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ABSTRACT Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all
its biological properties and characteristics. One of the application areas is patient respiration monitoring
for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient
monitoring create hindrances in the patient’s daily routine. This research presents a novel Respiration DT
(ResDT) model based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine
Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration.
A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an
added advantage of unobtrusive monitoring of patient vital signs. The Patient’s Breaths Per Minute (BPM)
is estimated from raw sensor data through the integration of multiple signal processing methodologies for
denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple
filters and dimensionality reductionmethodologies are compared for accurate BPM estimation. The elliptical
filter provides a relatively better estimation of the BPMwith 87.5% accurate estimation as compared to other
bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2),
and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis
(PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared
to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from
the implemented 21 ML supervised classification algorithms with K-fold cross-validation, was observed to
be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model
with 96.9% and 95.8% accuracy respectively.

INDEX TERMS Digital twin, machine learning (ML), principle component analysis (PCA), respiration rate
estimation, signal processing, unobtrusive Wi-Fi sensor.

I. INTRODUCTION
Advancements in technology have drastically transformed
our world from time to time. Healthcare has been reshaped
into smart and connected healthcare, known as Healthcare 4.0
(H4.0). It is a combination of technologies to create a
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connection between the digital, physical, and biological
spheres. The amalgamation of a variety of technologies, such
as Artificial Intelligence (AI) [1], Internet of Things (IoT)
[2], [3], Cyber-Physical Systems (CPS) [4], big data [5], [6],
etc., are utilized to establish automation and data exchange.
Fig. 1. represents the revolution in healthcare. Healthcare 1.0
is at the stage of doctor and patient interactions. The
doctor will examine the patient at the clinic and provide
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a diagnosis/medication/care routine based on test results
and consultations. Healthcare 2.0 is the implementation
of medical devices in monitoring, surgeries, imaging, and
life support. Healthcare 3.0 is about utilizing healthcare
information technologies to employ computer networks and
digitized records to make remote care and telehealth a reality.
Creating a gateway between the patient and doctor to replace
face-to-face encounters. Being able to do virtual meetings
proved to be a major advantage in the recent COVID-19
pandemic. H4.0 is rising in parallel to I4.0 and is proving
itself in healthcare to be revolutionary. Healthcare evolved
with the use of AI, IoT, CPS, big data, and cloud computing
technologies working together [7] to provide a quick and
accurate diagnosis of patient big data. Increasing connectivity
between the medical equipment and healthcare personnel to
enhance patient care, recovery, and experience.

FIGURE 1. Healthcare revolution.

In the last decade, healthcare has kept on improving by
providing smart healthcare services. The idea of Digital
Twin (DT) has already advanced industries but is going to
revolutionize H4.0 [7], [8], [9], [10]. DT allows the formation
of a digital representation of the physical system with all
its traits. A bi-directional link between the physical system
and its digital model [6], [11]. Creating such a link is the
task of multiple technologies to work in cooperation with
each other. Khan et al. [7] provides a substantial review of
such technologies working together for the creation of DT
healthcare. The tasks of real-time predictions, comparisons,
and simulations of a patient and the environment based on
real-time sensor data can become a reality with DT. DT in
healthcare can provide early detection of abnormalities, quick
and accurate diagnosis, predictive analysis of patient vitals
and procedures, themost effective and risk-free surgeries, and
improved patient monitoring.

Over the years researchers have worked on implementing
DT in healthcare through variousmethods. H. Laak et al. [12]
provided a framework for DT in remote surgeries. To detect
abnormalities and diagnosis, an Electrocardiogram (ECG)
signal rhythms classifier based on Machine Learning (ML)
is implemented [13]. An elaboration of DT in medicine, such
as medical CPS, and ML in healthcare is discussed in [14],
[15], and [16]. An overview of challenges and technologies
in implementingDT in personal healthcare is reviewed in [17]
and [18]. Siemens Healthineers optimized Mater Private
Hospital (MPH) with the help of DT technology. DT model

with AI model was implemented in the radiology department
to improve department operations of processing sensor data,
patient demands, clinical complexity, and improving infras-
tructure. Capacity Command Center was designed by GE
Healthcare for decision support and simulation capabilities at
the John Hopkins Hospital in Baltimore. A DT model of the
heart was created by [19]. The human respiratory system was
developed by Oklahoma State University’s Computational
Biofluidics and Biomechanics Laboratory [20], [21], [22].
Most of the healthcare DT models enabled by AI-ML are
of humans [23], [24], [25]. According to [26], at this stage,
replicating the full functionality of a human is not possible.
Thus, the researchers are focusing on utilizing DT on specific
aspects of human biology. Fig. 2. represents the multiple
application areas of DT in H4.0.

FIGURE 2. DT applications in H4.0.

The paper is distributed in sections for better understanding
and improving the layout. Section II provides the motivation
and contribution of this research. Section III discusses Wi-Fi
sensing and sensing in DT, Section IV is the preliminary
discussions on Wi-Fi CSI, PCA, Empirical Mode Decom-
position (EMD), and Single Variable Decomposition (SVD),
Section V provides an overview of data collection with
ESP32 sensor, SectionVI is the detailed performance analysis
of multiple pre-processing techniques on raw Wi-Fi CSI
sensor data in the creation of the ResDT model, Section VII
discusses various ML algorithms accuracies for the multiple
classification problem, Section VIII discusses the conclusion
and future work.

II. PROBLEM STATEMENT AND CONTRIBUTION
A. PROBLEM STATEMENT
Overall, life expectancy has increased, reaching the sixties
and beyond. Countries across the world are seeing an increase
in their older populations. It is predicted by the World Health
Organization (WHO) that by 2030, one out of six people
would be 60+ years of age. By 2050, the number of people 60
and older will have doubled [27]. This creates a burden on
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the healthcare system and resources [28], [29]. Not only
with age, but people of any age can present multiple health
conditions with breathing being a crucial indicator of the
health condition.

It is elaborated in [30] and [31] that DT in H4.0 has
application areas of high-quality economical healthcare,
improved patient monitoring, accurate diagnosis and medica-
tion, preventing emergencies, and early diagnosis of medical
conditions and decision-support. However, it is an open
research field with problems of optimal signal processing
methodology, how big data analytics can be implemented,
which AI and ML algorithms can improve decision-making
and predictive analysis, which communication technology is
best suited in a specific healthcare scenario, cyber security for
sensor and patient data protection, etc. [7].
In [32], around 5% of the population in prosperous

countries suffer from the breathing disorder of bradypnea
(slow breathing), and nearly 30% of the people in the
study, in their 60s, showed symptoms of multiple breathing
diseases. In clinical medicine, impedance pneumography, and
capnography are two of the conventional methodologies for
continuously checking the breathing rate. They are intrusive
respiration monitoring methods which may not be considered
in the future for elderly care home or hospital environment.
Based on the advancements in sensing, signal processing and
machine learning, they can be incorporation for enhanced
respiration monitoring methodologies.

Unobtrusive sensing methods have a more promising
future in healthcare, especially for elderly care. They do
not create hindrance in patient daily life as compared to
obtrusive methods. Compared to obtrusive data collection,
one such solution can be unobtrusive sensor data collection.
Liu et al. [24] worked on creating cloud-based DTHealthcare
(CloudDTH) for real-time monitoring of the patient. The
data acquired through the ECG sensors are sent to the
CloudDTH platform through the ECG device (Huake HKW-
10). The authors presented a contact based DTmodel for data
collection. Jagade et al. [33] worked on monitoring human
respiration rate through Infrared Thermography (IRT) but
that requires clear LOS between the infrared camera and
the patient. Chu et al. [34] monitored the respiration rate
of the human through low-powered piezo-resistive sensors
attached to the human body. The sensors are combined
with Bluetooth units to observe respiration rate from a
distance but the sensors can create hindrance in daily routines.
Ryser et al. [35] utilized a single chest-worn accelerometer
to estimate the respiration rate. Respiration and abdominal
bands are attached on the around the chest. Even with
unobtrusive sensing methods, there is the limitation of clear
LOS, privacy concerns, or the need of putting on special
equipment by the patient.

In the above-mentioned literature along with the work
presented in [36], [37], and [38], they have the limitation
of obtrusive sensing, the need for clear LOS, and restricts
the patient’s movements. Hence, unobtrusive sensor data
collected with Wi-Fi CSI can provide a better solution

for unobtrusive monitoring of the patient/elderly vital signs
without the need for clear LOS, no privacy violation,
or the need for special arrangements. Wi-Fi CSI has the
advantage of monitoring the patient’s physical, physiological,
and biological features without the technology creating
obstruction in the daily routine.

B. CONTRIBUTION
Following are the novel points of this research toward
implementing DT technology in healthcare for monitoring
the Breaths Per Minute (BPM) of a patient with respiration
problems through unobtrusive Wi-Fi sensing with integration
of signal processing methodologies and ML algorithm.

1) We propose a novel DT model (ResDT) based on
Wi-Fi CSI for patient respiration rate. ESP32 sensor
with Wi-Fi CSI allows for an unobtrusive method of
respiration data collection for the DT model.

2) Our study is the investigation of signal process-
ing techniques performance analysis comparison on
complex noisy ESP32 sensor data in the proposed
ResDT model. This will help select the optimal
methodology for estimating accurate BPM from raw
sensor data. Various techniques comparison comprise;
multiple Infinite Impulse Response (IIR) bandpass
filters (0.15Hz to 0.6Hz) and wavelet decomposition
performance comparison for denoising the respiration
sensor data; multiple dimensionality reductionmethod-
ologies comparison on complex Wi-Fi CSI respiration
datasets in the estimation of the patient’s BPM.

3) In our research, 21 ML-based supervised learn-
ing classification algorithm accuracies, along with
K-fold cross-validation, are assessed for the various
classification problem of abnormal and normal respi-
ration rates in the proposed ResDT model. This will
help in implementing decision-support or classification
between binary and multi-class problems in proposed
ResDT model.

C. PROPOSED ResDT MODEL
Fig. 3 represents the proposed Respiration DT (ResDT)
model. ESP32 Wi-Fi sensor with CSI characteristics collects
patient respiration data unobtrusively. The raw data is not
ready to analyzed for the estimation of the patient’s BPM. It is
subjected to multiple denoising methodologies of smoothing,
bandpass filters, and PCA to acquire the patient BPM from
raw sensor data. Feature data is extracted, enabling the
testing of ML algorithms and neural networks for binary and
multi-class classification in the proposed ResDT model.

III. SENSING
A. Wi-Fi SENSING
The recent COVID-19 pandemic has shown how conven-
tional methodologies fail in providing healthcare in such
harsh conditions [39], [40]. Not only that, with the increasing
number of elderly patients, it is important to look for
new innovative noninvasive techniques to overcome these
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FIGURE 3. ResDT: proposed respiration DT model with ESP32 sensor.

challenges. Researchers can make use of cameras indoors
to capture images of respiration signals [41]. The major
drawback of this camera-based respiration monitoring is
that the images require a clear line of sight and sufficient
illumination [42], [43]. An additional drawback is that
the cameras are a privacy concern. Under the threat of
cybercrimes, it is difficult to have a promising solution
for indoor sensing [44]. Wearable devices can be utilized
as a solution for unobtrusive sensing [45]. Even though
wearable devices have a broad range of applications, they
need exclusive gear to be worn for extended periods and
are only appropriate for extended periods of monitoring an
immobile patient [46]. A smartphone can be a solution to
acquire data from the subject’s body but it needs to be
carried all the time [47], [48]. Another solution can be the
environmentally installed sensors but they require a heavy
installment setup [49], [50].
A real-time economical unobtrusive respiratory monitor-

ing method is essential. Wi-Fi sensing can be utilized to
sense the vital signs of a patient from a distance [51], [52].
But recent studies have shown that Wi-Fi signals tend to get
disturbed by the movement of residents and other movements
in a zone [53]. For that, in Wi-Fi sensing data, Channel
State Information (CSI) [54] applies to a range of applications
such as sedentary behavior analysis [55], gesture recogni-
tion [56], vital sign detection [57], human detection [58],
occupancy detection [59], crowd counting [60], and human
activity recognition [61], etc. Compared to contact-based
sensing methods, Wi-Fi signals have multiple excellent
attributes and advantages over wearable devices.

1) Only information about the human vital signs, position,
etc. can be obtained from the wireless signals. Wi-Fi
signal protects the user’s privacy as it cannot acquire
details about appearance, clothes, etc.

2) Wireless-based sensing technology does not require
specific gears to be worn by the user. It still achieves
accurate sensing and is very appropriate for long-term
implementation.

3) Wireless signals are propagated in a zone and do
not depend upon LOS. Diffraction and reflection of

wireless signals can still deliver valuable sensor data
even if there is an obstruction in the middle of the
device and the user.

4) The wireless signal transmission and reception do not
depend on the light, making it possible to work around
the clock.

B. SENSING IN DT
Wi-Fi sensing is not only important for the unobtrusive
respiration monitoring of a patient but also crucial in the
creation of DT models. The DT’s popularity increased with
the availability of economical and miniature-size sensors that
can provide all kinds of patient vital information. These
models are data-driven and can only represent the theoretical
behavior of a system if the actual state in the physical world
is unknown. The choice of the sensor itself is critical as
it impacts the functionality and accuracy of the DT model.
Khan et al. [44] discussed the importance of the sensor’s
position in data collection for the creation of DT models.
If the sensor utilized provides inaccurate measurements of the
patient’s respiration rate, the DT model will not replicate the
respiration behavior in real-time. This will lead to inaccurate
recommendations with the DT utilized in research or clinical
trials.

In the context of DT technology in healthcare, unobtrusive
sensing through Wi-Fi CSI has a vital role in building an
accurate DTmodel that reflects the current state of the patient.
The benefits of data sensing inDT include predictive analysis,
equipment maintenance, optimizing healthcare, accurate
real-time monitoring, and improved decision-making. Unob-
trusive Wi-Fi sensing with outstanding characteristics gives
it a broad range of potential applications in DT and the
possibility to be the cornerstone of the following generation
of sensing technology.

IV. PRELIMINARIES
A. CHANNEL STATE INFORMATION (CSI)
Numerous wireless network standards e.g., LTE, Wi-Fi,
and WiMAX embrace Orthogonal Frequency-Division Mul-
tiplexing (OFDM) for communication [62]. OFDM is the
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suitable choice for achieving high data rates and frequency-
selective channels. The total spectrum is split into nar-
rowband orthogonal subcarriers in OFDM. The channel
fading caused by large delay spreads is lessened by the
utilization of Inverse Fast Fourier Transform (IFFT) for
data transmission on the subcarriers. The complexity of
the Fast Fourier Transform (FFT) at the receiver can be
reduced by the utilization of cyclic redundancy. Channel
properties of the communication link between the transmitter
and receiver are represented by the CSI. It can be freely
acquired from the signals of COTS Wi-Fi devices equipped
with a Network Interference Card (NIC). The CSI signals are
the superpositions of the signals from different propagation
paths. The outcome of analyzing the CSI is that the
information of the surrounding, encoded in theWi-Fi signals,
can be acquired. The CSI has been measured at different
subcarrier frequencies due to the OFDM. Multiple antennas
are authorized to communicate through multiple data streams
in a Multiple-Input Multiple-Output (MIMO) system. The
propagation of a Wi-Fi signal can be affected by the
micro-movement of the subject. The kind ofmicro-movement
under observation in this research is respiration. This can thus
be detected by CSI. Bao et al. [63] provide a discussion on
the phase and amplitude changes toward detection of such
micro respiration movements. Mathematically, the signal at
the receiver can be stated as a function of the transmitted
signal [64].

yi = Hixi + ni (1)

The transmitted signal is represented by xi = R(NT ) and the
received signal is represented by yi = R(NR). The subcarrier
index is represented by i whereas, ni is the noise vector.
NT represents the number of the transmitter antenna. NR are
the number of receiver antenna. Hi ∈ C(NRxNT ) represents the
complex CSI matrix.

Hmn
i =


H11
i H12

i . . . H1NT
i

H21
i H22

i . . . H2NT
i

. . . . . . . . . . . .

HNR1
i HNR2

i . . . HNRNT
i

 (2)

For the communication link, between the n− th transmitter
antenna and m − th receiver antenna, Hmn

i is the channel
frequency response.

Hmn
i = |Hmn

i | + exp(j̸ Hmn
i ) (3)

̸ Hmn
i and |Hmn

i | correspond to the phase and amplitude
response.

B. PRINCIPAL COMPONENT ANALYSIS (PCA)
The complexity of high-dimensional sensor data is simplified
while preserving trends and patterns by using PCA. PCA
retains information as much as possible from the original
signal while deriving the data signal into a fewer number of
decorrelated linear combinations. The general idea of PCA
is to find the Principal Components (PC) of the data signals

that are orthogonal to each other [65]. PCA can be utilized in
multiple applications e.g., data compression, noise reduction,
biological signal processing [66], and image and pattern
recognition [67], [68], [69]. Some of the PCA advantages
are:

1) Lower memory requirements.
2) Orthogonality decreases the absence of repetition in the

data by utilizing orthogonal components [70], [71].
3) Noise reduction as the maximum variation basis is

considered. In the background, the small variation is
automatically removed [70].

4) Reducing complexity as data is grouped by the
PCA [70], [71].

5) PCA does not require complex computations.

However, in the PCA, until the training data provides
specific information, the simplest invariance could not
be captured [72]. Also, it is difficult to compute the
covariance matrix accurately in PCA [70]. Khanh et al. [73]
utilized Ultra-Wide Band (UWB) impulse radar to sense
the vital signals of the heart rate of the patient. The data
is subjected to PCA for reducing data complexity and
acquiring the projection on the primary PC. Such a projec-
tion facilitates substantially enhancing the Signal-to-Noise
(SNR) in comparison to other techniques of complex signal
decomposition and Direct Fast Fourier Transform (DFFT).
PhotoPlethysmoGraphy (PPG) signals can be utilized to
obtain cardiorespiratory signals i.e., respiration rate and heart
rate which will lessen the number of sensors placed on the
patient’s body for data collection [74]. The authors proposed
Ensemble Empirical Mode Decomposition with Principal
Component Analysis (EEMD-PCA) for estimating heart rate
and respiration rate concurrently from the PPG datasets of
MIMIC (Physionet ATM data bank) and Capnobase database
with the short length of 30 seconds. The proposed algorithm
provided better results compared to existing methods of
Correntropy Spectral Density (CSD) [75], Power Spectral
Density (PSD) [75], Smart Fusion [76], and Empirical Mode
Decomposition (EMD) [77]. Another example of recent
work of respiration rate estimation based on Wi-Fi frame
capture [78]. The authors worked on Beamforming Feedback
Matrices (BFMs) contained in the capture frames. BFM is a
rotated matrix of CSI. PCA was utilized to separate the data
from the chest movements of the subjects in the BFMs. The
resulting data were subjected to Discrete Fourier Transform
(DFT) to estimate respiration rates in the frequency domain.
It is stated by the authors that the frame-capture-based
respiration estimation has a lower estimation error than
3.5 breaths/minute.

1) MATHEMATICAL MODEL
Details of mathematical model of PCA is discussed in [79]
and [80] but the following mathematical model provides a
generic overview of how PCAworks in our dataset. The input
matrix X of time series respiration sensor data is represented
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in Equation 4:

X(t) = [x1(t) + x2(t) + x3(t) . . . .. + xn(t)] (4)

The respiration signals are obtained from raw sensor data by
using the PCA through the covariance matrix. The covariance
matrix is defined as Equation 5 or Equation 6:

C = conv(X ) (5)

Or,

C =
1
n

n∑
j=1

XjXTj (6)

This provides an m ∗ m matrix. The answer to Equation 7
provides the eigenvector αj and eigenvalues λj.

Cj αj = λj αj j = 1, 2, 3, 4, . . . .n (7)

The PCA acquired are using Equation 8:

zj = αj X (8)

They are assembled in order of magnitude of eigenvalues.
The eigenvalues correspond to the fraction of the total
variance. So, the PC with the most variance is considered the
signal with the most data.

C. EMPIRICAL MODE DECOMPOSITION (EMD)
EMD is a data-driven signal processing technique that
obtains the oscillatory tones embedded in a signal. No prior
knowledge of the data is necessary, thus making it fully
data-driven. EMD or Hilbert-Huang Transform decomposes
multi-component, nonlinear signals into oscillatory modes
of the signal called Intrinsic Mode Functions (IMFs) and
a monotonic function known as residue [81], [82]. The
shifting process, an iterative process, is utilized to estimate
the IMFs [83].

X (t) =

M∑
i=1

Ci(t) + rM (t) (9)

X (t) represents the discrete-time samples. Where in
Ci(t)Mi=1, M is the number of obtained IMFs with the same
length as X (t). Residue function is presented by rM (t).
EMD has been used for some time in multiple engineering

areas, including denoising ECG signals, classification of
EEG, and various biomedical engineering fields. The output
of the EMD is the variable quantity of components that have
the same length as that of the original signal. Researchers
have been using EMD for the estimation of patient vital signs.
Pinheiro et al. [84] utilized EMDand PCA to acquire patient’s
cardiovascular vitals from raw data of a chair-based system.
The performance of EMD for respiration vitals estimation
in [85] and [86].

In our research, we aim to utilize EMD as a dimensionality
technique methodology with IMFs being utilized to estimate
the patient’s BPM for the creation of a respiration DT model.

D. SINGLE VARIABLE DECOMPOSITION (SVD)
SVD is a characteristic decomposition and massive data
compression technique utilized in the fields of data analysis,
ML, and signal processing. SVD disassembles the sensor
data matrix into three components: U (left singular vector),
6, and V (right singular vector). The U and V are the
orthogonal matrices, whereas, 6 is the singular values
of the original matrix represented in a diagonal matrix.
Liu et al. [87] provided a detailed mathematical model of
SVD for signal processing. According to [88], a simpler
version can be represented in equation 10:

A = U ∗ 6 ∗ V T (10)

where A is an MxN matrix, U is an MxM, 6 is an MxN
matrix, and V T is an NxN matrix.
In our research, the purpose of the SVD method is to

achieve denoising, dimensionality reduction, and character-
istic decomposition to estimate the patient’s BPM for the
creation of a respiration DT model.

V. RESPIRATION DATA COLLECTION WITH ESP32
ESP32Microcontroller units containingWi-Fi modules using
the esp32-CSI tool have been utilized to collect datasets
i.e., Wi-Fi sending data using CSI for respiration rate
measurements, in a standard 3m x 3m room [89].With respect
of Fig. 3, this is the initial stage where patient respiration
data collection is performed with ESP32 sensor. The patient
chest expansion and contraction during the breathing process
perturbs the Wi-Fi’s propagation environment. The chest
small perturbations are detected as small changes in theWi-Fi
CSI data [90]. The Wi-Fi CSI-based non-invasive sensor
datasets are collected from the experiments to be utilized for
creating a patient DT model. The experiment was performed
with the Wi-Fi transmitter and receiver in a 3m x 3m room.
The subject is seated around 0.9m perpendicularly from
the midpoint of the transmitter-to-receiver direct line-of-
sight distance away from the Wi-Fi transmitter and receiver,
which were installed at a height of 0.85m from the floor
level. The subject’s age is 26; 1.56m tall and weighs 47kg.
Sensor data is collected over 2 minutes with 120 packets
per second sampling rate of the transmitter. The sensor
data is expected to be 14400 packets according to the
sampling rate, but it is expected in the experimental setup
to have losses. The sensor data has 52 subcarriers as the
sensor with Wi-Fi CSI characteristics utilizes the concept of
OFDM. The beats are set to a range of 12BPM to 28BPM
to depict the respiration rate of older adults. The range
of normal BPM for older adults is 12 to 16 and beyond
which is an indication of health problems. MATLAB has
been used to acquire Wi-Fi CSI signal from the .csv file,
signal processing, and utilizing ML algorithms for BPM
rate calculation, classification of normal and abnormal BPM,
and predicting BPM values. Fig. 4 represents the Wi-Fi CSI
respiration rate data collection of a patient with an ESP32
sensor.
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FIGURE 4. Wi-Fi CSI respiration rate data collection in a room.

VI. RESPIRATION DT MODEL PRE-PROCESSING
A. METHODOLOGY AND FILTERS COMPARISON
Filtering is the central part of extracting the respiration signal
from a strong noisy signal. It is attained by utilizing capable
bandpass digital IIR filters. In [33] and [91], the authors
provided a comparison of IIR and FIR filters for baseline
noise removal in the ECG signals. Due to the computational
complexity of FIR, higher memory requirements, and phase
delay due to higher-order FIR, IIR is considered a better
option. Fig. 5. provides an overview of the methodology
adopted for pre-processing rawWi-Fi CSI data for estimating
patient BPM.

FIGURE 5. Block diagram of pre-processing raw respiration Wi-Fi CSI data.

In this research, we aim to utilize bandpass digital IIR
filters for acquiring the appropriate frequency range (0.1Hz
to 0.6Hz) for respiration rate from the noisy Wi-Fi CSI
sensor data. A comparison of multiple IIR filters and
wavelet decomposition method is additionally carried out.
The following are compared in terms of acquiring accurate
BPM from raw sensor data:

1) Butterworth Filter (BF)
2) Chebyshev type 1 Filter (CT1F)
3) Chebyshev type 2 Filter (CT2F)
4) Elliptic Filter (EF)
5) Wavelet Decomposition

TABLE 1. Respiration rate of multiple IIR filters.

Table. 1 provides a comparison of multiple IIR filters and
wavelet decomposition for the calculated BPM after pre-
processing. The resulting data from each of the methodology
is passed through the PCA for respiration rate estimation.
The elliptic filter provides the least number of errors in
calculating the BPM concerning the inter-observer variability
threshold of +−5 BPM [92], [93], [94]. The elliptical filter
provides a relatively better estimation of the BPMwith 87.5%
accurate estimation as compared to other bandpass filters
such as Butterworth (BF), Chebyshev type 1 Filter (CH1),
Chebyshev type 2 Filter (CH2), and wavelet Decomposition
(62.5%, 75%, 68.75%, and 75% respectively). Additionally,
for normal BPM (12 to 16), elliptical filter presents no
inaccurate calculation of the BPM based on the inter-observer
variability threshold.

B. ELLIPTIC FILTER PARAMETRIC ANALYSIS
Table. 2 represents the values of metrics such as SNR,
Peak Signal-to-Noise Ratio (PSNR), and Shannon entropy
for all the experimental and pre-processed BPM signals.
This provides a performance overview of the pre-processing
methodology implemented to acquire the subject respiration
information from raw sensor data. The SNR values are shown
for both the raw and the pre-processed signal. It indicates an
increase in signal strength with the pre-processing method-
ology implemented. PSNR is the ratio of the maximum
possible value of a signal and the noise level. PSNR is
interpreted as the higher the value, the better the quality
of the signal. According to Table. 2, the PSNR provides
positive values for all the BPM showing a positive signal
strength over the noise. The Shannon entropy is considered
a natural choice for quantifying the complexity of a signal.
Higher entropy represents higher uncertainty and a more
unpredictable signal. Shannon entropy is considered for the
raw and pre-processed signal. According to Table 2, for the
majority of the signals, there is an increase in entropy value
after pre-processing is applied to the raw signal. A higher
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TABLE 2. Signal parametric analysis before and after pre-processing with
elliptic filter.

entropy can be an indication of pre-processing adding noise
or complexity to raw sensor data. However, the BPM values
acquired for the majority of the sensor data are within the
inter-observer variability threshold of +−5.

C. STEP-BY-STEP PERFORMANCE ANALYSIS
Fig. 6 provides the results throughout the multiple stages of
pre-processing presented in Fig. 5. Following is the step-by-
step detail elaboration of the pre-processing output:

1) Fig. 6(a) is the raw 12 BPM Wi-Fi CSI sensor data
considered as an example of pre-processing techniques.
The DC offset is removed from the sensor data set by
subtracting the mean from it, Fig. 6(b).

2) The sensor data is then subjected to a smoothing
process i.e., the moving average [32] in Fig. 6(c).
Smoothing is implemented to discover important
patterns in data while removing the unnecessary
information (i.e., noise).

3) The smoothed data is passed through the bandpass
filter (frequency range 0.1Hz to 0.6Hz [73], [76], [77])
shown in Fig. 6(d). A bandpass filter allows the signal
in a specific band of frequencies, called a passband
but blocks the components with frequencies above and
below the band. This is a contrast to the high pass
filter and low pass filter, which allows the components
above and below the specific frequencies, respectively.
An ideal bandpass filter will have a completely flat
passband with all the frequencies passing to the output
without attenuation or amplification and complete
attenuation for frequencies outside the passband. But
achieving an ideal bandpass filter is not possible in the
real world.

4) As for dimensionality reduction, by using PCA, the
processed data is projected in the form of principal
components. The total number of principal components
is 52 presented in Fig. 6(e).

5) A scree plot has been used to visualize all the principal
components of the filtered CSI signal. This will help in
deciding which PC to retain and which to let go of. The
PCs of the data signal will have variable variance. PC1
will have the highest variance, PC2 with the second
highest variance, and so on. No definite rule is present
for deciding when to stop including the variables but
in [95], two recommendations are provided. The first
recommendation is to select stop selecting the variables
when an elbow in the scree plot appears - the plot
begins to flatten out. The second recommendation is
to stop selecting the variables when the variable falls
below 1. Yu et al. [96] provided a discussion in terms
of the bandpass filter and PCA.With the bandpass filter
removing the noise, this allows the PCA to maximize
the amplitude of the signal rather than the noise. The
authors calculated the scree plot and selected the first
PC component since it has the highest variance. Based
on the discussion of [95] and [96] and according to the
scree plot of Fig. 6(f)., the first PC will be selected to
calculate the BPM of the patient.

6) The first PC is represented in Fig. 6(g). The final stage
is to implement the Power Spectral Density (PSD).
It is the method of characterizing the distribution
of the signal frequency components in an easier
visual interpretation than a complex Discrete Fourier
Transform (DFT) [95].

7) Fig. 6(h) represents the PSD graph has a frequency,
with the maximum power, 0.205 is multiplied by 60 to
acquire 12.3 BPM. According to [92], [93], and [94],
the clinical limits can be defined as +/− 5 BPM,
or the inter-observer variability in the clinical setting
can result in a BPM difference between 2 to 5 BPM.

D. COMPARISON OF MULTIPLE TECHNIQUES AND ResDT
MODEL
In our research, we aim to perform a comparison to analyze
the suitability of multiple techniques such as EMD, PCA,
EMD-PCA, and SVD in the development of the ResDT
model. The elliptic filter will be used as a bandpass filter
in comparison to EMD, PCA, EMD-PCA, and SVD. EMD-
PCA is a modification to the initial EMD method. This
offers a harmonious approach toward denoising and finding
out prominent features in raw sensor data. EMD applied
as a pre-processing step, generates IMFs. These IMFs are
further analyzed by PCA to identify the most relevant IMFs
and extract their corresponding features. The combination
of these techniques allows for extracting salient features,
a robust framework for denoising, and a compact and
meaningful representation of data.

Table 3 provides a comparison between EMD, PCA, EMD-
PCA, and SVD in terms of estimation of the patient BPM.
According to the interobserver variability of+−5BPM, PCA
provides the least errors in BPM estimation as compared
to other methodologies. Incorrect BPM estimations are
presented as bold in Table 3. PCA is the suitable option
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FIGURE 6. Pre-processing of raw respiration Wi-Fi CSI data (a) Raw respiration Wi-Fi CSI data (b) DC-off set
removed from respiration Wi-Fi CSI data (c) respiration Wi-Fi CSI data after moving average filter (d)
Respiration Wi-Fi CSI data after Elliptical bandpass filter (e) All principal components after PCA (f) Scree
plot (g) First Principal Component (PC1) (h) PSD of First Principal Component.

to be utilized as a pre-processing methodology for the
respiration data acquired through ESP32 unobtrusive sensor.
The resulting BPM through the PCA is presented in Fig. 7 as
a respiration DT model, ResDT.

Similar to [24], the ResDT model will be presented in the
form of a estimated BPM graph. The BPMs are recorded
by the subject in a linear format starting from 12BPM to
28BPM. The respiration data is currently from a single
subject to create the ResDTmodel. It is performed on purpose
to know that the data collected can be labeled a certain
BPM for the implementation of supervised ML. The ResDT
model is represented in Fig. 7. According to the interobserver
variability of +−5BPM, the least number of experimental
BPM (15, 21, 27) is incorrectly estimated after applying the
pre-processing methodologies.

VII. MULTI-CLASS AND BINARY-CLASS SUPERVISED
CLASSIFICATION FOR ResDT MODEL
Various combinations of generic data processing techniques
precedeML classification and regression processes before the
respiration rate DT. Pre-processing is the first stage before
any ML implementation in terms of learning and under-
standing depending on the features [97]. Some of the recent
research work involves the utilization of ML algorithms
for the accurate prediction of numerous medical method-
ologies with real-time data and processing capability [98].
Lee et al. [15] elaborated on a context-aware healthcare
system using the DT framework. ECG-based rhythms clas-
sifier model is created with ML to detect cardiac problems
and diseases. In [99], authors utilized ML algorithms to
accurately measure the bio-signals.
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TABLE 3. Comparison based on BPM estimation.

FIGURE 7. ResDT of the patient’s BPM.

In our research, the focus is to utilize numerous ML based
algorithms for supervised classification in the ResDT model.
This will help analyze the suitability of of algorithms, classi-
fication problems, and understanding toward a multi-patient
hospital DT model.

A thriving DT healthcare model depends on effective
and precise ML algorithms to accurately perform multiple
processes. Pre-processing has its importance. The signal-to-
noise ratio is improved by pre-processing, which directly
impacts the decision-making ability of the ML model
for classification and regression. Data heterogeneity, data
redundancy, and noisy data are some of the problemswithML
implemented directly on raw datasets [100]. Experimental
data is of a single subject over 2 minutes for every BPM.
However, to increase the size of the data, the data is split into
30 secs. The features selected are of, according to Fig. 6(h),
frequency and power value. The frequency value selected
will correspond to the highest power value in that PSD for
those specific 30-sec data selected. The total data size for ML

FIGURE 8. 10-fold cross-validation in ResDT model.

is 408 BPMvalues. This will help analyze theML algorithm’s
accuracy in the ResDTmodel in terms of how successful they
are in the classification of a certain BPM value (abnormal or
normal) if continuous 30 secs pre-processed data is provided
as input. The data is shuffled, and the total data set is kept at
80% training and 20% test datasets respectively. The training
dataset is split into training and validation data sets. For
validation, the k-fold cross-validation method is utilized [33].
The purpose of the validation data set is to provide an estimate
of the model skill. The capability of the ML model on an
unseen data sample is estimated by utilizing the statistical
method of cross-validation. Cross-validation 10-fold is used
in our ML ResDT model. Fig. 8 provides a representation of
the 10-fold cross-validation for ML algorithms in the ResDT
model.The validation set will be considered as the first fold,
and the remaining n-1 folds (n=10 here) will be utilized for
fitting the model and then the second fold and so on.

A. CLASSIFICATION ANALYSIS
Table 4 provides the accuracies of multiple classification
algorithms on the calculated BPM, pre-processed raw Wi-Fi
CSI data, of the ResDT model. These 21 algorithms are
utilized for supervised learning classification problems.
MATLAB classification learner app allows for built-in
classifiers. Overall, these algorithms are a strong starting
point for many supervised learning problems with a range
of techniques that can be adapted for many different types
of applications and data. Table 4 provides the binary-class
and multi-class classification accuracies of the 21 super-
vised classification algorithms. The ML algorithms have to
classify the abnormal BPM(17BPM to 28BPM) and normal
BPM(12BPM to 16BPM). In multi-class classification, the
ML algorithms have to classify between 13 different BPM
ranging from 12BPM to 28BPM. Free Tree algorithm has
the best accuracies of 96.9% and 95.8% for multi-class
and binary-class classification respectively in the proposed
ResDT model. A comparison in terms of classification can
be carried with [64]. Hu et al. utilized the Convolutional
Neural Network (CNN) on respiration Wi-Fi CSI sensor
data for classification problems to show the potential of
learning-based algorithms in unobtrusive vital sign detection.
Our proposed ResDT has multi-class and binary-class clas-
sification accuracies of with 96.9% and 95.8% respectively
compared to [64] 96.05%. Additionally, the classification
is performed on 16 different classes as compared to [64]
6 classes.
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TABLE 4. ML and DL algorithms accuracies for DT model.

FIGURE 9. Confusion matrix of fine tree algorithm for multi-class
classification.

The confusion matrix of the fine tree algorithm for
multi-class and binary-class classification is Fig. 9 and
Fig. 10. According to [101], The k-fold cross-validation
method is considered to have the strongest bias performance
estimates with a small data set. The authors performed a
comparison with multiple validation methods in terms of bias
ML performance estimation.

For binary classification, a metric of performance analysis
is the Receiver Operating Characteristic (ROC). The ROC
is the relationship between the True Positive Rate (TPR)
and the False Positive Rate (FPR) for the different threshold
values applied to classify the data. Whereas the AUC (Area
Under the Curve) provides the area under this curve as a
measure of the overall performance of the classifier. As the
ROC is based on a binary classification system, the abnormal
BPM (17 onward) is labeled as class 0, and the normal
BPM (12 to 16) and as class 1. Fig. 11 provides the ROC

FIGURE 10. Confusion matrix of fine tree algorithm for binary-class
classification.

FIGURE 11. ROC and AUC curve for binary classification problem of
normal and abnormal BPM for Fine Tree algorithm.

and AUC (Area Under Curve) of the classes for the binary
classification problem. The ROC curve of the classes is
different, but the AUC is the same. That identifies that the
two classes have achieved the same level of performance but
in different ways.

VIII. CONCLUSION
This research developed a novel DT model (ResDT) based
on Wi-Fi Carrier State Information (CSI), improved signal
processing, and Machine Learning (ML) algorithms for
monitoring and classification (binary and multi-class) of
patient respiration.

Multiple pre-processing techniques of DC-offset removal,
smoothing filter, multiple IIR bandpass filters along with

103564 VOLUME 11, 2023



S. Khan et al.: Novel DT Model Based on WiFi CSI, Signal Processing and Machine Learning

wavelet decomposition, and Principal Component Analy-
sis (PCA) for removing noise and dimensionality reduc-
tion were implemented on the patient respiration data
acquired with ESP32 Wi-Fi CSI. Multiple IIR filters and
wavelet comparison is provided in the ResDT model to
choose the optimal denoising technique for the sensor
data. The elliptic filter provides the most accurate Breaths
Per Minute (BPM) calculation in the ResDT model by
87.5% as compared to Butterworth (62.5%), Chebyshev
1(75%), Chebyshev 2(68.75%), and wavelet (75%). PCA
is compare with Empirical Mode Decomposition (EMD),
Single Variable Decomposition (SVD), EMD-PCA in terms
of dimensionality reduction of data for the estimation of
patient’s BPM.

ML supervised learning classification algorithms accu-
racies, multi-class and binary class with 10-fold cross-
validation, are provided for the proposed ResDT model.
This provides an overview of the algorithm’s accuracies in
terms of multi-class and binary-class classification of BPM
in decision-making for healthcare professionals. Among
the implemented algorithms, fine tree algorithm provides
binary and multi-class classification accuracies of 96.9%
and 95.8%.

In our research of the proposed ResDT model, the
performance accuracies of ML algorithms with k-fold cross-
validation are indeed high but k-fold cross-validation is
tested as the first validation method for the ResDT model.
There is a need to implement and test multiple validation
methodologies and big data of the subject’s respiration to
completely evaluate ML algorithms in the ResDTmodel. Not
only that, with big respiration data (experimental or synthetic
generated), multi feature analysis along with ML algorithm
implementation on a larger training data.
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