensions are
the same as the original feature map. Next, the dimension
sizes between different featuremaps are unified by operations
such as up-sampling and down-sampling. Then, the trimmed
boundary feature maps, fractal feature maps, and original
feature maps are fused. As shown in Fig.5.

In this paper, we use the add feature fusion operation to
realize the feature fusion. Specifically, we fuse the boundary
featuresand the new fractal features into the original feature
map by the add operation, and the fusion formula (6) is as
follows:

Fnew = Fboundary ⊕ Dfractal ⊕ Foriginal (6)

where Fboundary denotes boundary features, Dfractal denotes
fractal features, and Foriginal denotes model base features.
This feature fusion approach can make full use of different
levels of feature information, enrich the underlying features,
increase the feature information, and enhance the detailed
features while preserving the background information, thus
improving the performance of the model.

4) MASK RCNN SEGMENTATION NETWORK ARCHITECTURE
In theMASKRCNNmask segmentation network, the feature
map obtained from the ROIAlign layer is first fixed to a size
of 14×14×256 by a pooling layer, and then four convolution
operations are performed on it. Next, an inverse convolution
operation is performed on the fifth layer to obtain the mask,

and the number of channels in the mask is adjusted by con-
volution to match the number of target species. Although the
MASK RCNN can recover the category to which the pixel
belongs, it is poor at recognizing the edges of the tobacco
leaf. This is due to the fact that after multiple convolution
operations, the resolution of the image is reduced and the
detail information is lost. Although the resolution of the
image can be gradually recovered in FCN networks using
four deconvolution operations, the single deconvolution oper-
ation can only recover the feature layer to a certain extent,
while it cannot recover some of the lost image information.
In addition, the four-layer simple deconvolution operation
will further increase the error, resulting in inaccurate seg-
mentation of the original tobacco leaf. By adding a hybrid
attentionmodule to the segmentation network, themulti-scale
feature information can be better utilized and the semantic
information of the image can be fully explored, thus obtaining
a more accurate tobacco leaf segmentation mask. The MASK
RCNN segmentation network structure is shown in Fig.6.

5) HYBRID ATTENTION MECHANISM
The channel attention mechanism [18] mainly adjusts the
weight of each channel by modeling the relationship between
different channels of the feature map, so as to utilize the
channel information more effectively. The spatial attention
mechanism [19], on the other hand, adjusts the weight of
each region by modeling the relationship between different
regions of the feature map in order to exploit the spatial
information more effectively. The combination of the channel
attention mechanism and the spatial attention mechanism
allows simultaneous attention in both the channel and spatial
dimensions of the feature map.

The hybrid attention module is shown in Fig.7. There are
four parts in this module, and this module is mainly com-
posed of four parts, which are obtaining channel attention
coefficients, obtaining spatial attention coefficients, weighted
fusion of attention coefficients, and multiplication of atten-
tion coefficients with the original feature layer. First, the
channel attention coefficients and spatial attention coeffi-
cients are obtained by the channel attention mechanism and
the spatial attentionmechanism, respectively. Then, these two
attention coefficients are weighted and merged to obtain the
final attention coefficients. Finally, the attention coefficients
are multiplied by the original feature layer element by ele-
ment to obtain the feature map with enhanced channel and
spatial information representation.

After a comprehensive consideration of model perfor-
mance, computational efficiency, dataset characteristics,
model structure and architecture, and prior knowledge, this
paper adopts a hybrid attention mechanism.The combination
of channel and spatial attention mechanisms provides more
comprehensive and flexible attention capabilities, reduces the
interference of redundant information, improves the robust-
ness and generalisation of the model, improves the computa-
tional efficiency of the network, and has wide applicability.
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FIGURE 5. Feature fusion.

FIGURE 6. MSAK RCNN mask segmentation network structure.

FIGURE 7. Hybrid attention module.

This gives it a unique advantage among current state-of-the-
art attention modules.

The hybrid attention module is added to the feature encod-
ing stage of the segmentation network to better enhance
the semantic information of the tobacco leaf and gradually
recover an accurate tobacco leaf segmentation mask using
multi-scale feature layers.

IV. SEGMENTATION OF TOBACCO INSTANCES BASED ON
THE SAM MODEL
A. DIFFERENCE BETWEEN SAM MODEL AND
TRADITIONAL MODEL DATA ANNOTATIONS
The SAM [20] is a self-supervised learning-based image seg-
mentation method, which is significantly different from the
traditional model data labeling methods in terms of whether

or not manual data labeling is required. Traditional model
data labeling usually requires a large amount of labor and
time, and requires professional labelers to manually label
each sample. Although this method can achieve more accu-
rate labeling results, it also has some problems, such as
unstable labeling quality, slow dataset update, and high label-
ing cost. In contrast, the SAMmodel adopts a self-supervised
learning approach to train the model using existing unlabeled
data. This approach allows the model to automatically learn
both the feature representation and the target segmentation
masks from the data itself. Specifically, the SAM model
introduces perturbations to the input image through tech-
niques like random cropping and rotation, creating multiple
deformed versions of the image. These deformed versions are
then used as input to predict the corresponding segmentation
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FIGURE 8. Generic automated annotation methods are shown left and SAM model-based annotation methods shown
right.

masks using unsupervised learning techniques. By aggre-
gating the predictions from these multiple versions, more
accurate segmentation results can be obtained. Compared to
traditional data labeling methods, the SAMmodel offers sev-
eral advantages. Firstly, it does not require manual annotation
of large amounts of data, saving labor and time. Secondly,
it leverages existing unlabeled data, improving data utiliza-
tion and efficiency. This approach enhances the scalability
of the model and reduces the dependence on labeled training
data.

Fig.8 illustrates the workflow of both traditional data
labeling methods and the self-supervised learning approach
employed by the SAMmodel, highlighting the differences in
their data processing pipelines.

B. SAM MODEL ARCHITECTURE
The SAMmodel contains three main components: a powerful
image encoder (used to compute image embeddings), a cue
encoder (used to compute cue embeddings), and a lightweight
mask decoder (used to predict masks in real time). These
components work together to form the overall architecture of
the SAM model.

• Image encoder: The researchers used the pre-trained
MAE (Mixup AutoEncoder) ViT (Vision Transformer)
as the image encoder, which is based on scalable
and robust pre-training methods that are minimally
suited for processing high-resolution inputs. The image
encoder is run once for each image and applied before
the cueing model.

• Cue Encoder: The SAM model considers two types
of cues: sparse (dots, boxes, text) and dense (masks).

For sparse cues, the researcher represents dots and
boxes using positional encoding, and sums the learned
embeddings and free-form text using standard text
encoding in CLIP. For dense cues (i.e., masks), embed-
dings are performed using convolution and elements
are summed using image embedding.

• Mask Decoder: The mask decoder of the SAM model
effectively maps image embeddings, cue embeddings,
and output tokens to masks, allowing real-time pre-
diction of masks. The mask decoder plays a key role
in the entire SAM model to produce high-quality seg-
mentation results by effectively fusing image and cue
information.

C. SAM MODEL SEGMENTATION IMAGE FLOW
SAM is a versatile image segmentation base model that sup-
ports multiple input cues to improve segmentation quality.
To facilitate comparison and evaluation, SAM uses the center
of mass of the ground truth mask for each instance as a cue for
segmenting each instance. After receiving these cues, SAM
generates three potential segmentation results and provides
a corresponding score for each result. Then, the result with
the highest score is selected and evaluated by comparing it
to the ground truth mask. Algorithm 1 describes the details
of the implementation.

SAM is a suggestive model that has been trained
on over 11 million images and has generated 1 billion
masks. This large-scale training allows the SAM model
to have strong zero-sample generalization capabilities,
i.e., accurate image segmentation can still be performed for
unseen targets or scenes. It can be used for a variety of

103108 VOLUME 11, 2023



W. Zhang et al.: Tobacco Leaf Segmentation Based on Improved MASK RCNN Algorithm and SAM Model

FIGURE 9. SAM model.

Algorithm 1 Application of the SAM Model to Tobacco
Segmentation
Input:a pre-trained SAM model denoted as A(·, ·), a contour
detector denoted as CD(·), a midpoint detector denoted as
MD(·), a tobacco image dataset denoted as I containing
category labels C, each image in the dataset denoted as i,
and each category cls in the set C of category labels:
Output:the set M of segmented masks.
1: for i ∈ Ido
2: for cls ∈ Cdo
3: ic←(label(i) == cls)
4: Contours← CD (ic)
Initialize image mask m
5: for c∈ Contours do
6: P∈ MD(c)
7: mouts, scores← A (i, P)
8: m← Argmax(scores(mouts))
9: end
10: M.append(m)
11: end
12: end

image segmentation tasks, including semantic segmentation,
instance segmentation, contour detection, etc. Fig.9 shows the
flowchart of the SAM model for image segmentation.

V. EXPERIMENTS AND RESULTS ANALYSIS
A. DATASET AND ENVIRONMENT
In this paper, we utilized the CVPPP plant leaf segmenta-
tion dataset [6], which comprises five distinct sub-datasets
(A1, A2, A3, A4, and A5). The A5 dataset is a combination
of A1 to A4 datasets. For our experimentation purposes,
we selected 300 images from the A5 dataset. Moreover,
we supplemented the dataset with 300 images of tobacco
leaves collected at different growth stages. These tobacco
leaveswere grown under controlled environmental conditions
with temperature settings ranging from 15 to 20 degrees
Celsius, along with supplementary lighting. For image acqui-
sition, we employed standard high-resolution digital cameras

equipped with zoom lenses (specifically, the Canon Cannon
600D model) and diffuse fill lights. To enhance image clarity
and minimize shadows, two diffuse fill lights were used
in conjunction with a black background. These measures
resulted in sharper images devoid of shadows.

B. EXPANDED DATA SET
The main challenge in utilizing convolutional neural net-
works, such as for segmentation tasks, lies in collecting and
labeling a sufficient number of training samples. In our case,
the combined dataset of self-collected images and publicly
available images comprises a total of 500 images, which
may be insufficient to meet the requirements for effective
deep learning models and can lead to overfitting. To address
this challenge, data augmentation techniques were applied to
enhance the original dataset. This involved randomly mir-
roring, flipping, and resizing the images, resulting in an
expansion of the training set from 500 to 2000 images. Addi-
tionally, the number of self-collected images was expanded
to 1200, and the image sizes were standardized to ensure
consistency in the input image dimensions. Considering
the constraints of graphics card memory, the images in
the training and test datasets were uniformly resized to
800 × 800 pixels.

C. BUILDING A TRAINING PLATFORM
The models in this study were trained and tested on a com-
puter equipped with an 8-core CPU running at 3.50 GHz,
32 GB of RAM, Nvidia GTX2080Ti GPU, and Ubuntu
16.04 operating system accelerated with a GTX2080Ti GPU.
The leaf segmentation model was deployed based on the open
source mmdetection and pytorch frameworks, configured to
install a Python 3.7 environment, Cuda 11.0 computational
architecture, and Cudnn 7.6 acceleration library.

The Mask RCNN network is trained with the network
parameters shown in Table 1. First, the images of the training
set are resized to 600×600px, and then the network parame-
ters of the pre-trained model are set. The RPN anchor is set to
(16, 32, 64, 128, 256), the number of iterations (max epoch)
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TABLE 1. Network parameters.

FIGURE 10. Model training loss value plot.

is set to 200, the initial learning rate is set to 0.01, and the
momentum factor is set to 0.9.

The variation curve of the loss function value of the
improved mask RCNN network is shown in Fig.10. The
horizontal coordinate indicates the number of training iter-
ations, and the loss value of the model has been decreasing as
the number of iterations increases. The loss value decreases
faster in the first 10 iterations, indicating that there is a large
gap between the parameters of the model and the optimal
parameters. The parameters of the model are continuously
optimized to approximate the optimal values by iterating the
training set. The number of iterations between 10 and 150, the
loss value decreases more slowly, indicating that the model
parameters are close to the optimal value at that time. To avoid
the overfitting phenomenon, the model parameters can be
fine-tuned by reducing the learning rate. When the number
of iterations reaches 150, the loss value of the training set
stabilizes at about 0.025, indicating that the model training
has basically converged at this time and the training effect is
good.

D. TWO MODELS RESULTS AND ANALYSIS
Fig.11 shows the segmentation effect graph of the original
MASK RCNN. Typical segmentation types selected from
the test dataset are shown, with the presence of unclear leaf
edges, poor segmentation of the petiole portion (petiole is
too thin), and small leaves not segmented in the case of

FIGURE 11. Original MASK RCNN segmentation effect.

mutual occlusion. The original images for the two cases cor-
respond to figures (d) and (e) in Fig.12, respectively.

Fig.12 illustrates the morphology of tobacco leaves at dif-
ferent growth stages, namely seedling, vegetative, and lush.
Each stage presents distinct morphological characteristics:
Seedling stage leaves are small, thin and soft, and are usually
heart-shaped or ovate, with possibly serrated edges. During
the vegetative stage, the leaf becomes larger and broader,
elliptical to lanceolate, relatively narrow in width, and may
have a wavy edge. Lush Growth Stage: Tobacco leaves are
essentially oval or obovate in shape, relatively wide, with
distinct midrib and secondary veins and a thicker leaf tex-
ture. In the original Fig.12(a), some of the leaves are small
and one of them is heavily shaded. In contrast, in the orig-
inal Fig.12(b), the petiole is slender and the unimproved
MASK RCNN model does not accurately segment the peti-
ole. In addition, in the original Fig.12(e), some of the leaves
are not fully revealed due to the shooting angle and the
occlusion between the leaves, and the unimproved MASK
RCNN model does not fully segment these leaves, and the
segmented edge effect is obviously not clear.

Fig.13 and Fig.14 show the performance of the improved
MASK RCNN model and the SAM model in segment-
ing tobacco leaves at each growth stage. First, the tobacco
leaf image is segmented using the enhanced MASK RCNN
model, followed by segmentation using the SAM model.
The enhanced MASK RCNN model incorporates a fea-
ture fusion layer to combine extracted image stylized edge
features, fractal features, and original features. In addi-
tion, a hybrid attention mechanism is introduced to improve
image segmentation. This enhancement enables the model
to effectively capture information across different scales and
dimensions, thereby improving segmentation accuracy and
robustness. On the other hand, the SAM image segmentation
model improves segmentation accuracy and robustness by
implementing technical means such as a spatial attention
mechanism and an aligned feature representation. These tech-
niques allow the model to focus on relevant regions and better
represent feature patterns, resulting in improved segmenta-
tion performance. By introducing these enhancements, both
the improved MASK RCNN model and the SAM model
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FIGURE 12. Original image.

FIGURE 13. Segmentation effect of tobacco leaves by improved MASK RCNN.

FIGURE 14. Segmentation effect of tobacco leaves by SAM.

demonstrate increased accuracy and robustness in tobacco
leaf image segmentation.

By using the improved MASK RCNNmodel and the SAM
model for tobacco image segmentation, whether for tobacco
leaves of different growth periods, or for problems such as
severe inter-leaf occlusion, difficult to capture edge informa-
tion, thin and narrow petioles, or poorly selected shooting
angles, each of the two models shows good segmentation
results and successfully solves the problems in the above typ-
ical cases. Meanwhile, these segmentation results of tobacco
images provide empirical support for the application of the
SAMmodel in the tobacco field, verify the application poten-
tial of the SAMmodel in the tobacco field, and provide a basis
for further research and development.

E. SEGMENTATION EFFECTIVENESS EVALUATION OF SAM
AND IMPROVED MASK RCNN MODELS
1) EVALUATION INDICATORS
In segmentation algorithms, the following metrics are com-
monly used to evaluate segmentation effectiveness: Inter-
section and Fusion Ratio (IoU), Mean Intersection over
Union (MIoU), Pixel Accuracy (PA), Category Pixel Accu-
racy (CPA), and Mean Category Pixel Accuracy (MPA).

These metrics can help evaluate the performance of seg-
mentation algorithms in different scenarios, and they play an
important role in guiding the training and tuning of segmen-
tation models.

IOU: The accuracy of segmentation is evaluated by cal-
culating the ratio of the intersection area to the merge area
between the predicted and true values. The value of this ratio
ranges from 0 to 1. The closer the value is to 1, the more
similar the predicted and true results are, and the better the
segmentation effect is. Equation (7) is as follows.

IoU =
TP

TP+ FP+ FN
(7)

MIoU (Mean Intersection and Merger Ratio) is used to
evaluate the average of the IOU values of the same category
in the image prediction results and is calculated by the for-
mula (8) as follows.

MIoU =
1

class

∑ class
i = 1

IoUi (8)

PA is used to evaluate the number of correctly pre-
dicted pixels in the image prediction results as a percentage
of the total image pixels, and is calculated as shown
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in equation (9) below.

PA =
TP+ TN

TP+ FP+ FN + TN
(9)

CPA is used to evaluate the percentage of correct predic-
tions for a single category in the image prediction results, i.e.,
the ratio of the number of correctly predicted image pixels to
the sum of correctly predicted image pixels of that category
and incorrectly predicted image pixels not of that category.
The formula is shown below.

CPA =
TP

TP+ FP
(10)

MPA is the average percentage of pixels correctly predicted
across all categories.

MPA =
1

class

∑class

i=1
CPAi (11)

In this experiment, we mainly used MIoU and MPA as the
evaluation indices of the network segmentation effect. Since
different confidence threshold settings can lead to different
prediction results, we set the confidence threshold to 0.50,
0.75, and 0.85 for three cases for experimental comparison.
The corresponding evaluation metrics are MIoU50, MIoU75,
MIoU85, MPA50, MPA75, and MPA85.In addition, we cal-
culated the average values of MIoU and MPA under these
three thresholds as the comprehensive evaluation metrics,
which are denoted as Avg. MIoU and Avg.MPA. By using
these evaluation metrics, we can comprehensively evaluate
the segmentation effect of the model under different confi-
dence thresholds, and compare and analyze the segmentation
effects.

TABLE 2. Test results of five networks on MIoU50, MIoU75, MIoU85.

2) COMPARISON BETWEEN FIVE NETWORKS
To demonstrate the superiority of our proposed improved
MASKRCNN segmentation network and SAMsegmentation
network, we conduct experiments under the same environ-
ment. Specifically, we compare these models with several
popular segmentation algorithms, including MASK RCNN,
U-Net, DeepLabv3+, U-Net++, Attention U-Net. The per-
formance of each algorithm is evaluated and compared
based on their respective results. The detailed comparison
results are presented in Table 2, while Fig.15 illustrates the
bar graphs showcasing the MIoU test results for the seven

FIGURE 15. MIoU test results of five networks.

networks. This visual representation allows for a clear visu-
alization of the performance differences between the different
algorithms. By conducting this comprehensive evaluation
and comparing the performance of these segmentation algo-
rithms, we aim to provide evidence supporting the superior
performance of our proposed improved MASK RCNN seg-
mentation network and SAM model.

According to the results in Fig.15, using Avg.MIoU as the
evaluation index of the segmentation network, the effective-
ness of each algorithm is ranked as follows: MASK RCNN
< U-Net < DeepLab v3+ < U-Net++ < Attention U-Net
< SAM< Improved MASK RCNN. It can be seen that the
MASK RCNN model has the worst segmentation effect;
compared to the MASK RCNN model, the Improved MASK
RCNN model improves about 11.10% on Avg.MIoU; com-
pared to the MASK RCNNmodel, the SAMmodel improves
about 9.81% on Avg.MIoU; the Improved MASK RCNN
model is slightly higher than the SAMmodel by 1.29%. It can
be seen that our proposed improvedMASKRCNNmodel has
a significant improvement in the segmentation effect, and the
SAM model performs well in the segmentation effect.

TABLE 3. Test results of the five networks at MPA50, MPA75, MPA85 and
MPA.

Comparing the MPA test results of the four networks
according to Table 3 and Fig.16, the following can be found.
Figure 16 shows the bar chart of the MPA test results for
the five networks. Among these four network structures,
the segmentation effect of the unimproved algorithm is the
worst, and its Avg.MPA is only 74.10%. While the other
four networks have MPAs above 80%, the improved MASK
RCNN has the highest Avg.MPA value of about 84.94%.
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FIGURE 16. MIoU test results of five networks.

The MPA of the improved MASK RCNN is improved by
about 10.84% compared to the MASK RCNN, the SAM
model is higher than the MASK RCNN by about 9.61%, and
the SAM model is slightly lower than the improved MASK
RCNN by about 1.2%. It can be seen that the improved
segmentation algorithm achieves significant improvement in
MPA and performs best among all the networks. This indi-
cates that our proposed improved segmentation algorithm has
an advantage in terms of classification accuracy at the pixel
level and can perform target segmentation more accurately.

The enhanced MASK RCNN model, trained on the des-
ignated leaf dataset, exhibits high confidence in target
detection. It proves to be well-suited for both leaf detec-
tion and instance segmentation tasks, achieving accurate
segmentation results. It takes approximately 30 seconds to
complete the segmentation of a single image from the test
set. On the other hand, the SAM model demonstrates lower
confidence in tobacco leaf detection but still performs accu-
rate image segmentation. Notably, it excels in handling the
segmentation of unseen targets or scenes effectively. How-
ever, it typically requires around three minutes to perform
multi-target instance segmentation. These findings highlight
the trade-off between target detection confidence and seg-
mentation accuracy in the two models. The improved MASK
RCNN model provides faster inference times and higher
target detection confidence, making it suitable for various
applications. Meanwhile, the SAM model showcases its
effectiveness in accurately segmenting images, particularly
for novel or unseen targets, despite longer processing times.

VI. CONCLUSION
In this study, the challenges in leaf segmentation are thor-
oughly investigated and the existing model is improved.
The improved segmentation algorithm achieved significant
advantages compared with the original algorithm and other
common algorithms, and the improved MASK RCNNmodel
achieved a result of about 85.10% in the Avg.MIoU metric,
which is an improvement of about 11.10% compared with the
original algorithm; at the same time, it reached about 84.94%
in the Avg.MPA metric, which is an improvement of about
10.84% compared with the original algorithm. These results

demonstrate the excellent performance of the improved seg-
mentation network in the leaf segmentation task.

The application of the SAM model in tobacco leaf image
segmentation yields promising results for the first time.
This achievement not only contributes to the advancement
of the tobacco field but also validates the potential of the
SAM model within this domain. It serves as a foundation
for further research and development efforts. Future work
should focus on further enhancing the SAM model. Model
compression techniques such as pruning, quantization, and
separate convolution can be employed to reduce the model
size and computational complexity, thereby improving infer-
ence speed. Additionally, the specific algorithms within the
SAM model can be refined and optimized. This includes
designing more effective attention mechanisms and incor-
porating contextual information to enhance the accuracy
and efficiency of image segmentation. Furthermore, paral-
lel computing and asynchronous inference techniques can
be explored to distribute computational tasks among mul-
tiple computing units or parallel processors. This approach
can significantly accelerate the inference process of image
segmentation. By addressing these aspects, future enhance-
ments to the SAM model will enable improved performance
and broader applicability in the field of tobacco leaf image
segmentation.
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