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ABSTRACT Over the years, research in multi-agent systems has become increasingly popular. Agents
evolve by interacting with their environment and must communicate with other agents in order to do
various cooperative tasks. The research aims to provide efficient coordination among cooperative cognitive
agents in unpredictable multi-agent situations. Xiang’s rational agent model addresses scenarios when no
social conventions or predefined communication protocols exist for the agents’ interaction and then makes
decisions by recursive modeling. We address the deficiencies of the loosely coupled framework and the
problem of mispredictions in Xiang’s architecture. The solution is based on Lawniczak’s Architecture for
generic cognitive agents and an enhanced model of Xiang’s Recursive Modeling Method for coordinated
decision-making in multi-agent situations. We instruct the cognitive agent to learn about other agents from
past mispredictions and then consider its best choice. The feedback module is incorporated so agents
can learn to maximize their joint expected reward. The model filters the mispredictions and evaluates the
error rate. We compare the enhanced method with the Recursive Modeling Method. The results show that
mispredictions are corrected from 33% to 10.9% and errors in perception are reduced from 22% to 0.097%,
as the system progresses. Overall, the approach demonstrates superior performance. It significantly lowers
the rate of mispredictions about other agents’ actions and takes 30% to 42% less time and 55.4 % fewer
moves than RMM.

INDEX TERMS Cognitive agent, multi-agent system, recursive reasoning, agent reasoning, agent-oriented
methodologies, loosely coupled framework, decision making, MAS communication, agent coordination,
recursive modeling method.

I. INTRODUCTION
Artificial intelligence is a broad field of study that pro-
duces intelligent machines. Technology is constantly trying
to mimic human intelligence, which is why AI is currently
receiving so much attention [1]. AI has been extensively used
across numerous fields, including healthcare systems [2],
social media trend prediction [3], citation prediction [4], and
multi-agent systems [5].
Agent is a modern computer program that works inde-

pendently on behalf of the user [6], However, agent-based
systems are rarely stand-alone systems. These systems are
usually required to collaborate and interact with other entities
(i.e., agents, humans, etc.); such a system is called a multi-
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agent system [7]. Though the agents are intelligent, their
behavior is restricted within the predefined scenario. The
restricted behavior of reflexive agents encourages the need
to design and develop cognitive agents. These agents keep
track of what happened in the past and can predict what will
happen in the future; in short, the most vital part is memory:
which utilizes previous knowledge or perception to antici-
pate what is yet to come. Cognitive agents contain explicit
representations for their intentions, beliefs, and goals [8]
and can handle the problem at hand by executing ‘‘Cogni-
tive Acts’’. The Cognitive Act is comprised of five things:
1) Perceiving: perceiving information from the environment,
2) Reasoning: reasoning the information perceived using
existing knowledge, 3) Judging: judging the gained infor-
mation, 4) Responding: responding to other cognitive agents
or the environment; and 5) Learning: evolving the existing
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knowledge [9]. Interest is growing inmulti-agent systems that
motivate coordination and cooperation mechanisms among
cognitive agents.

Coordination is considered one of the critical aspects of a
multi-agent system; by introducing efficient cooperation in
the distributed multi-agent environment, complex tasks can
easily be performed beyond individual agents’ capabilities.
Frameworks for cooperative multi-agent decision-making
can be divided into loosely coupled frameworks (LCFs) and
tightly coupled frameworks (TCFs). In TCFs, agents com-
municate through messages, the joint belief of team agents
is well defined, and each TCF agent’s belief is consistent
with the joint belief. However, the cost of setting up the
organization of a TCF-based multi-agent system is high.
In LCFs, agents do not communicate but rely on observing
other agents’ actions to coordinate. The decision-making in
multi-agent LCF is constrained by making guesses about the
actions of other agents. Anymisinterpretation can degrade the
system’s performance. [10].

The motivation behind this research is to propose a mech-
anism that allows multiple agents to coordinate their actions
so that individual actions do not adversely affect the overall
system’s performance. Effective coordination among agents
in dynamic environments can be accomplished by extending
the agents’ learning ability to know the beliefs of other agents
present in their environment. We aimed to build cognitive
agents capable of better decision-making in unpredictable
multi-agent situations by predicting the actions of other
agents.

In this research, we addressed the deficiencies of the
loosely coupled framework and propose a communicative
loosely coupled framework for cognitive agents. The objec-
tive of this study is to extend the decision-theoretic approach
of the Recursive Modeling Method (RMM) for coordinated
decision-making in a distributed multi-agent environment
where each agent models other agents recursively to choose
its action [10]. These recursive models represent the agent’s
information about itself and other agents in the environment.
The agent recursively predicts the other agents, thus build-
ing the payoff matrices, and this modeling terminates when
the agent has no more knowledge. Thus, the no-information
model occurs at the leaf nodes of the RMM hierarchy.

In Xiang’s agent model [10], an agent’s model of other
agents can be recursively nested to any depth; the model
1) expands exponentially, and 2) the computational cost is
elevated as the number of recursive levels increases. The
agent lacks communication and bases its decision on pos-
sibilities. The consideration of all the possibilities about the
other agent’s actions can elevate the computational cost and
deepen the RMM hierarchy. We are motivated to make the
decision-making process more efficient by introducing com-
munication within a loosely coupled framework. Knowledge
sharing is considered soft evidence about other agents’ beliefs
and is used to update the beliefs of the receiving agent.
Knowledge sharing is performed whenever a communica-
tion channel is available. Each agent builds an observation

history and calculates mispredictions whenever feedback is
available. Using this approach, the chances of mispredictions
about each agent’s actions are deflated. It will control themis-
judgment of the joint action plan, thereby improving future
decision-making.

Section II illustrates the related work. The proposed
methodology is presented in Section III. Section IV demon-
strates the experimental setup and illustrates the results and
performance evaluation. Section V discusses the findings of
the study. Section VI explains the future work and limitations
of the study. Section VII gives a detailed conclusion.

II. RELATED WORK
Agents are autonomous, goal-oriented, and proactive [11].
The focus of agents is to make decisions. Decisions vary
from utility maximization to complex planning problems [12]
to provide sustainability solutions [13], [14]. Agents need
to consider the functioning of other agents, coordinate with
them and act strategically to make a good decision. Over
the past few years, immense research has been done on
the mechanism of the agent coordination. Decentralized
approaches in several kinds of multi-agent systems, e.g.,
swarm robotics [15], modular robots [16], and sensor net-
works. Reference [8] are inspired by collective behaviors
in nature, where coordinated global behavior involves local
interactions.

For a cooperative multi-agent system, new reinforcement
learning methods are required to learn decentralized policies.
Jakob N. Foerster et al. have proposed counterfactual multi-
agent (COMA) policy gradients based on the actor-critic
method [17]. This methodology has utilized a centralized
critic to calculate the Q-function and to optimize the agents’
policies; decentralized actors are used. However, with many
agents, it is harder to train centralized critics and challenging
to coordinate.

There is an assumption that in distributed algorithms, all
agents have equal privileged information. Chih-Han Yu et al.
proposed an algorithm in which agents do not have uniform
information. Each agent has state variables and can sense
neighborhoods passively or actively by communicating with
agents [18]. Since the agents lack uniform information, there
is a possibility that neighbor’s states might have incorrect
states. So the agents have to reason on their own to make
effective decisions.

Ante Vilenica et al. proposed coordination spaces dedi-
cated to coordination to separate the coordination and appli-
cation functionality. This work implies different coordination
strategies without altering the functionalities of agents [19].
We say that agents are hard-coded to make their decisions in
predefined strategies. The capability of agents to predict and
reason their environment is suppressed.

In the past, the communication protocol between agents
was manually specified, and it was not changed during train-
ing. In order to make agents learn about communication
among themselves, Sainbayar Sukhbaatar et al. proposed a
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neural model [20]. A deep feed-forward network is used to
control each agent. Every agent has access to a commu-
nication channel through which they receive the summed
transmission from other agents. The authors trained themodel
via backpropagation because of continuous communication,
but it has limitations in controlling heterogeneous agents.

Multi-agent coordination has become an important study in
intelligent target-tracking systems. In research [21] by Xing
et al., it is believed that to control a group of agents, collab-
oration among them is required. To control agents, track the
targets in a cooperative manner. Kalman filter algorithm is
optimized for target tracking and the Leader-Follower control
method is utilized to keep the agents in control, in which one
agent is assigned as a leader and tracks the target, and the
other agents follow the leader. It has a significant impact on
single-agent control and single-target tracking.

In the game environment, Zhang et al. [22] analyzed a
multi-agent collaboration strategy. They proposed a learn-
ing method to measure cooperative information between
multiple agents. They conducted a Nash equilibrium game
strategy on the specific multi-agent game problem of territory
defense. The deep Q-learningmethod was applied to learn the
defender’s joint defense strategy. In practice, the problem of
partial observability in a multi-agent distributed environment
needs to be considered.

In a research [23] by Gmytrasiewicz and Durfee, a frame-
work based on decision theory, is presented about agent inter-
actions when no communication protocols are defined. They
use the decision-theoretic model of rational decision-making
under uncertainty, according to which an agent should make
decisions to maximize its expected utility [12], [24], [25].
Ethics and values highly influence human decision-

making. Values are considered a criterion for deciding and
accomplishing one’s task. In recent studies, the method-
ologies are proposed for AI agents to align with human
values [26] and estimate value preferences for human choices
to motivate and guide AI agents in the hybrid participatory
system [27]. In the future, authors are motivated to provide
direct feedback to AI agents or use Natural Language Pro-
cessing algorithms to identify values automatically.

In another piece of research, authors explored a partial
evaluation to improve the efficiency of the MAE agent [28].
It significantly improved centralized decisions but not dis-
tributed decisions. Xiang et al. proposed a distributed deci-
sion algorithm for Collaborative Decision Networks (CDNs)
based on partial evaluation [29]. For agent communication,
they considered online decisions over short horizons. The
agents decide the best joint action based on their knowl-
edge of the current environment. CDNPE gave significantly
optimal results under the pivot probability assumption. More
study is underway to check decision optimality as pivot prob-
ability is relaxed.

Gmytrasiewicz and Durfee designed an agent to anticipate
and model other agents’ actions to make its own decision
that maximizes its utility. This consideration of the other
agents’ actions leads to the recursive levels of modeling. This

Recursive Modeling Method (RMM) achieves coordination
in unpredictable environments. The RMM agents depict rea-
sonable behavior, but the approach can become greedy, and
agents can only act to maximize their utility.

Further, in this research area, the authors partitioned the
cooperative multi-agent decision-making frameworks into
frameworks where the individual agent contains a single vari-
able and one where the individual agent possesses a complete
internal model. However, significant research efforts have
been dedicated to SVFs, e.g., [30], and LCFs, e.g., [31],
in comparison with those to TCFs [32], [33], [34].

The latter can further be partitioned into tightly cou-
pled frameworks (TCFs) and loosely coupled frameworks
(LCFs). TCFs provide the agent’s communication through
interfaces, and the agent’s belief is accordant, without any
self-conflict. Whereas in LCFs, the agents do not commu-
nicate with each other instead, they observe the actions of
other agents to make their own decisions. In [10] Xiang and
Hanshar contributed by comparing TCFs and LCFs. From
LCFs, they selected a decision theory recursive modeling
method (RMM). As agents do not directly communicate but
coordinate their actions, each agent observes the other agents
within its defined neighborhood. Xiang’s decision-making
agent model is limited by making guesses about other agents’
actions, resulting in the wrong estimation of reward distribu-
tions and an incorrect Bayesian update. Another limitation
of RMM reported was the presence of several optimal joint
action plans promising the same maximum expected reward,
and agents may follow the different joint action plans, thus
hindering the system’s performance.

Since cognitive computing is a multidisciplinary research
area that aims to devise decision-making mechanisms and
computational models, we are interested in proposing a
communicative, loosely coupled framework for Cognitive
Agents. According to a survey [35], different authors defined
cognitive computing in different times and contexts. A cog-
nitive architecture defines the fundamental structure of an
intelligent system. So research in cognitive architecture has
also been encouraged for building intelligent agents as com-
petent as humans [9].

III. PROPOSED METHODOLOGY
In a multi-agent system, agents coexist in an environment
and potentially interact with each other to make decisions.
Multi-agent decision-making is a distinguishing feature of
the MAS. Decision-making can be done in a distributed
manner when no central control is available, and each agent
can make decisions on its own. For distributed decision-
making, an appropriate coordination mechanism is needed.
Inspired by Xiang’s concept, we provide a communicative,
loosely connected framework for a cooperative multi-agent
system. In the proposed system, we have extended coordi-
nated decision-making using RMM and embedded it with
the feedback module to reduce mispredictions among the
agents and enhance their capability to make fewer faulty
decisions.
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A. MULTI-AGENT ENVIRONMENT
The common characteristics of the multi-agent system frame-
work are:

1) The system contains a finite number of agents and
environment states, and each agent can take a defined
set of actions.

2) The system must operate on a discrete timestamp. The
acts carried out by the agents at the same timestamp are
all considered to be occurring concurrently.

3) The environment is discrete, comprising a grid of cells;
each cell is either empty or occupied by an object.
The objects are defined according to the application
domain.

4) The agent’s neighborhood is defined, and a cell vis-
ited by an agent within the neighborhood is marked
‘‘visited’’.

5) The environment is stochastic as the agents’ actions
are uncertain and partially observable, whichmeans the
agent can only perceive its neighborhood.

B. ASSUMPTIONS
Because of different multi-agent systems, it is logical to
define the framework: a finite number of agents, a finite set of
actions that the agent can take, and a discrete time step. In a
general framework of MAS, we expect:

1) All agents can only observe those agents that come into
their defined neighborhood and can only perceive the
part of their actions, i.e., the other agents’ actions, that
might be hidden from view.

2) An agent can take action based on its preferences in
each state and make better decisions than other agents
depending on the expected payoff.

3) At any time step, the agent’s actions are not dictated
by any other factor except the current state of the
environment.

4) For decision-making, agents do not communicate
through communication protocols, but each agent
decides its action by reasoning about the actions of
other agents through recursive modeling.

C. COORDINATING COGNITIVE AGENTS ARCHITECTURE
This research proposes a coordinating cognitive agent
architecture that is based on 1) Lawniczak’s archi-
tecture for generic cognitive agents [9] and 2) the
Enhanced Recursive Modeling Method (ERMM). Consid-
ering the layered approach of Lawniczak’s architecture,
we applied the Enhanced Recursive Modeling Method as
a decision-theoretic approach for coordinating multi-agent
interactions on the Perceptual, Reasoning, Learning, and
Response Layers.

1) PERCEPTUAL LAYER
The basic functionality of the Perceptual layer is to per-
ceive the environment in which agents act. In our sce-
nario, the perceptual layer gathers information regarding the

observable neighborhood of an agent. Each agent in recursive
modeling reasons about the information perceived from the
environment.

2) REASONING LAYER
The Reasoning layer logically deals with the perceived infor-
mation from the environment. Cognitive agents reason about
other agents through a hierarchy of recursive models. The
model considers all the information available and summa-
rizes all the uncertainties as a set of probability distributions.
Payoff matrices are generated to analyze the possible joint
actions and their utilities. Using this representation, an agent
explicitly explains how the joint agents’ actions can influence
its utility. The value of each cell represents the reward of each
joint plan. The agent chooses the joint plan with the highest
expected accumulative reward.

3) RESPONSE LAYER
The Response layer executes the agent’s action in the joint
plan with the highest probability ( 0 to 1) that maximizes its
utility.

4) JUDGING LAYER
The Judging layer plays a vital role in enhancing the recur-
sive model. It allows loose communication of the agents
using a blackboard architecture. A blackboard communica-
tion allows agents interactions and provides soft evidence
regarding the observation of the actions of other agents. The
error occurs if the prediction goes wrong. A history (knowl-
edge base) is maintained, containing all the mispredictions
that have led to errors. It will be used in the future to update
the probability distribution to influence actions.

5) LEARNING LAYER
Agents consider their experiences when making future deci-
sions. Past knowledge or history helps to update the agent’s
beliefs. For the wrong predictions, the reward is reduced
to the lowest, i.e., zero, to avoid them in the future. The
perception of an agent about other agents gets refined, thus
reducing the error risk. A joint strategy is computed, which is
not only rational for one interaction but might be productive
in repetitive situations.

D. ENHANCED RECURSIVE MODELING METHOD (ERMM)
In multi-agent systems, where there are no predefined com-
munication protocols, an agent hypothesizes other agents’
actions by using knowledge about itself, other agents, and the
environment. The agents within the common neighborhood
comprise a group of size g, and the planning horizon is a
single cell. The agent can perceive its own location and the
locations of other agents in its neighborhood. The coordina-
tion is purposeful when a certain number of agents exist in
the neighborhood. The observable neighborhood is fixed and
shown in Figure 1.

It is how an agent models other agents to choose its
course of action. It explains the alternative courses of action.

VOLUME 11, 2023 92631



N. Mazhar, M. Kausar: Rational Coordination in Cognitive Agents: A Decision-Theoretic Approach Using ERMM

FIGURE 1. Observable neighborhood of a predator.

This reasoning gives rise to the recursive nesting of models.
An agent must choose actions that maximize its expected
utility. The recursive modeling terminates when the agent’s
knowledge comes to an end, and its knowledge depth has
reached. The Zero-knowledge model shows that the agent
has no knowledge about the agent being modeled, as shown
in Figure 2. Based on its limited knowledge, the agent gives
equal probability to the actions of other agents.

FIGURE 2. Interaction of Agents.

In Enhanced RMM, the payoff matrix is used to represent
the agent’s actions and preferences. It is a building block to
represent the decision-making characteristics of the agents.
For a multi-agent system consisting of n agents, a payoff
matrix has n dimensions for each agent. In the payoff matrix,
each dimension is related to each agent. Each cell of the
matrix represents the utility or payoff for each action. The
agent can take four possible directions (North, South, East,
and West). So, the number of cells in the payoff matrix can
be calculated as is kn. Each entry corresponds to the agent’s
expected payoff from the joint action plan of all the other
agents. As explained in Figure 3, where the y-axis represents

FIGURE 3. Payoff matrix.

TABLE 1. Summary of Notations.

the actions of agent B. Each cell in the matrix contains the
payoff of the relevant joint action plan mv in Group G.

Let the order of joint actions of agents in G be,

mv = (mv1 . . .mvk ) (1)

Suppose a group trajectory be

t = (c1 . . . ck ) (2)

whereas ci is the group configuration after joint action
plan mvi

Configuration ci comprises each agent position,

ci =

{
psx,i|x ∈ G

}
(3)

The payoff or reward is then computed as the expected accu-
mulative reward for group G

EARG(mv) =

∑
y∈G

{ ∑
t

[P(t|mv)
k∑
j=1

rwy(cj)]
}

(4)

where the second summation is the sum of all the possible
group trajectories.
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As the group configuration ci only depends on its current
configuration and current joint action plan mvi, we have

P(t|mv) =

k∏
i=1

P(ci,mvi) (5)

As the position of each agent x in ci is based only on it’s
own action mvx,i, we have

P(ci,mvi) =

∏
x∈G

P
(
psx,i,mvx,i

)
(6)

By combining the above equations, (4) becomes

EARG(mv) =

∑
y∈G

{ ∑
t

[( k∏
i=1∏

x∈G
P(psx,i,mvx,i)

) k∑
j=1

rwy(cj)
]}

(7)

Agents choose the joint plan mv with the highest EAR.

1) FEEDBACK MODULE
Xiang’s agent model [10] for decision-making is limited by
making guesses about other agents’ decisions and states. Its
perception of agents is limited, and knowledge is insufficient.
Moreover, considering all the possibilities about the other
agents’ actions takes computational cost and a more deep
RMM hierarchy. The misjudgment of the agents’ actions
can take the system to the misjudgment of the optimal joint
plan. Overall the system can pursue less optimal solutions.
To overcome this problem, we have introduced the feedback
module, as shown in Figure 4.
The feedback module is comprised of four sub-modules:
1) Agent Communication
2) Error Evaluation
3) History Build Up
4) Update Agent’s Belief
1) Agent Communication

In previous approaches, the topology of agent com-
munication either does not exist or is tightly coupled.
The predictions made by the agents need to be veri-
fied. Thus, we allow agent communication to overcome
the shortcoming of Xiang’s agent model. The ERMM
introduces a blackboard architecture for agent commu-
nication. As agents choose the joint action with the
maximum expected reward, this needs to be shared
among other agents. RMM has limitations when multi-
ple optimal joint plans with the same expected reward
exist and agents choose different joint plans.
The proposed agent model loosely couples the agents
by introducing indirect, loose communication.We have
used a common information space to make information
available about the agents’ actual actions and predic-
tions. The predictions about agents’ actions are verified
as correct or incorrect. Agents pinpoint their mispre-
dictions, analyze each other, and align their actions to
achieve a system goal. This enhancement leads to a

FIGURE 4. Coordinating cognitive agents architecture.

more flexible agent model and helps to handle uncer-
tainty in the joint decision plan.

2) Error Evaluation
This study focuses on enhancing the agent model by
knowledge sharing to find and evaluate mispredic-
tions. Knowledge is made available about the agents’
predictions and actual decisions through the common
information space. We compute the time integral of the
absolute error using the following equation.

Integral of absolute error =

∞∫
0

|E (t)| dx (8)

E(t) represents the error of an agent’s perceptions about
other agents’ actions. It is the comparison between the
predicted decision of the agent and its actual decision.
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The error is evaluated at every time step. Error evalu-
ation addresses the mistakes made by the agents about
the other agent’s actions. It is further used to penalize
predictions having the error.

3) History Build Up
As an agent explores the environment and interacts with
other agents, it builds up its observation history. It is the
backup record of all the mispredictions observed and
wrong guesses made by the agents. History serves as
the knowledge base and contains sufficient knowledge
about the previous actions of others. It keeps track of
past mispredictions and takes more reliable moves in
similar situations.
Based on the observation history, the reward distribu-
tion of the agent is updated. For mispredictions, the
reward is reduced to zero to avoid the decision. It helps
to avoid the wrong optimal joint plan and eliminates the
chances of misjudgments of other agents’ actions in the
future.

4) Update Bayesian Belief
The state of the physical environment depends on the
actions of other agents. The probabilities of the actions
of agents change the environmental states. These prob-
abilities are obtained by solving its recursive models.
The changes in the observations need to be updated.
After knowledge sharing among the agents and sum-
marizing the agent’s observation history, the agent’s
belief is updated using the Bayes rule. For agent A, it’s
belief P

(
nbpB1

A . . . nbp
Bg−1
A

)
is the reward distribution

around the agent and it needs to be updated for the new
neighborhood.
Unilateral is the reward collected by the single agent.
Now suppose nbpAB shows the unilateral rewards in the
area of agent A that is unobserved to agent B, whereas,
nbpAB ∈ {allLow, ¬allLow}. If there is at least one high
reward in the unobserved area, then nbpAB = ¬allLow.
Let lmvBA be the last movement of agent B observed by
agent A. Based on the history of lmvBA, the probability
distribution in the new neighborhood is updated. If the
last movement observed turned into a misprediction
then the reward rw value is set to default or lowest. The
reward values are sustained for the correct predictions.
For agent A, P

(
nbpBA, nbpCA|lmvBA, lmvCA

)
is updated,

making agent A learn about its bad decisions and stay
almost close to the optimal beliefs of the environment
and other agents.
In the pursuit problem, four cognitive agents named
predators aim to capture the agent named prey. Preda-
tors coordinate their actions to surround their prey.
The enhanced RMM is implemented on predators to
enhance their decision-making capability. The ERMM
implementation of predator uses a payoff matrix to plan
its movements.
The predators aim to minimize the distance between
themselves and the prey. The payoff value depends

FIGURE 5. Payoff matrix.

on this distance. The shortest path has a high pay-
off. The environment contains 1 percent obstacles that
inhibit predators’ movements to those cells containing
obstacles.
Agent A and agent C come into the neighborhood of
agent B, shown as the shaded portion. We pinpoint
the critical problem for agent B to predict and reason
the movements of agent A, guessing if A will move
towards B or away from B. From B’s interpretation, the
neighborhood of A is partitioned into the area between
B and A and the area behind A. In the area behind A,
the reward distribution may be invisible to agent B. The
above probability is computed by recursively modeling
all the possible cases in A’s neighborhood. We spec-
ify the unseen area behind A that may have cells
with high unilateral reward. If yes, A tends to move
away from B. Otherwise, for cooperation, A moves
towards B.
For a group g, each agent contains g-1 unobserved
areas, one for each other agent in the group. And they
form possible cases of 2g−1. Each case makes a model
at the second level of the ERMM tree. Each model is
related to B’s belief P

(
nbpA1

B . . . nbp
Ag−1
B

)
.

In Enhanced RMM, we have considered three levels of
tree hierarchy because reasonable information cannot
be logically perceived from the deep levels and gives
little performance [36]. Figure 5 represents the ERMM
tree with g= 3. The third level is dropped because it
comprises Zero models. In the Enhanced RMM tree
structure, each cell is filled with EARG and P(mv′)
can easily be calculated for each joint plan mv′ of the
other agents. Let M be a model at the second level, and
M is associated with the probability PM

(
nbpAB, nbpCB

)
.

Because the third level is a Zero model, in M, each
joint plan mv has an equal probability of being selected
by agents A and C. Thus, the joint plan mv∗ with
the highest EARG value is supposed to be selected by
agents A and C.
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FIGURE 6. Initial screen of Pac-man.

IV. EXPERIMENTAL SETUP
A. PAC-MAN ENVIRONMENT
Inspired by real-world planning, teamwork, and search oper-
ations, we utilize the Pac-man game. We implemented a
framework using the Java SE software development kit (JDK
1.6). Pac-man is sufficient to address the issues of multi-agent
decision-making because of these characteristics:

1) The Pac-man has a constantly varying state in the game.
The player is constantly moving according to the strat-
egy at the game’s current state.

2) State of the game is partially continuous.
3) Many board games are deterministic, but the Pac-man

environment is stochastic because the ghosts take ran-
dom moves.

The Pac-man game has four ghosts. Pac-man is
script-driven to move in the maze. Ghosts are moving based
on ERMM’s efficient performance to capture Pac-man. Pac-
man has three lives in a game; pills are distributed over the
game’s matrix, and the Pac-man agent eats these pills. There
are variant levels of the game. At a higher level, the number
of ghosts increases, increasing the game’s difficulty level.
Figure 6 shows a screenshot of the start state of the game.

Figure 7 displays an overview of the gameplay. Four ghosts
are chasing the Pac-Man agent represented by four red blocks.
Pac-Man agent represented by a white block is eating the pills
or dots distributed over the maze. The lower left corner shows
the number of lives remaining. On the right-hand corner is a
score bar displaying the score achieved so far. There are walls
in different game areas that act as obstacles for ghost agents
and Pac-man.

B. MECHANISM OF GHOSTS
First, define the observable neighborhood of each ghost
(shaded portion) and then perceive information from the
defined neighborhood. The ghost reasoned with the perceived

FIGURE 7. Initial screen of Pac-man.

FIGURE 8. Illustration of mechanism of ghosts.

information logically to formulate the strategy to capture Pac-
man. Figure 8 explains the mechanism w.r.t. ghost B.

The reward distributed is shown in the neighborhood of
each ghost. The cell that takes the ghost closest to Pac-man
will have a high reward. Now the ghosts A, B, and C will
predict the actions of each other to make their own decisions
to capture Pac-man. The computation is shown with respect
to the ghost B. As ghosts A and C come within the observable
neighborhood of the ghost, B will predict the possible actions
of A and C in the multiagent situation. Ghost B deals with all
the uncertainties related toA andC. FromB’s perceptions, the
neighborhood of A and C can be partitioned into the observed
area between A and B, C and B, and the area behind A,
behind C. The reward distribution can be unobserved to
agent B in the area behind A and C.

For a group of size 3, each agent has 3–1 unseen areas, one
for each agent in the group. They set up 23−1

= 4 possible
cases, as illustrated in Figure 9. Each possible case gives
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FIGURE 9. Recursive modeling explanation.

a model at the second level of the ERMM tree hierarchy.
In the given scenario, B deals with the four uncertainties
in the unobserved neighborhood of A and C. The modeling
probabilities sum to unity. The third level of RMM forms
the No-Information model, which means that the limitation
of the ghost’s knowledge has arrived and assumes an equal
probability of states. The No-information models are omitted
from the tree hierarchy for simplicity.

SupposeM is amodel at the second level of the ERMM tree
with probability PM

(
nbpAB, nbpCB

)
. As the third level is Zero

model and in M, each joint plan mv has an equal probability
of being selected by agents A and C. Thus, the joint plan mv∗

with the highest EARG value is supposed to be selected by
agent A andC. Considermv′∗ as the joint action plan for agent
A and C w.r.t mv∗. Given that P(mv′∗) = PM

(
nbpAB, nbpCB

)
.

An assumption is made that each model has a unique joint
action plan with the highest EARG value. At the second level
of the ERMM tree, agents A and C get four joint action plans,
each from one model. Each joint action plan is set with the
probability of the model from which it is taken. The other
joint action plans will be valued equal to zero probability.
Figure 10 shows the tabular form of Payoff matrices in the
hierarchy of the ERMM tree for ghost B.

The joint plan with highest EARG with P
(
allLow,

allLow
)
= 0.25 is

(A,B,C) = (W ,W ,N ) = 0.1375

⇒ 0.1375 × 0.25 = 0.03375

The joint plan with highest EARG with P
(
allLow,

¬allLow
)
= 0.25 is

(A,B,C) = (W , S,E) = 1.3

⇒ 1.2 × 0.25 = 0.3

FIGURE 10. RMM tree Hierarchy in ghost B.

The joint plan with highest EARG with P
(
¬allLow,

allLow
)
= 0.25 is

(A,B,C) = (S,E,N ) = 1.15

⇒ 1.15 × 0.25 = 0.28

The joint plan with highest EARG with P
(
¬allLow,

¬allLow
)
= 0.25 is

(A,B,C) = (S, S,E) = 2.025

⇒ 2.025 × 0.25 = 0.5625

The highest joint plan derived is from the fourth model
(S, S, E). According to which B will take the South direction
and for Agent A and C South and East directions are predicted
respectively. The feedback module executes these decisions.
Agents A, B, and C share knowledge. Agent B evaluates
errors in its predictions regarding A and C. If an error comes
in predictions and A and C have taken different directions,
then history is maintained. The reward distribution is updated
to avoid mispredictions in future movements.

C. RESULTS
This section provides a graphical comparison based on the
performance measures. We provide results of the Enhanced
Recursive Modeling Method (ERMM) compared to the
RecursiveModelingMethod (RMM). Integral Absolute Error
(IAE) is computed at every time step when the decision is
taken. It is expected that with time IAE is reduced and false
predictions are deflated. It can be said that the agents continue
to learn and make decisions close to optimal. Figure 11
shows the trend of IAE as the agent continues to make
decisions.
Initially, IAE is very high because the agent’s history is

empty. As the agent interacts and shares information in multi-
agent environments, it pinpoints the mispredictions. With the
progress in history buildup, the agent can learn to make fewer
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FIGURE 11. Integral absolute error.

FIGURE 12. True Predictions vs. False Predictions in ERMM.

mispredictions about others. Thus the error is much reduced
from 22% to 0.097%, and the agent starts to make more
accurate decisions. The corresponding data table is given in
Appendix.

Figure 12 illustrates the trend between true and false
predictions made by the ERMM ghost agents. Agents tend
to make true predictions as their knowledge is enhanced.
It shows a reduction in false predictions from 33% to 10.9
% as the agent’s history builds up. The corresponding data
table is given in Appendix.

The research compares the results of Xiang’s Recursive
Modeling Method (RMM) and Enhanced RMM. The results
are based on total moves taken, time taken to catch the Pac-
man, pills remaining on the board, and the score achieved
by the Pac-man. The experiment is performed by taking a
hundred instances of each. One instance comprises three
given lives of the Pac-man agent.

1) IMPACT ON TOTAL MOVES
The impact of moves taken for ghost agents to kill the
Pac-man agent is illustrated in Figure 13. It shows the
number of moves or actions taken to achieve coopera-
tion in the game. RMM takes more actions by guessing
other agents whereas ERMM takes fewer movements. The
average percentage decrease shows that the total moves
are reduced by 55.4% using ERMM which is a signif-
icant change. The corresponding data table is given in
Appendix.

FIGURE 13. Total moves taken.

FIGURE 14. Time taken when two ghosts.

2) IMPACT ON TIME
The impact of the time ghost agents take to kill Pac-man is
illustrated. Time is measured in seconds. Results show that
When ERMM is applied on ghost agents, the time taken
to kill the Pac-man is reduced significantly as compared to
RMM. Figures 14-16 demonstrate the impact on time when
the number of ghosts is two, four, and six in RMM and
ERMM.When ERMM is applied to two ghosts to kill the Pac-
man, the time taken is reduced by 30% as compared to RMM.
Similarly, it is reduced to 37% and 42% compared to RMM in
the case of four and six ghosts respectively. It is evident that
the time taken by ghosts driven by RMM is greater than those
driven by Enhanced RMM. This reduction in time indicates
the capability of agents to develop coordination for decision-
making. The corresponding data table is given in Appendix.

3) IMPACT ON PILLS
Another performance measure is the number of pills remain-
ing in the maze which are initially distributed over the maze.
Pac-man agent eats the pills during its three given lives. The
goal of Pac-man is to eat the pills to make a score whereas
ghost agents have a task to capture the Pac-man. If ghost
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FIGURE 15. Time taken when four ghosts.

FIGURE 16. Time taken when six ghosts.

agents capture Pac-man quickly then Pac-man will fail to eat
the pills then more pills will remain over the maze.

Figures 17-19 demonstrate the impact on pills remaining
over the maze when the number of ghosts is two, four, and
six in RMM and ERMM respectively. The readings show that
when ghost agents run on ERMM the number of pills over
the maze is higher as compared to RMM. The high number
of pills remaining in the maze shows that the ghosts’ perfor-
mance is good. The results show an approximately 10% aver-
age increase in pills remaining on the maze. The increase in
the number of pills over the maze indicates the decrease in the
score made by Pac-man. It depicts that the decision-making
capability of ghost agents has improved in ERMM and
has developed team cooperation and coordination to capture

FIGURE 17. Pills Remaining when two ghosts.

FIGURE 18. Pills Remaining when four ghosts.

Pac-man in less time. The corresponding data table is given in
Appendix.

4) IMPACT ON SCORE
The third performance measure is the score achieved by Pac-
man. The score is incremented as the Pac-man eats the pills.
If the score is low, ghosts perform effectively to capture the
Pac-man. Figures 20-22 demonstrate the impact on the score
when the number of ghosts is two, four, and six in RMM and
ERMM respectively. The results show the 10% decrease in
score when ERMM is applied on ghosts against RMM. The
corresponding data table is given in Appendix.

V. DISCUSSION
Research in the field of decision-making has made tremen-
dous progress. This study is motivated to understand the
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FIGURE 19. Pills Remaining when six ghosts.

FIGURE 20. Score achieved when two ghosts.

merits of the communicative loosely coupled frameworks
(LCFs) for cooperative multi-agent systems. RMM and
non-communicative LCFs are limited in modeling agent
interactions without enough information. It is true that com-
munication adds cost but in communicative LCF the com-
munication is loosely defined without strict protocols which
is why the cost of setting up the multi-agent interaction is
low. ERMM is the communicative LCF that allows agent
communication.

To illustrate the recursive reasoning food foraging prob-
lem [37] and firefighting problems [38] are utilized. RMM is
limited to deciding a single action. Whereas, in the firefight-
ing domain agents require sequential actions of reasoning,
and here RMM fails to outperform. In ERMM, agents main-
tain the observation history and update the recursive beliefs

FIGURE 21. Score achieved when four ghosts.

FIGURE 22. Score achieved when six ghosts.

using Bayesian probabilistic theory. It is utilized for sequen-
tial decision-making.

In the Pac-man environment, the RMM agent predicts
other agents’ actions by making guesses and becomes greedy.
It only chooses an action that maximizes its own utility. The
possibility of incorrect prediction leads to a faulty joint action
plan. Thus it is evident from the results that RMM fails to
plan and takes more than 55% moves to search the Pac-
man and 30 to 42 % more time in capturing the Pac-man
than ERMM. In ERMM soft evidence is received via loose
agent communication. The false predictions are identified
with the help of the observation history. Also, Bayesian belief
updates the agent’s knowledge about its new neighborhood
thus reducing the false predictions to 10% and absolute error
to 0.097%.
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TABLE 2. Integral absolute error and number of predictions.
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TABLE 3. Total moves taken by RMM and ERMM.
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TABLE 3. (Continued.) Total moves taken by RMM and ERMM.
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We focus on the key features of the two frameworks, RMM
and ERMM, and provide our empirical comparison between
the two decision-theoretic approaches. RMM is considered
a general framework for decision-making and filled a void
in multi-agent systems for deep reasoning in simple set-
tings. However, ERMM is the collaborative decision-making
framework in which the agent tends to have more updated
prior beliefs.

VI. FUTURE WORK AND LIMITATIONS
The recursive frameworks allow high-order reasoning which
is utilized in robotics [39], meta games [40], military [38],
and transportation problems [41] for modeling the unknown
behavior of other agents. We generate results in a constrained
environment of Pac-man such as the following:

1) The system contains a finite number of agents and
environment states, and each agent can take a defined
set of actions.

2) The system must operate on a discrete timestamp. All
the actions taken by the agents at the same timestamp
are considered to be taken in parallel.

3) The agent’s neighborhood is defined, and a cell vis-
ited by an agent within the neighborhood is marked
‘‘visited’’.

4) The test environment is stochastic as the agents’ actions
are uncertain and partially observable, whichmeans the
agent can only perceive its neighborhood.

5) The ERMM considers three levels of the tree hier-
archy to avoid a deep structure with less useful
information [36].

6) The ERMM is evaluated on a game environment
like Pac-man. Nowadays, a multi-agent tiger prob-
lem has become a standard for multi-agent research
to evaluate agent decision modeling [42]. Memetic
Multi-Agent System (MeMAS) has emerged as another
multi-agent framework to implement human-like char-
acters in complex games [43]. ERMM can be utilized
in real-world problems like the firefighting domain and
the air defense domain.

The recursive frameworks provide significant results in
modeling agents’ behavior in multi-agents. These frame-
works have interesting contributions in sports in predicting
injury [44]. However, outthinking other agents’ behavior
results in a deeper tree structure, thus increasing the com-
putational complexity. Given the benefit of the recursive
reasoning models, we face the challenge of computational
complexity as compared to other reasoningmodels. Studies in
recursive modeling know about this additional computational
stress [38]. This gives the future direction to encourage the
utilization of recursive models easily with less computational
complexity.

Meta-reasoning is applied to reduce the computational
complexity in machines based on recursive models [45].
Pruning of deep branches of the agent planning tree is sug-
gested but it still needs to be explored for meta-reasoning.

Other improvements like behavior assumptions, constraining
recursive models, and investigating optimal conditions would
be advantageous in recursive modeling.

VII. CONCLUSION
The main objective of the research is to address the lim-
itations of loosely coupled agents. We were motivated to
improve decision-making performance in cognitive agents
using ERMM in Lawniczak’s Architecture. We have given
the efficiency comparison with Xiang’s Architecture of recur-
sive modeling. Xiang’s agent model [10] is limited bymaking
guesses about the states of other agents. The inaccuracy
in predicting other agents can degrade the system’s perfor-
mance. The misjudgment of the other agents’ actions takes
the system to the misjudgment of the optimal joint plan. Con-
sidering all the possibilities about the other agents’ actions
takes computational cost and a deeper RMM hierarchy [38].
It leads to overhead in algorithm performance.

In ERMM, agents communicate their perceptions about
each other. With communication, agents get sufficient infor-
mation about other agents’ states and decisions, thus resulting
in improved coordination. Our cognitive agent model builds
up the history based on knowledge sharing. This prominent
feature allows agents to coordinate their actions without
any wrong interpretation. In ERMM, the agent’s knowl-
edge is revised and aligned toward the correct observations.
By updating the agent’s belief in ERMM, only true possibili-
ties are considered andmispredictions are filtered off from the
recursive modeling. Hence, it takes less computational cost
and avoids a deep ERMM hierarchy. Thus agents become
capable of collaborating on a common joint plan in less
time.

In our experimental comparison, we considered the RMM
as a non-communicative LCF and ERMM as the represen-
tative of a communicative LCF. Communication in ERMM
is loosely defined without strict protocols to avoid the cost.
The feedback is provided about the prior predictions to date
the agent’s belief. The results show that the wrong predic-
tions are highlighted, and with progress, error in perception
gets reduced to 0.097% in ERMM thus giving superior
performance.

TABLE 4. Time taken by ERMM and RMM when two ghosts.
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TABLE 5. Score Board of ERMM and RMM when two ghosts.

TABLE 6. Pills remaining by ERMM and RMM when two ghosts.

TABLE 7. Time taken by ERMM and RMM when four ghosts.

TABLE 8. Score Board of ERMM and RMM when four ghosts.

This study provided the concept of coordinated decision-
making in Lawniczak’s Architecture for cognitive agents.

TABLE 9. Pills remaining by ERMM and RMM when four ghosts.

TABLE 10. Time taken by ERMM and RMM when six ghosts.

TABLE 11. Score Board of ERMM and RMM when six ghosts.

TABLE 12. Pills remaining by ERMM and RMM when six ghosts.

It addressed the deficiencies of the non-communicative
loosely coupled framework. The proposed communicative
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LCF i.e. ERMM gathered sufficient information about other
agents for coordinated decision-making. The ERMM can be
utilized in real-world scenarios where planning, search, and
well-coordinated teamwork are required such as transporta-
tion problems, and air defense systems. The ERMM can
prove its applicability in the domains of sports for injury
prediction as injuries are recursive in nature. We believe that
the Enhanced RMM with feedback can be utilized for the
prevention of the injury by identifying the incorrect training
techniques. We hope that this work will contribute towards
the enhancement of deep reasoning and decision-making in
diverse domains.

APPENDIX
DATA TABLES of RESULTS
See Tables 2–12.
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