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ABSTRACT The effectiveness of regenerative braking strategies plays an important role in extending
the driving range of electric vehicles. Since the driver is still an essential factor in levels 3 and 4 of
intelligent electric vehicles, improving user acceptance and adoption of the braking control strategy is
crucial. This paper puts forward a new regenerative braking strategy to find a compromise between optimal
braking control performance and naturalistic regeneration performance while satisfying the maximum
speed preference when driving between two-stop events. Unlike other similar works that only maximize
regenerative braking energy while satisfying the physical limits of an electrified powertrain, this paper
considers naturalistic regeneration performance. To achieve this, firstly, the power regenerated by three
drivers is predicted with a long-horizon (30 seconds), using long-short-term memory networks (LSTM) and
non-linear autoregressive exogenous model (NARX). Subsequently, an estimation of the energy recovery
maximization rate is performed to give a perception of the naturalistic regeneration performance. As this
performance varies, the deceleration planning employs three horizon scales of long, medium, and short,
determined by the energy recovery maximization rate. Finally, dynamic programming (DP) is utilized to
optimize a deceleration profile. The study utilizes real data of inverter efficiency, transmission efficiency,
andmotor-to-battery efficiencymap. The outcome of this study shows that the proposed regeneration braking
strategy is adaptive, improving regeneration efficiency by 39,6% for driver 1, 16% for driver 2, and 26% for
driver 3, and forecasting the optimality of some deceleration behaviors.

INDEX TERMS Eco-driving, acceptance, driving behaviors, regenerative braking, intelligent vehicles,
machine learning, optimal control.

I. INTRODUCTION
Transport is the second greatest energy user and emitter of
carbon dioxide. Pure electric vehicles provide a solution to
this environmental challenge, despite their limited driving
range and long recharging time [1], [2]. As city popula-
tions and densities rise, traffic congestion, and the risk of
accidents increase as well. In response to these challenges,
academia and businesses have redoubled their efforts to
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develop and perfect autonomous electric vehicles (AEVs)
[3], [4]. AEVs are considered a crucial requirement for
greener, safer, and more efficient urban transportation [5].
Smart decision-making in AEVs allows them to maximize
profits and minimize energy consumption by wisely manag-
ing and trading among available energy sources [6].

The eco-driving system includes diverse strategies that
optimize the driving velocity profile to significantly reduce
energy consumption [7]. Studies examining navigational
data, high-precision map data, and energy consumption data
have shown that combining eco-driving technology with
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connected and automated vehicles (CAVs) can have a signifi-
cant impact on energy consumption. Adequate speed controls
can be achieved by utilizing background information such as
speed limits, safe speeds for curved roads, and an estimate
of the average traffic speed. The speed planning problem
can be formulated as an optimal control problem with the
objective of reducing energy consumption while considering
the constraints imposed by the mapping information [8].
However, real-time deployment of such systems is inhibited
by algorithmic limitations resulting from factors like unex-
pected nearby car maneuvers, inevitable traffic congestion,
intermittent data connectivity, and so forth. Moreover, global
optimization search algorithms, including model dynamic
programming (DP) and Pontryagin’s minimum principle
(PMP), require high computational costs that are not currently
provided by existing vehicle computing units [7], [9], [10],
[11]. Due to unforeseen circumstances, optimal solutions
calculated over the whole path may be invalid or reduce the
real-time powertrain’s energy efficiency [12]. Even though
the G7 nations have decided to eliminate the legal barri-
ers impeding the development of autonomous cars, these
vehicles are still far from being widely accepted in society.
Golbabaei et al. [13] have demonstrated significant differ-
ences in public perceptions and adoption intentions among
various sociodemographic subgroups. Researchers have also
shown that travelers are more likely to ride entirely in
autonomous vehicles (AVs) undermonotonous driving condi-
tions, such as highways, than in urban conditions. In contrast,
most consumers are willing to acquire AEVs equipped with
a level 2 or 3 advanced driver-assistance system (ADAS),
despite the fact that such vehicles are not fully autonomous
and charging facilities are insufficient, particularly at the end
of 2022 with the inflation of fuel costs [10], [11]. These
levels of automation have the same potential for improving
energy efficiency as level 5 ADAS due to the same perception
sensors.

Given the aforementioned considerations, improving the
performance of level 2 or level 3 autonomous driving systems
in real-time operation is crucial, as this can help extend
the autonomy of electric vehicles. Researchers have devel-
oped various eco-driving strategies that can be categorized
in terms of their application to specific environments, such
as eco-cruising on highways and eco-approach at signalized
intersections [14], [15]. Through the analysis of the junction’s
signal phase and timing (SPaT), the vehicle’s data, and the
traffic flow, the eco-Approach and Departure (EAD) pro-
gram determines the most energy saving way to pass through
the intersection [16]. Furthermore, researchers have mostly
focused on improving eco-driving performance in real-time
by concentrating on more restricted driving scenarios, such
as regenerative brake control, acceleration and deceleration
(vehicle tracking), and speed restriction based on traffic signs.
Han et al. [17] have developed an optimal control prob-
lem for acceleration or deceleration while satisfying safety
constraints, minimum inter-vehicle distance, and maximum

speed limit, considering the presence of vehicles in front.
Yang et al. [18] have specifically developed a vehicle queuing
process at signaled intersections using the shock wave profile
model to create a green window for planning eco-course
vehicles in a congested environment. Zhao et al. [19] have
presented a predictive model using the receding horizon to
reduce platoon fuel consumption and pass the junction on
a green phase. The authors claim that the proposed model
achieves eco-driving without considering the optimal regen-
eration performance. Energy recovery using power from
regenerative braking is one of the most common strategies
to improve fuel economy for electric vehicles (EVs) [20],
[21]. This energy recovery process involves converting the
kinetic and potential energies to electric power using the
tractionmotor as a generator [22], [23]. Apart from the impor-
tance of considering the optimal speed profile to minimize
energy consumption, it is also essential to improve energy
recovery performance [24]. Extensive studies have focused
on the regenerative torque distribution (RTD) strategy tomax-
imize the braking energy recovery without compromising
braking performance, safety, and driveability [20], [25], [26].
Owing to the energy efficiency-centric design of HEVs and
EVs, comfort is among the most important criteria. However,
powertrain, drivetrain, and comfort optimization are mostly
related to the vehicle manufacturer’s design, with little con-
trol given to the driver when considering the comfort settings.
The vehicle motion profile is one factor that affects comfort
(i.e., acceleration, deceleration) [27]. Therefore, acceleration
and braking actions need to be constrained to provide a
comfortable driving experience.

In light of recent studies, the performance of a regenerative
system, acceleration, and deceleration is impacted by several
factors, such as the variation of operation conditions, road
topology, traffic volume, weather conditions, and driving
behaviors. In such circumstances, many researchers have
focused on anticipating future events to minimize irreversible
driving errors under varying road conditions [28], [29].
In [30], a model predictive control (MPC) is designed using
the acceleration prediction of the car in front by NARX
model. Given this information, theMPC optimizes both speed
tracking and energy recovery rate for the new method of
adaptive cruise control. In [31], an MPC- based tire dynamics
and vehicle load control method is proposed to increase the
regeneration efficiency of electric machines and reduce tire
slip loss. In [32], Q-learning algorithms create optimal speed
profiles while stopped at red lights by considering all rele-
vant real-time parameters via vehicle-to-infrastructure (V2I)
communication. Better results are achieved by experimental
verification of the predicted speed profiles that determine
the braking actions of vehicles in response to varying road
conditions. In [33], a hybrid method termed as Layer Hid-
den Markov Model-Dynamic Compensatory Fuzzy Neural
Network is used to recognize the driver’s braking intention
with the goal of improving braking sense and increasing the
amount of energy that can be recovered. In [34], personalized
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and green adaptive cruise control for intelligent electric
vehicles is presented to improve regenerative braking and
ADAS comfort. It is optimized via nonlinear MPC theory
and uses the Hammerstein model with key parameters that
vary according to driving style. Therefore, several improve-
ments in regeneration systems have been proven in the
literature by anticipation of future events and driving styles,
but the relation of driving style, regeneration performance,
and acceptability of ADAS has not been explored suffi-
ciently [35]. From a technical perspective, efficient driving
with EVs mainly depends on anticipatory braking conditions,
and the EVs engine operates optimally at a higher speed.
Therefore, coasting as much as possible is relevant to opti-
mize energy recovery. Also, the anticipation of the braking
phase during the vehicle movement has several benefits as
the vehicle moves. It makes it possible to prepare the recovery
mechanism to recover the maximum kinetic energy.

Since regenerative braking only works with technically
limited efficiency, the amount of kinetic energy that will
be converted back to electricity and stored in the battery is
mainly dependent on the driving style [36], [37], [38], the
physical limitations of motor generation, and the decelera-
tion limitations of regenerative braking. Some works in the
literature regarding the maximization of regeneration respect
the motor’s physical limit [39]. In [40], real driving test data
characterizing the physical limits of regenerative braking are
used to propose an energy-optimal deceleration planning sys-
tem and improve energy-recuperation efficiency gains. Such
strategies are employed in formulating ADAS, mainly used
by autonomous vehicles of level 5. However, they cannot be
very effective when integrated into autonomous vehicle level
3 or 4, where the driver is an essential factor, and driver accep-
tance of braking control strategies presents a challenge in the
literature [41]. In reality, when approaches do not consider
individual naturalistic regeneration performance in the brake
control optimization model, it can sometimes lead to painful
and circumvent excessive and bothersome alerts, which often
lead drivers to disengage the system, thereby directly impact-
ing its efficiency [42]. This performance is evaluated by the
capability to energy regenerate up to the engine’s regenera-
tion limit while respecting maximum speed preferences [43].
To manage standard control strategies, an adaptive method
will be extremely important [44], [45]. Thus, this paper has
two major contributions: (i) This research predicts the power
regenerated by drivers over a long horizon (30 seconds),
utilizing LSTM and NARXmodels. These models effectively
predict the performance of naturalistic regeneration and esti-
mate whether the deceleration behavior within this context is
optimal or requires assistance. (ii) Adding the forecasting of
driver naturalistic regeneration performance to regenerative
braking strategy design is the main contribution of this work.
Recognizing the variable nature of this performance, our
proposed braking strategy maximizes regenerative energy to
the physical limits of an electrified powertrain by adapting
the deceleration planning horizon to the driver’s naturalistic
regenerative performance. This adaptive regenerative braking

FIGURE 1. The vehicle braking model [46].

strategy is very useful within the context of eco-friendly
braking assistance. Contrary to most of the existing papers
in the literature, which are based on simulation, the results
obtained of this work have been validated with real data
of inverter efficiency, transmission efficiency, and motor-to-
battery efficiency map of Kia Soul 2017.

The rest of this article is organized as follows. Section II
describes the electric vehicle model that was used to compute
deceleration distance and power regeneration. Section III
explains the proposed braking control strategy adaptation
algorithm. The experimental results are reported and dis-
cussed in section IV. Finally, the conclusion is given in
section V.

II. ELECTRIC VEHICLE MODEL TO CALCULATE
DECELERATION DURATION AND POWER REGENERATION
A. VEHICLE DYNAMICS MODEL
Regenerative braking controllers require a vehicle dynamics
model. Since the electric vehicle’s braking performance is the
focus of this paper’s attention, the vehicle dynamics model is
simplified to longitudinal motion, assuming straight braking
and no steering effect. The vehicle dynamics model, includ-
ing longitudinal and rotational wheel movement illustrated in
Fig. 1, can be described as follows:

M ˙v(t) = Fxf (t) + Fxr (t) + FLoad (t)

FLoad (t) = FLoad ,α(t) + FLoad ,β (t)

FBrk (t) = −Fxf (t) − Fxr (t) (1)

where FLoad ,α and FLoad, β are defined as:{
FLoad, a(v, θ) = C0 cos(θ (X (t))) + C1v(t) + C2v2(t)
FLoad ,β (θ ) = Mg sin(θ (X (t)))

(2)

M is the total mass of the vehicle, v is the longitudinal vehicle
velocity, θ is the road slope, Fxf and Fxr are respectively
the longitudinal tire-road friction forces at the front and rear
tires. C0 and C1 are rolling resistance coefficients, C2 is
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an aerodynamic coefficient, and X (t) represents the location
in the time domain. Numerical values of these coefficients
are obtained from real driving tests on normal road surface
conditions.

The tire-road friction force is calculated as follows:

Fxj(t) = µj(κ)Fzj(t) (3)

where Fzj represents the normal load on tires, and µj is
the tire-road friction coefficient as a function of the slip
ratio. Pacejka [47] developed a model to express the tire-road
friction coefficient as a non-linear function of the slip ratio,
as follows:

µj(κ) = Dx sin
{
Cx arctan

[
Bxκj − Ex

(
Bxκj

− arctan
(
Bxκj

))]}
(4)

where Bx , Cx , Dx , Ex are the stiffness, shape, peak, and
curvature factor, respectively. The longitudinal slip ratio κj,
which defines the difference in longitudinal velocity between
the wheel axle and tires rotational velocity, is derived as
follows:

κj =
ωwjRe − v(t)

v(t)
(5)

where Re is the effective rolling radius of the tires, and ωwj
is the rotary velocity of front and rear wheels. According to
this, the normal load on front and rear tires is dependent on
the longitudinal deceleration (ax).

Fzf =
M (lrg− hax(t))

lf + lr

Fzr =
M

(
lf g+ hax(t)

)
lf + lr

(6)

where lf and lr are the longitudinal distances from the center
of gravity to the front and rear tires, g is the acceleration due
to gravity, and h is the distance from the center of gravity to
the vehicle’s ground.

B. VEHICLE DECELERATION DURATION
The speed profile is a temporal and spatial process, which
makes v(X (t)) represent the speed profile at a specific obser-
vation station (i,e, location) at time t. Given a sequence of
speeds at Xi(t) values, the speed profile to arrive at Xi(t +

1(t)) can be accurately estimated after a time interval 1(t).
Furthermore, the speed profile and deceleration duration can
be described as follows:

vi+1(t) = vi(t) +
Fxf (t) + Fxr (t) + FLLoad (t)

m
1ti (7)

v2i+1 = v2i +
21Xi
m

(
Fxf + Fxr + FLoad

(
v2i , θi

))
(8)

vi+1 =

√
21Xi
m

(
Fxf + Fxr + FLoad

)
+ v2i (9)

ti+1 = ti +
1Xi
vi

(10)

tN =

N−1∑
i=0

1Xi
vi

(11)

where FLoad
(
v2i , θi

)
is affine in v2i , and tN is the duration

decelaration. In this case, we use the formula vi = v (ti) =

v (X (ti)) = v (Xi), which is also used for other dependent
variables.

C. MOTOR AND BATTERY MODELS
According to Xu et al. [46], the output torque of electric
motors is amplified and exerted on the wheels through the
reduction gear. Therefore, the rotational velocity of four small
high-power in-wheel motors is decreased. The governing
equations can be expressed as:

Tw = g0Tm

ωw =
1
g0

· ωm (12)

where Tw is the braking torque on the wheels, Tm is the actual
motor torque, ωw is the rotational velocity of the wheels,
ωm is the rotational velocity of the motors, and g0 is the
transmission ratio of the reduction gear.

The simplification of the braking torque on the wheels
(Tw) can be expressed as a first-order reaction model with a
small-time constant τ :

Tw = g0 ·
1

τ s+ 1
· Tm, ref (13)

where Tm, ref is the reference motor torque. The motor-to-
battery regenerative braking efficiency η depends on the
braking torque and rotational velocity of the in-wheel motors:

η = η (Tm, ωm) =
UcIC
Tmωm

(14)

where Uc and Ic are respectively the battery charging voltage
and current of one in-wheel motor.

The battery provides the requested power for the in-wheel
motors. The average battery model consists of an open-circuit
voltage and an internal resistance, which are a function of
the state of charge (SOC) and the temperature. The battery
regenerative power Pr is given by:

Pr = UbIb
Pr = Tbωb (15)

where Ub is the terminal voltage and Ib is the current of the
battery. Battery SOC measures the effective discharge rate,
which is estimated by the coulomb counting:

SOC t
= SOC0

−
100
Cn

×

∫ t

0
I
(
I
In

)pc−1

dt (16)

whereCn is the nominal capacitymeasured at nominal current
(In) predefined by the manufacturer. SOC t represents the
SoC value at time t . and pc is Peukert’s constant typically
measured empirically for the type of lithium-ion battery cell.
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D. GENERALIZED ENERGY RECUPERATION MODEL
The regenerative deceleration force of an electric vehicle is
limited by the electric motor’s regenerating capacity. Addi-
tionally, the regenerative braking force depends on the elec-
tric vehicle’s motor configuration. The regenerative-braking
force can be limited as follows:

FRQn = max (FBrk ,FLmt) (17)

where the limit of powertrain’s regeneration force (including
the traction motor and gearbox) is given by:

FLmt (v) =
1
rw
TLmt (v)gi(v)gf (18)

where TLmt is the torque limits of the electric motor in
regenerator-mode, rw is the dynamic wheel radius, gi(v) is the
gearbox ratio determined by the gear-shift controller based
on the current longitudinal vehicle speed v. TLmt can be
obtained by performing a quasi-steady-state, equivalent to the
following mathematical expression:

TLmt (v) = f (ωMot (v)) (19)

where TLmt is the motor rotation speed in RPM.

III. ADAPTIVE ENERGY DECELERATION PLANNING
SYSTEM DESIGN
The proposed strategy in this paper is called Adaptive Energy
Deceleration Planning System (AEDPS). AEDPS aims to
optimize and adapt deceleration planning by considering
two crucial factors: the individual’s naturalistic regeneration
performance and the driver’s maximum speed preferences.
Fig. 2 illustrates the general structure of AEDPS, which com-
prises three essential components: long-horizon forecasting
of power specific to each driving behavior, determination of
the energy recovery maximization rate, and adaptive optimal
deceleration planning. AEDPS requires power forecasts for a
relatively long horizon of 30 seconds since determining the
high energy recovery maximization rate in advance is neces-
sary for deceleration planningwith a long horizon. To account
for the two effects mentioned above, the strategy estimates
the amount of energy that can be maximized and determines
themost appropriate deceleration planning horizon during the
optimization phase of the deceleration profile. It utilizes three
horizon scales: long, medium, and short. The long horizon is
used to develop long-term deceleration profiles and improves
regeneration for a high energy recovery maximization rate.
Medium and short horizons are utilized for moderate and
minimal energy recovery maximization rates, respectively.
In the case of optimal naturalistic deceleration behaviors,
the strategy disables the control warning from ADAS to the
drivers The development of each component is described in
detail below.

A. ANALYSIS AND PREDICTION OF POWER
In this section, the experimental setup, fixed-route driving for
data collection, and data preprocessing are explained. The last
subsection introduces the two-time series prediction models

TABLE 1. Key parameters of the electric vehicle.

used in this strategy and the correlation analysis between
power consumption and driving behaviors.

1) EXPERIMENTAL SETUP FOR DATA COLLECTION
An instrumented 2017 Kia Soul intelligent electric vehicle
(EV) was utilized for the collection of naturalistic driving
data, in-vehicle information, and environmental factors. The
vehicle’s parameters are summarized in Table1. As depicted
in Fig. 3, the onboard measurement system comprises the
global positioning system (GPS), the onboard diagnostic
system (OBD), and the ADAS system installed in the exper-
imental vehicle. The GPS system, Septentrio (AsteRx-i3 D
Pro+), mounted in the vehicle’s trunk, was chosen for its
good real-time accuracy, which is ideal for calculating vehicle
position and road parameters. This high level of accuracy
is achieved using the Real-time Kinematic (RTK) approach,
which enhances the Global Navigation Satellite System
(GNSS) accuracy and utilizes an RTCM correction stream.
Furthermore, AsteRx-i3 D Pro+ integrated GNSS-IMU sys-
tem with a dual antenna, multi-frequency GNSS receiver,
and a Vectornav VN-100 micro-electromechanical system
(MEMS) IMU was used to get the ground truth [48]. Specif-
ically, the GNSS receiver uses a Kalman filter algorithm to
merge IMU and GNSS data for precise location and reliable
GNSS/INS positioning and 3D orientation. Fig. 3 shows the
OBDlinkMx and Mobileye systems connected to the OBD2
ports for CAN-Bus communication. The OBDlinkMx oper-
ates via Bluetooth on PCs and is responsible for collecting
vehicle parameters such as brake and acceleration pedal
states, motor torque, etc. The Mobileye system, securely
mounted and calibrated at the center of the windshield, oper-
ates using an intelligent digital camera powered by the EyeQ
chip. This advanced system provides high-performance, real-
time image processing capabilities, enabling the detection
of vehicles, lanes, pedestrians, and traffic signs, including
stop signs. It also efficiently calculates the dynamic distance
between the vehicle and other road objects. Furthermore,
Mobileye can recognize obstacles at a longitudinal distance
of up to 250 m from the reference point.
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FIGURE 2. AEDPS Design.

FIGURE 3. Instrumented intelligent electric vehicle (Kia Soul 2017).

2) FIXED-ROUTE NATURALISTIC DRIVING DATA COLLECTION
This study employs the fixed route that is applicable to
vehicles in which the driver takes the same route to work or

commercial vehicles, such as city buses and garbage trucks,
that mostly commute on the same routes at the same time. The
selection of fixed routes in this study is used to improve the
forecasting of variation in driving behaviors on-road charac-
teristics. Naturalistic driving data are collected on the same
route (Trois-Rivières, Quebec) to study the deceleration and
braking patterns in a real traffic environment. The database
has been checked under the following conditions:

• There were no surrounding vehicles, traffic lights, and
dynamic obstacles.

• The braking events are initiated by static obstacles, such
as stop signs and static objects detected by Mobileye.

• The route has covered a total distance of 4 km.
• The selection of the road has been made mainly because

of the substantial amount of stop panels (12 stop signs).
The experiment session began once a participant was

confident about driving the test vehicle safely. Multiple
drivers performed the experiments, and an assistant in the
vehicle gave the participants route guidance instructions

99578 VOLUME 11, 2023



M. Ziadia et al.: Adaptive Regenerative Braking Strategy Design

to synchronize the start of data collection from all the
instruments.

3) JOINT FEATURE LEARNING AND TIME SERIES MODELING
Using the developed EVs dynamic model, a dataset with
known inputs and outputs can be obtained which opens up
an opportunity for using supervised machine learning to
develop an inferred function. In this regard, two recurrent
neural networks (RNN)-based methods, namely LSTM and
NARX, are used herein to long-horizon forecast the power
of the EVs under study. The recurrent structure of the men-
tioned methods allows them to exhibit the temporal dynamic
behavior caused by the driving conditions of the EVs. NARX
has already been used successfully to predict time series in
different applications [49]. It can forecast a time series future
value based on its current and past values as well as another
time series’ past and current values, known as an external
or exogenous time series. NARX can model and rapidly
converge to time-sequential vehicle states. However, it suffers
from long-term dependence and does not detect information
in sequential data. This limitation is due to its vulnerability to
the vanishing gradient problem. Hochreiter and Schmidhuber
developed the LSTM to address the mentioned shortcomings.
LSTM has three gates, an input gate, an output gate, and a
forget gate, which can improve its performance in long-term
learning tasks [38], [50], [51]. This option is considered
critical because this network is prone to overfitting. The
vulnerability of LSTM is the need for significant memory.
Another drawback is that it necessitates more computing
power than the NARX network. A comparison of the two
methods will be presented in this study to identify the best
neural network for predicting braking power.

Datasets with a high number of variables are frequently
challenging to summarize or analyze. To address this, Princi-
pal Component Analysis (PCA) was performed to reduce the
dimensionality of the dataset used in the forecasting model.
The correlations between the principal components and the
original variables are presented in Table 2. It can be seen
that there is no correlation between the principal components
themselves. The first principal component is highly corre-
lated with six variables of the original ones. The first principal
component increases with increasing Battery Current, Bat-
tery Voltage, Battery Power, Motor Torque, and lightly with
distance to stop and Speed scores, suggesting that these six
criteria vary together. If one increases, then the remaining
ones tend to increase as well. Furthermore, the first principal
component correlates strongly with the battery variables. The
second principal component increases with the rotational
speed and its equivalent speed. However, the second main
component correlates strongly with the road characteristics
provided by the GPS. The outcome of this process indicates
that the followings features are discriminative: the speed χ1,
the distance to the next stop panel χ2, the Motor Torque χ4,
the Latitude χ5, the Altitude χ6 and the Rotational Speed χ7.
The Battery Power signal is used as the output (y(1)).

TABLE 2. Extracted vectors.

The prediction results are evaluated using two differ-
ent accuracy measures: the root-mean-square-error (RMSE)
and the computational time. RMSE is a regularly used
index to quantify model regression performance, with
scale-dependent measurement and evaluation for sequence
prediction. Additionally, the model should not produce com-
putationally expensive results. This is why it is equally critical
to assess training time. The root mean squared error RMSE
is defined as:

RMSE =

{
1
N

N∑
t=1

(
ŷt − yt

)2}1/2

(20)

where ŷt and yt present predicted and actual battery power of
vehicles usages for N discrete time samples. A comparison
of the prediction performances of LSTM and NARX is per-
formed in order to adopt the most efficient prediction method
in terms of accuracy and computation time in the proposed
strategy.

The grid-search approach is used to identify the best hyper-
parameters. For the LSTM model, the different ranges of
hyperparameters to be optimized are as follows: epochs are
set between 10 and 100, the learning rate is set as [0.5, 0.1,
0.01, 0.001, and 0.0001], and the number of hidden layer is set
between 1 and 400. For theNARXmodel, the hyperparameter
ranges for input delay, feedback delay, hidden layer size,
and training function are set as [2, 5 and 20], [2, 5 and 10],
between 1 and 133, and [‘‘trainlm’’, ‘‘trainbr’’, ‘‘traind’’].

B. DETERMINATION OF ENERGY RECOVERY
MAXIMIZATION RATE
As previously mentioned, the power during braking varies
from one driver to another because the regeneration limit
is affected by the driver’s acceleration behavior. A very
low acceleration leads to the rotational speed being in the
region of low-speed power dissipation, as presented in Fig. 2.
Therefore, the strategy plans for long-term deceleration and
the trigger of Freewheel mode. To determine The limits
of torque and force in the wheel, a precise estimation of
power flow parameters has been suggested in this work. The
Power flow parameters, ηBa, ηMi, ηTr , represent the battery
efficiency during the charging or discharging, the traction
inverter efficiency, and the driveline efficiency, respectively.
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FIGURE 4. Efficiency curves for inverter electrical device and efficiency
factor of PMSM Kia soul.

FIGURE 5. The efficiency factor of PMSM Kia soul.

The parameters of the power flow of the EVKia Soul 2017 are
studied in [52]. The reported analysis results are shown in
Fig.4, demonstrating that the inverter has a maximum effi-
ciency of 99% at low speed and a minimum efficiency of 94%
at high speed. The gearbox of the Kia Soul is constant and
equal to 8.206. The power regenerated in the wheel can be
expressed by:

Pw−pred = ηBa · ηMi · ηTr · Pb−pred (21)

Sinceωb is predicted, and by applying the formulas expressed
in (12),(13),(14) and (18), ωw−pred can be determined. More-
over, Tw is obtained using motor-battery efficiency map of
Kia soul shown in Fig.5. Accordingly, the in-wheel force
limit Flmt and the force regenerated by the driver Frgn−pred
can be predicted and compared. The difference between
these two parameters is used to update the horizon of the
deceleration planning, as discussed in the subsequent section.
Fig.6 demonstrates the driver’s naturalistic behavior speed
profile and the deceleration profile optimized by the pro-
posed AEDPS. In the case of naturalistic driving maneuvers,
1Fnat, which is the force difference between the motor force
in traction FRgn/nat and the powertrain regeneration force
limit FLmt/nat at a specific rotational speed ωnat , defines
the regeneration performance of the hlpowertrain. It should
be noted that 1Fnat depends on the driving style and route
segment features. The maximum regeneration FRgn/max and
the maximum regeneration limit FLmt/max for each driver’s
behavior are closely related to the maximum rotational speed
in acceleration mode ωmax . FRgn/max is equivalent to the
optimal regenerative force that the AEDPS strategy achieves.
Assumption: The Strategy assumes that FRgn/max is equal to
FRgn/Lmt in the second step of the strategy.

The comparison between FRgn/max and FRgn/nat allows
predicting the maximum regeneration efficiency and

FIGURE 6. AEDPS parameters.

determining the energy recoverymaximization rate expressed
by 1F = FRgn/max − FRgn/nat. Depending on the resulting
value of 1F, AEDPS chooses the deceleration planning
horizon when 1F is not zero. Otherwise (if it is zero), the
driver’s behavior is considered optimal.

C. ADAPTATIVE OPTIMAL DECELERATION PLANNING
As previously mentioned, the 1F determined by the fore-
casting model varies widely, as energy recovery is affected
by the vehicle operating environment and the driving style.
To promote energy regeneration, increasing the deceleration
distance is essential, but it is limited by 1F. Therefore, the
optimization strategy consists of three different deceleration
planning horizons; long, medium, and short. Each horizon is
associated with a range of 1F. The allocation of the deceler-
ation horizon is done as follows:
Optimal: O N ≤ 1F ≤ 100 N
Short: 100 N < 1F ≤ 500 N
Medium: 500 N < 1F ≤ 1000 N
Long: 1F > 1000 N
As shown in Fig.2, the horizon is defined based on 1F, and
the choice of the planning horizon as input in the optimization
helps to make the regenerative braking strategy adaptive.
AEDPS optimizes the energy recovery performance of the
powertrains by determining the optimal regeneration force
that minimizes 1F. In general, acceleration is determined
by the driver, and deceleration is performed automatically
by AEDPS based on the principle of an adapted optimal
deceleration profile. Fig. 7 shows an example of AEDPS
optimized deceleration profile at different horizons. The dis-
tance between ωmax and ωnat is calculated and labeled as
Ddiff . The long horizon adds all the distance Ddiff to the
naturalistic deceleration distance. The Medium horizon adds
2
3 of Ddiff to the naturalistic deceleration distance. The short
horizon adds 1

3 of Ddiff to the naturalistic deceleration dis-
tance. The deceleration profile is constrained between the
driving speed and the final speed at the stop position. The
speed constraints in (2) must be dynamically updated to find
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FIGURE 7. Illustrating AEDPS optimized deceleration profile at different
horizons.

a set of practically feasible speed candidates at a computation
node, considering the deceleration induced by the road load
force, the smooth deceleration for driving preference, and
the remaining deceleration distance. For different driving
environments and situations, the speed constraints change
as the road load forces change. To achieve speed planning
that maximizes energy recuperation, an optimization problem
using DP has been formulated.

1) ENERGY OPTIMIZATION BY DYNAMIC PROGRAMMING
In the proposed strategy, the dynamic programming method
is employed to optimize the deceleration profile. The DP
method incorporates the environmental conditions of EVs
operation, including the slope and deceleration ranges of
a real vehicle. Assume the deceleration started at vehicle
position Xk and finished at position XN . For any position Xi
( k ≤ i ≤ N ), given the speed at the road grade (or slope),
θi is known. Assume that at Xi, the vehicle longitudinal speed
and acceleration are vi, ai. The energy EN during the entire
vehicle deceleration from Xk to XN is given by:

EN = Ek +

N∑
i=k+1

FRgn (vi, ai, θi) 1X (22)

where Ek is the vehicle kinetic energy at Xk ;FRgn (vi, ai, θi)
represents the regenerative force profile fromXk toXN ·1X =

Xi+1 − Xi. The optimization problem can be formulated as
follows:
Given Xk and XN , find the sequence of ai so that EN is
minimized and the following constraints:

FRgn (vi, ai, θi) = Mai +
1
2
ρACvv2i +Mg (µ cos (θi)

+ sin (θi)) (23)

amin ≤ ai ≤ amax (24)

So the optimal energy during the deceleration is:

E∗
N = min

ai

Ek +

N∑
i=k+1

FRgn (vi, ai, θi) 1X

 (25)

Using DP, the optimal sequence {a∗} = {ai, k + 1 ≤ i ≤ N }

is given by:

{
a∗

}
= argmin

ai

Ek +

N∑
i=k+1

FRgn (vi, ai, θi) 1X

 (26)

Knowing a∗, the optimal deceleration speed profile is given
the integral of {a∗}.

IV. EXPERIMENTAL RESULTS, ANALYSIS AND
COMPARATIVE STUDY
This section begins with the analysis and comparison of
the results of the power prediction framework using NARX
and LSTM models. Subsequently, the performance of the
proposed AEDPS strategy is studied in detail. Three different
driving behaviors are considered, and the drivers were given
several stop conditions to gain a realistic perception of the
performance of the proposed AEDPS.

A. VALIDATION AND RESULT OF TIME-SERIE MODEL
Both proposed prediction models, NARX and LSTM,
undergo the same training process: 80% of the data is used
for training and validation, while the remaining data is
reserved for testing the model. Each driver’s dataset consists
of 3400 cases. Before training, validating, and testing, the
data is normalized using the Matlab Min-Max method. Since
the cross-validation technique removes the time-dependent
nature of the data, it has not been included in any of the
models.

The LSTM network is configured with 100 epochs,
300 hidden layers, and a learning rate of 0.001. This initial
setup results in a reasonable computation time of 169 seconds
and a satisfactory RMSE of 0.91 kW. To further improve
prediction accuracy, an additional fully connected layer char-
acterized by a drop-out layer with a percentage of 0.5 and an
output size of 30 is integrated into the network. This refine-
ment significantly enhances prediction accuracy, reducing the
RMSE to 0.463 kW but increasing the computation time to
1865.4 seconds. To demonstrate themodel’s capacity to avoid
overfitting, a comparison of test and validation RMSEs is
performed. The test RMSE of 0.499 kW shows that the model
is not overfitting, as it closely aligns with the validation set’s
RMSE, with only a slight difference of 0.02. An example of
predicting regenerated power by the LSTM approach for a
single braking scenario is shown in Fig. 8, indicating reason-
able predictions even 30 seconds in advance. Furthermore,
Fig. 8 displays how the LSTM approach fits the test data
and closely tracks power variation in all segments. However,
the LSTM approach has a significant drawback in terms of
computational time, which is considerably high. In light of
this, the data is re-evaluated using the NARXmodel due to its
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FIGURE 8. Forecast results of 12 segments for the proposed NARX model.

lower computational power and faster training time. Through
grid search hyperparameter optimization, the best NARX
structure is identified with 75 hidden layers, 2 input delays,
2 feedback delays, and trainlm as the best training function.
This configuration significantly reduces the computational
time to 8.841 seconds, while achieving an optimal RMSE
similar to LSTM, at 0.4402 kW. As a result of these findings,
NARX seems to be a better choice for predicting efficiency
in terms of computational time.

B. AEDPS POWERTRAIN’S REGENERATION
PERFORMANCE ANALYSIS
To evaluate the effectiveness of AEDPS, which is based on
adaptive deceleration planning, and to assess the resulting
powertrain regeneration performance, the amount of energy
regenerated for different deceleration horizons adapted to the
driving style is analyzed. Three naturalistic driving behaviors
with average maximum speeds of 54 km/h, 47 km/h, and
63 km/h under 5 stopping segments are chosen to represent
the driver’s maximum speed preferences and variable braking
behaviors. The segments are selected to include combinations
of downhill slopes, high downhill slopes, and flat down-
hill slopes, resulting in a total of 15 different scenarios as
shown in Table 3. However, uphill slope sections are not
studied in this article due to their limited potential for energy-
maximizing regeneration. For each AEDPS driver model, the
adapted horizon (long, medium, and short) is automatically
integrated for each driving scenario, as explained in Fig.7.
The optimal regeneration force of AEDPS, FRgn/opt is calcu-
lated using an electric vehicle model composed of maximized

TABLE 3. Summary of AEDPS predicted key parameters of the different
driving styles.

power regeneration and optimized vehicle speed. To ensure
a fair comparison, the results of the forces regenerated by
human drivers, FRgn/Nat, are also calculated using the pre-
dicted power and rotational speed of driver behavior. Fig.9
and Fig.10 illustrate the regeneration forces of AEDPS and
of the driver in 6 scenarios, with the deceleration horizon
adapted to each naturalistic regeneration performance. The
differences in deceleration starting points result in a signif-
icant difference in regenerative forces between AEDPS and
human drivers. As the deceleration points approach, optimal
velocity generates maximum regeneration force, as shown
by the green lines, pushing the motor regeneration to its
physical limit (red line). This indicates that the decelera-
tion profiles of AEDPS increase the amount of regenerated
energy compared to the driver regeneration force (blue line).
Furthermore, the driver behavior (Table 3) show shorter
deceleration distance values than ADPES, resulting in lower
energy recovery. Except for driver 2 in segment 1 and the
three drivers in segment 2, who are predicted with optimal
braking behaviors, the distance is doubled or even tripled.
This means that a short deceleration distance, compared to
the AEDPS-optimized deceleration distance, reduces the pos-
sibility of energy recovery.

The proposed strategy employs a prediction model
for long-horizon (30 seconds) power forecast, primarily
focusing on predicting 1F for each scenario. 1F represents
the energy recovery maximization rate, which is used to
make the deceleration planning adaptive by selecting the best
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FIGURE 9. Adaptative regeneration maximization by AEDPS in downhill slope roads.

FIGURE 10. Adaptative regeneration maximization by AEDPS in flat slope roads.

horizon. Furthermore, reducing vehicle speed by initiating
deceleration at the selected horizon allows the potential for
maximizing regeneration up to the physical limits of an
electrified powertrain; however, not all the energy recovery
maximization rate can be regenerated. As a result, AEDPS
produces the optimal deceleration profiles based on regener-
ation limitations and road topology to minimize the value of
1F up to1Fopt = FLmt / max −FRgn /opt . The comparison of
1Fopt in the two types of road slopes, medium downhill slope

in Fig.9, and nearly flat slope in Fig.10, is the second crite-
rion for evaluating AEDPS energy regeneration performance.
Fig.9 displays the segment with a medium downhill road
slope corresponding to segment 4. Fig.9 (a) demonstrates that
the case of significant deceleration with a downhill slope
road results in a considerable transitory regeneration force,
as shown in Fig.9 (d). This is not valid for a significant
deceleration with a constant value of road slope and for a
cruise mode with a downhill slope road, which results in low
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FIGURE 11. Comparaison between DFR of naturalistic speed behaviors
and DFR of AEDPS speed profile of each driver during five segments.

demand for transitory regeneration force. Fig.9 shows that the
optimal regeneration force converges toward the maximum
regeneration force until it reaches the force FLmt/max (red
line), which imposes 1Fopt to be zero. This convergence
results from the various horizons assigned to each driver:
medium for driver 1, long for driver 2, and long for driver
3. However, as shown in Fig.10, which shows segment 3 with
a flat road, the planned deceleration profiles minimize1F but
do not reach a zero value for1Fopt , even with a long horizon.
This is primarily due to the effect of road load forces on
regeneration performance. In fact, road load forces decrease
on down-hill roads, leading to the enhancement of energy
recovery. Flat roads’ load forces increase slightly as only
regenerative force is required for deceleration. As a result, the
trend of FRgn / Opt convergence on the two road slopes proves
that the strategy satisfies the consideration of road loads and
confirms its ability to follow the regeneration limit.

A third relevant analysis is to validate the adaptation of
regeneration efficiency improvements to each naturalistic
regeneration performance. A strategy simulation is applied
to all the route’s deceleration events for each of the three
driving behaviors. During each scenario, the deceleration
force ratio (DFR) is presented in Fig.11. DFR is the ratio
between the physical limits of an electrified powertrain and
the regeneration force for the current EV’s speed. Fig. 11
shows the difference between DFR of AEDPS speed profile
(DFROpt) and DFR of naturalistic speed behavior (DFRDr).
Furthermore, the deceleration planning horizon is presented
in the same figure, showing that it is adapted to naturalistic
regeneration performance. A performance indicator of regen-
eration efficiency improvement is calculated by subtracting
DFRopt − DFRnat, and presented in Fig.12. This figure
depicts the gain, which varies dynamically from one scenario
to another. The energy recovery performance of Driver 1
improves by 48% over a long horizon in segment 1, 0% over
an optimal horizon in segment 2, 55% over a long horizon
in segment 3, 23% over a medium horizon in segment 4,

FIGURE 12. Indicator of regeneration efficiency improvement of each
driver during five segments.

and 72% over a long horizon in segment 5. This trend
indicates that the adaptive aspect of regeneration performance
enhancement is adequate, as ensured by the deceleration
planning horizon dynamics, and it is significantly affected
by road topology. Furthermore, segment 2 has a very high
downhill slope compared to other segments. Table 3 presents
the naturalistic regeneration performance for the three drivers
predicted as optimal in segment 2. This makes an additional
claim about how the driver’s regeneration performance varies
depending on the road topology and the importance of creat-
ing an adaptive regenerative braking strategy. The maximum
improvement in the regeneration of each driver does exceed
60%, and it is not achieved in the same segment, as shown
in Fig.12. Driver 1 has improved regeneration up to 72% in
segment 5, driver 2 up to 69% in segment 4, and driver 3 up to
73% in segment 4. Furthermore, the regeneration efficiency
improvement rate shows a potential increase in energy recov-
ery performance of 0%, 0%, 5%, 69%, and 6% for the five
road segments, respectively. This increase in performance is
more significant in the case of driver 1 (48%, 0%, 55%, 23%,
and 72%) and driver 3 (18%, 0%, 12%, 73%, and 29%),
characterized by a high driving speed, leading to a higher
regeneration limit of the powertrain, and a short deceleration
distance, allowing maximization of the regeneration distance.
Therefore, the improvement rate clearly demonstrates that
it is not only related to road topology but also to driver
acceleration and braking behaviors. In the end, these previous
results prove that the proposed strategy improves the accep-
tance of the braking control strategy by adapting deceleration
planning to the regeneration performance of drivers in each
scenario.

Several authors also use the speed-acceleration probability
distribution (SAPD) as an alternative to reflect the dynamics
of driving behavior. Fig. 13 and Fig. 14 below depicts the
SAPD for the naturalist driver data as well as the output from
the proposed approach, respectively. This figure shows that
SAPD creates velocity-acceleration groups and gives Vin =

2 km/h and ain = 0.5 m/s2 as velocity and acceleration inter-
val lengths, respectively. Furthermore, in an urban context,
driving data is typically separated into four phases: stopping,
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FIGURE 13. The SAPD of the naturalistic driving behaviors.

FIGURE 14. The SAPD of the optimal behaviors.

accelerating, deceleration, and cruising
v = 0 AND abs (a) ≤ 0.15, stopping
v > 0 AND abs (a) ≤ 0.15. cruising
v > 0 AND a > 0.15, accelerating
v > 0 AND a < −0.15, decelerating

(27)

At first, the SAPD illustrated in Fig. 13 demonstrates that
the speed-acceleration probability distributions of the nat-
uralistic driving behavior data for the three drivers exhibit
both similar and distinct characteristics. Driver 3 has the
greatest permittedmaximum speed of 75 km/h, whileDriver 1
has a maximum speed of 60 km/h, and Driver 2 has
a maximum speed of 50 km/h. In terms of similarities
among the three drivers, the distribution probability of the
Cruise phase, as defined previously, is more concentrated
in the maximum speed, and presents the highest probability
(Probability>0.6%) compared to other driving phases. The
probability distribution of the stopping phase also exhibits a
significant average density (Probability>0.3%) for all three
drivers. Additionally, the deceleration phase has a Medium
probability and is also more concentrated in the maximum
speed. Secondly, the SAPD illustrated in Fig. 14 demon-
strates the velocity-acceleration probability distributions of
the optimal behaviors of the three drivers. This figure shows
that the three drivers maintain the same maximum speed as
in their naturalistic behavior. Furthermore, the probability

distribution of the stopping phase also maintains a signifi-
cant average density. However, the probability distribution
of the Cruise and deceleration phases has become much less
concentrated on the maximum speed and more distributed
over different speed values. This confirms the experimental
context of the real data and also validates the effectiveness of
the suggested approach in generating the optimal behavior.

C. COMPARATIVE STUDY
The Previous work has predominantly focused on long-term
deceleration planning over a residual distance of 200 meters,
with the horizon determined by the vehicle’s installed
sensor [40]. These strategies have proven effective for driv-
ing behaviors characterized by a uniform maximum speed
(90 km/h) and under specific experimental conditions. The
results of these studies reveal that long-term planning yields
substantial benefits, with minor variance amongst ten drivers,
ranging between 41% and 51%. However, these approaches
only consider the long-term speed profile for driving behav-
iors with a maximum cruise speed of (90 km/h) and fail
to account for variations in energy regeneration perfor-
mance for other driving behaviors with differing maximum
speed preferences and driving conditions. Our proposed
strategy addresses these shortcomings by examining the
driving behaviors of three drivers with different maximum
speed preferences and various slope levels. This approach
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illuminates how these factors influence the variability of
naturalistic regeneration performance. Compared to other
strategies, the proposed strategy is uniquely capable of
predicting naturalistic regeneration performance in each stop-
ping environment. The prediction of these performances has
been shown to be especially beneficial in numerous instances
where naturalistic deceleration behavior is optimal and assis-
tance is considered useless, thereby helping to limit driver
disruption from irrelevant advice or warnings. Moreover, our
strategy adjusts the deceleration horizon using three distinct
horizons–long, medium, and short–rendering the approach
adaptive and reducing the computational load required to
generate an optimal speed profile in real-time. Consequently,
as our proposed strategy adapts to naturalistic regeneration
performance for drivers with varying maximum speed pref-
erences, the improvement in regeneration performance varied
significantly from one driving behavior to another and from
one scenario to another.

V. CONCLUSION
This paper presents the design of an adaptive braking strategy
based on naturalistic regeneration performance for an electric
vehicle. Using NARX methods, the proposed AEDPS pre-
dicts the power with long-horizon forecasting (30 seconds),
allowing anticipation of the difference between naturalistic
energy regeneration and the physical limits of an electri-
fied powertrain corresponding tomaximum speed preference.
This previous step allows evaluation of the naturalistic regen-
eration performance, which makes the deceleration planning
horizon adapted to this performance. AEDPS considers three
deceleration planning horizons: long, medium, and short. The
long horizon improves energy regeneration for the driver
with low naturalistic regeneration performance by developing
long deceleration profiles, while medium and short horizons
are assigned to moderate and minimal naturalistic regener-
ation performance scenarios, respectively. AEDPS uses DP
to implement the deceleration profile that maximizes energy
recovery. Implementing the adaptive control strategy resulted
in a prediction of optimal naturalistic regeneration behav-
ior in segment 2 for the three drivers, limiting irrelevant
warnings and increasing the eco-feedback technology’s effec-
tiveness. The obtained results through simulations of the
AEDPS strategy by three drivers that have different prefer-
ences for maximum speed when driving between two-stop
events are promising. It can maximize energy regeneration
up to the individual physical limits of an electrified power-
train on downhill roads and 10-20% less on flat roads. This
result proves that the strategy satisfies the consideration of
road loads and confirms its ability to reach optimal regen-
eration performance, satisfying maximum speed preference.
Developing appropriate strategies for drivers’ preferences
improves the control strategy’s acceptability and efficiency.
Furthermore, the result shows 39,6% improvement in regen-
eration efficiency for driver 1, 16% for driver 2, and 26%
for driver 3, and forecasting the optimality of some deceler-
ation behaviors. This trend proves that the adaptive strategy

effectively manages the individual maximization of regener-
ation and improves the energy efficiency of EVs. Therefore,
the proposed AEDPS exhibits several notable advantages.
It significantly reduces energy consumption by maximizing
regeneration to the physical limits of an electrified power-
train and considering driver behavior preference. Moreover,
it enhances driver acceptance of the braking control strategy
by adapting the deceleration planning horizon to naturalis-
tic regeneration performance and improving eco-feedback
technology’s effectiveness by minimizing unnecessary alerts.
This adaptive braking control strategy also motivates the
driver to adopt AEDPS by demonstrating the gain it can
bring compared to its naturalistic behaviors. Additionally,
this strategy mitigates the computational burden required to
generate an optimal velocity profile in real-time, by avoiding
extra calculations for short-horizon deceleration planning and
optimal naturalistic deceleration behavior.

The work presented in this manuscript lays the basis for
designing an adaptive AEDPS for electric vehicles, consider-
ing static road information such as road grades and stop signs
detected by intelligent cameras. In the future, enhanced con-
nectivity with other vehicles and infrastructure may enable
the following:

(1) Expanding to encompass other dynamic deceleration
conditions, such as car-following situations, and offering
adaptive deceleration planning to accommodate driver behav-
iors under these circumstances. The model of power regen-
eration forecasting should integrate relative velocity, relative
distance, and the speed of the ego vehicle.

(2) Maximizing the benefits of AEDPS, adaptive decel-
eration planning should generate optimal deceleration in
more complex traffic scenarios, including signalized intersec-
tions. The proposed strategy could utilize SPAT information
from an actual signal controller operation to guide the
driver through signalized intersections, thus maximizing
regeneration and adapting the assistance according to their
regenerative performance.

(3) Integrating steering angle and yaw moment distribu-
tion to amplify the effectiveness of regenerative braking by
AEDPS in scenarios such as decelerating before signal signs,
at the same time changing lanes to the right or left.

(4) While this paper proposes an AEDP for current energy
systems considering the optimal operating temperature range
for lithium-ion batteries (typically 15 to 35 ◦C), it doesn’t
address the battery’s charge capacity at very low temperatures
(between −20 and −40 ◦C). This is crucial to ensure the
strategy’s effectiveness in colder countries such as Canada
and Sweden.

(5) In adverse weather conditions such as rain, snow, or icy
roads, drivers tend to be more careful, and decelerate earlier
and exhibit reduced vehicle speed, acceleration, and deceler-
ation rates. Winter road conditions are also more likely to be
slippery, causing additional loss of regenerated energy during
braking. Therefore, AEDPS should factor in the impact of
weather on naturalistic regenerative performance, enhancing
its robustness under such conditions.
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(6) The proposed AEDPS implementation holds signifi-
cant promise for electric buses, which have relatively fixed
routes and must stop at inter-route stations for passenger
pick-up/drop-off. The total mass, a fundamental parameter
of the longitudinal dynamic model and energy regeneration
(particularly in downhill movement scenarios), changes as
passengers board and disembark at bus stations. This key
characteristic should be addressed within the context of
eco-friendly braking assistance for electric buses.
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