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Jam Propagation Analysis With
Mesoscopic Traffic Simulation

Balázs Varga and Tamás Tettamanti

Abstract— Road traffic simulation is becoming more important
as the complexity and multi-modality of traffic grow with the
evolution of novel transportation and automotive technologies.
There are several ways to mimic traffic dynamics. However,
realistic modeling traffic has a clear trade-off between accuracy
and simulation processing time. Obviously, the more detailed
traffic dynamics are sought, the more calculation is needed. The
paper offers a compromise solution introducing a novel meso-
scopic traffic simulation framework applicable on an arbitrary
network level. The mathematical background of the simulation is
provided as the extension of the shockwave profile model (SPM),
distinguishing three continuous traffic states on a link. Extension
of the model is done by means of a weighted directed graph
where the dynamic edge weights are the queue lengths on each
link. The model can handle both signalized and unsignalized road
links. An important opportunity of the proposed network SPM
approach is the analysis of traffic jam propagation and bottleneck
detection. The presented mesoscopic simulator is validated based
on both synthetic and real-world traffic networks using fleet
traffic data. The simulated queue length in the mesoscopic
simulation accurately matches the microscopic traffic simulation
results.

Index Terms— Traffic modeling, Shockwave profile model, Jam
propagation analysis.

I. INTRODUCTION

INITIALLY, traffic simulation was used by civil engineers
to support infrastructure development through modeling

traffic assignment [1], evaluating and optimizing road capac-
ity [2], [3], optimizing intersection layouts, and signal pro-
grams [4], [5]. With the increase of various ITS solutions,
traffic modeling and simulation also have emerged in different
traffic estimation and control solutions [6], [7], [8], [9] as
well as driver assistance systems [10], [11]. Moreover, the
model-based approach allows for the assessment of theo-
retical scenarios and long-term forecasting. Obviously, the
future of traffic simulation is the real-time simulation of
large-scale traffic networks tending towards the digital-twin
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technology [12], [13], [14], [15]. The more, a new notion,
called “co-simulation”, was recently born by the advent of
the technology developments for Connected and Autonomous
Vehicles, in which traffic simulation has also appeared beside
the detailed vehicle dynamics modeling. [16], [17], [18], [19],
[20], [21] introduced integrated testing frameworks for traffic
and vehicle co-simulation for Connected and Autonomous
Vehicles (CAVs). In these applications, the simulation per-
formance is of crucial importance: as real-world or faster
than real-world testing is expected for future homologation
processes of CAVs [22], [23], [24]. Therefore, traffic sim-
ulation with high real-time factor is increasingly important.
Accordingly, a mesoscopic traffic modeling approach that is
capable of capturing traffic patterns is introduced for efficient,
at the same time, realistic traffic simulation. In the paper, the
efficiency of the mesoscopic model will be shown for jam
propagation analysis. Before delving into jam propagation,
traffic modeling as a preliminary tool is outlined.

A. Traffic Modeling

Generally, road traffic simulation is categorized according
to the level of detail of the applied traffic modeling, i.e.,
microscopic, mesoscopic, and macroscopic levels of simula-
tion [25]. Each category has a trade-off between accuracy and
computational demand and has its specific use cases.

Microscopic models describe the traffic flow in a detailed
manner, using the dynamics of individual vehicles. Car fol-
lowing models are the most common type of microscopic
traffic models. They describe the driver’s behavior concerning
the preceding vehicle in the same lane. Safe distance models
describe the dynamics of a single vehicle in relation to its
predecessor [26], [27], [28], [29]. Stimulus-response mod-
els represent the vehicle’s dynamics based on the observed
behavior of the preceding vehicle [30]. Cellular automaton
models (such as the cell transmission model (CTM) [31])
divide the space into equally sized cells. It then describes
the movement of vehicles from cell to cell in a discrete
way [32]. This fine-grained approach also extends to the
road infrastructure (e.g., lane description, traffic lights), thus
able to model complex traffic phenomena such as traffic jam
propagation. On the other hand, the accuracy of the model
is a mixed blessing. The complexity of car following models
makes calibration tedious and have significant impact on road
capacity [33]. Thus, achieving realistic jam propagation results
with microsimulation requires large effort. Additionally,
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large-scale models are resource intensive to simulate, limiting
real-time capabilities.

Mesoscopic traffic models are an intermediate description
of road traffic, where the movements of individual vehicles are
neglected, and clusters of vehicles are considered. A cluster
of vehicles is a homogeneous group of vehicles that share
a specific property such as size and average velocity [25].
The behavior of individual vehicles is described as stochastic
variables [34]. Gas-kinetic models employ equations from
fluid dynamics to describe traffic flow as a homogeneous
continuum [35], [36]. Thus, mesoscopic models are capable
of capturing the fluctuation of traffic (i.e., jam formation and
dissipation) in an aggregated way, thus being easier to calibrate
(sensitive to only a few parameters) and computationally more
efficient.

Macroscopic models ignore individual parameters of vehi-
cles, and the flow of traffic is described with hourly aggregates
such as traffic mean speed, traffic density, and traffic volume
on road link (or sub-network) level. The first macroscopic
flow model is proposed by [37]. The fundamental equation
of traffic flow is shaped by choice of the velocity equation,
e.g., [38] and [39]. Besides the above macro models (mainly
applicable on freeways or arterial roads), it is important
to distinguish another group of macroscopic models, also
called transportation forecasting or four-step travel model [40].
Although dynamic macroscopic models exist as well, they are
rather used to model the rerouting behavior of traffic. The
main limitation of the macroscopic modeling approach is the
absence of vehicle dynamics.

B. Jam Propagation Analysis

Traffic jam propagation or percolation analysis studies how
congestion on a roadway spreads and affects other sections
of the road network. There have been several approaches to
studying this phenomenon distinguishing highway and urban
traffic jam propagation. In road traffic, bottlenecks are defined
as locations where traffic demand exceeds capacity. The ques-
tion of jam propagation is the effect of such bottlenecks in
terms of queue lengths, spillback (gridlock), and travel time
delays.

Due to the complex nature of the topic, instead of analytical
methods (or simple models), highly complex, modular models,
i.e., simulators are preferred. The more, such model-based
simulators are more desirable as opposed to data-driven
approaches since traffic jams are often caused by one-off
events (e.g., accidents, roadworks, public events, etc.) and
cannot be reliably evaluated from the data. Additionally, hypo-
thetical scenarios (such as changing a traffic light program) can
only be tested through models.

Several authors have explored different aspects of traffic
jam propagation analysis through traffic modeling, simulation,
and empirical data. References [41] and [42] take a macro-
scopic approach to analyze gridlock formation and dissipation
dynamics. The authors of [43], [44], and [45] analyze jam
propagation through network theory. They evaluate the severity
of the jam by clustering them. However, the results can
only isolate bottlenecks and do not give insight into the
dynamics of jam propagation. Only a few studies deal with the

cause-and-effect analysis of traffic bottlenecks. Reference [46]
defined a tree structure to represent jam propagation in a prob-
abilistic way. Reference [47] create a directed graph of the road
network to find congestion propagation paths using traffic mea-
surements. Reference [48] uses the topology of the network
to assess queue growth. Reference [49] construct propagation
graphs to identify the causal relationship between congestion
at different road segments by calculating congestion costs.
References [46] and [50] discretize the network into regions,
not on a link level. Thus, they cannot analyze spillbacks and
recursive effects. Many works use big data analysis to find
traffic patterns, e.g., [51] and [52]. However, it is hard to
find the causes of jams without a model. Reference [53] uses
the CTM to estimate vehicle speed and identify bottlenecks.
Thus, congestion is categorized by average velocity instead of
queues. On the other hand, in urban areas, traffic flow is mainly
actuated by traffic lights inducing queues and shockwaves.
Thus, we hypothesize that a traffic model focusing on queue
growth and dissipation can deliver more accurate results for
jam propagation modeling than other aggregate models, such
as the CTM.

C. Contribution

This paper proposes a mesoscopic traffic model to find
bottlenecks and analyze queue growth. The shockwave profile
model (SPM, [54]) is extended to a network level, capable of
handling multiple signalized and unsignalized road links. Until
now, the SPM has not been extended to urban networks. Thus
the first contribution of the paper is a fully functional meso-
scopic traffic simulator capable of handling both signalized
and unsignalized intersections.

The SPM separates each link into three continuous regions:
free flow, moving queue, and stationary queue. Jam propa-
gation is assessed by means of these traffic regions. Thus,
as a second contribution, we give a purpose to the pro-
posed simulator without excessively customizing it for that
objective. Compared to other works in percolation analysis,
we use a model-based approach, not a data-driven one. This
makes cause and effect analysis simpler too. The proposed
mesoscopic model is more resource-efficient compared to
microscopic traffic simulation but captures traffic dynam-
ics better than macroscopic models. The model defines the
road network as a directed graph and needs only a few
inputs (inflows, turning rates), making it an efficient tool
for web-based applications too. Additionally, the mesoscopic
model can be calibrated solely relying on abundantly available
floating car data.

The paper is structured as follows. Section II outlines the
shockwave profile model and extends it to an urban traffic
network. Then, Section II-C provides a methodology to ana-
lyze jam propagation and traffic bottlenecks using the network
SPM. Section III discusses the calibration and usage of the
model through a synthetic grid network where it is bench-
marked against other contemporary models. Additionally, its
capabilities are tested to capture the spillback phenomenon on
a real road section, calibrated with floating car data. Finally,
IV concludes the results of the paper and provides further
outlook on the usage of the model.
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Fig. 1. Traffic flow states in front of a signalized intersection.

II. NETWORK SHOCKWAVE PROFILE MODEL

This section presents the shockwave profile model at sig-
nalized link level. Then, it is extended to the network level,
resulting in a mesoscopic traffic simulator. The section also
discusses the case of unsignalized intersections in the proposed
modeling framework.

A. Shockwaves at a Signalized Intersection

The shockwave profile model was first introduced in [55]
and further studied in [54] for signalized road links. The
SPM model exclusively works with traffic flow volumes and
queue lengths, i.e., treating vehicles as a continuum instead
of individual agents. It describes traffic states in such links,
distinguishing three states:

• Free flow farther upstream the traffic light, where the
average velocity is vA. Additionally, the traffic density is
assumed to be ρA. Thus, the traffic flow is Q A = ρAvA.

• Stationary queue (RJ ) in front of the traffic light, vJ =

0. Since the traffic is stationary, there is no traffic flow
(Q J = 0) and the traffic is at jam density, ρJ .

• Moving queue (RC ): drivers cross the traffic light at
green with the critical velocity vC , (as a rule of thumb:
0.5 vehicles per second, i.e., QC = 1800 veh

h per lane).
Additionally, the traffic density at this state is denoted
with ρC .

Figure 1) depicts these regions with ll being the link length
and lq being the queue length. The traffic inflow is denoted
with Q A.

In the SPM, boundaries of the traffic regions (RA,
RC ) upstream a signalized intersection are governed by
shockwaves. The model distinguishes four shockwaves:

• Queuing shockwave velocity, W1(t) is formed by vehi-
cles accumulating at the red light. Vehicles stopping at
the tail of the queue from their actual velocity to zero
forms a shockwave.

W1(t) = −
Q A(t)

ρJ − ρA(t)
. (1)

• Discharge shockwave velocity, W2 is time-independent.
In the fundamental diagram, the discharge shockwave
velocity is the slope of the line connecting the jam density
and the critical density.

W2 =
QC

ρJ − ρC
. (2)

• Departure wave velocity W3(t) is generated as the queue
dissipates as vehicles leave the intersection at green.
It starts at the intersection of the queuing and discharge

Fig. 2. Shockwave profiles at a signalized intersection.

Fig. 3. Three different MFDs with the queuing shockwave W1, the queue
discharge shockwave W2, and the departure shockwave W3 velocities.

shockwaves. In addition, newly arrived vehicles feed the
queue and hence

W3(t) =
QC − Q A(t)
|ρC − ρA(t)|

. (3)

Assuming a triangular link fundamental diagram, the
departure wave velocity becomes constant. Additionally,
in the case when the inflow is larger than the peak
capacity (Q A > QC ), the shockwave changes sign,
leading to a growing queue, i.e., the queue is fed faster
than it can dissipate.

• Pressure wave velocity W4 separates a critical density
and a jam density region, and it has the same speed as
the discharge wave. The pressure wave is only present
if there is a residual queue, i.e., the queue cannot fully
discharge during a green interval

W4 = −
QC

ρJ − ρC
. (4)

Shockwave velocities can be represented in time-space dia-
gram (Figure 2) and on the Macroscopic Fundamental Dia-
gram (MFD) too (Figure 3).

The shockwave profile model defines traffic state transitions
based on specific points of the macroscopic fundamental
diagram (MFD). However, the MFD can take different shapes,
significantly affecting the slope of each shockwave. Consider
Figure 3 for three different examples. The triangular MFD is
the simplest one, where the average velocity is constant in the
uncongested case. The trapezoidal MFD offers an additional
degree of freedom in calibration by assigning the peak capacity
QC to several density levels. In the SPM, this allows selecting
the discharge wave velocity more freely, resulting in more
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accurate mesoscopic modeling. Finally, the exponential MFD
forms a nonlinear relationship between traffic density and flow.
In this case, the departure shockwave velocity is sensitive to
the traffic inflow Q A.

Using the model, it is possible to compute the queue length
on a link continuously. Assuming lW1(t), lW2(t), lW3(t), lW4(t)
are the shockwave lengths for each shockwave, their evolution
can be given as:

lW1(t + 1t)

=


lW4(t) + W1(t)1t i f lW3(t) < lW4(t),
min(lW1(t) + W1(t)1t, ll) i f lW1(t) > lW2(t)

or (red and lW4 = 0),

0 otherwise,

(5)
xlW2(t + 1t)

=

{
lW2(t) + W2(t)1t i f green and lW1(t) > lW2(t),
0 otherwise,

(6)

lW3(t + 1t)

=


lW2(t) + W3(t)1t i f lW1(t) < lW2(t),
max(lW3(t) + W3(t)1t, 0) i f lW3(t) > lW4(t),
0 otherwise,

(7)

lW4(t + 1t)

=

{
lW4(t) + W4(t)1t i f red and lW3(t) > 0,

0 otherwise.
(8)

Finally, the queue length on the link is

lq(t) = max(lW1(t), lW3(t)), 0 ≤ lq(t) ≤ ll . (9)

Note that the queue length is bounded between [0, ll ] as it
cannot be negative or exceed the length of the link. Con-
sequently, if the length of the free flow region (ll − lq(t)),
the stationary queue (lW1(t) − lW2(t)), and the moving queue
(lq(t) − (lW1(t) − lW2(t))) can be obtained. From that, macro-
scopic traffic variables such as (space) mean speed and density
can be obtained for the full link by weighted averaging the
fixed macroscopic variables (vA, vJ , vC , and ρA, ρJ , ρC ,
respectively).

Additionally, if the traffic program and the vehicle inflow
are constant or known for future steps, it is possible to perform
short-term prediction of traffic states and queue lengths [34].

The model considers the time needed by vehicles to reach
the tail of the queue. Based on the free length of the link
(l f = ll − lq ) and the average velocity of free flow vehicles
vA, the flows feeding the queue are delayed by tdel =

l f
vA

.
This approach to handling the delay is similar to how it is
dealt with in the delayed CTM [31].

Remark 1: The model can be extended to handle stochastic
(but ergodic) vehicle arrival patterns, resulting in probabilistic
queue lengths (and probabilistic jam propagation in the net-
work model sense), see [34].

Remark 2: Queue lengths can be given in passenger car
equivalents (PCE) too:

nq(t) = lq(t)/ lpce, (10)

with lpce being the average length of a car. Then, the number
of vehicles entering nin(c) and exiting nout (c) a link during
one traffic light cycle (denoted by c) is

nin(c) =

∫ t+tcyc

t

Q1(τ )

3600
dτ, (11)

and

nout (c) = min
(

nq(t),
∫ tgreen

0

W2

lpce
dτ

)
, (12)

with tgreen being the green time within cycle time tcyc. Then,
the evolution of queue length in one traffic light cycle is

n(c + 1) = n(c) + nin(c) − nout (c). (13)

This discrete-time model is similar to the store-and-forward
model with link-level spatial and cycle-time level temporal
discretization [56]. Similarly, Eqs. (11)-(13) can be used for
sub-cycle time intervals (1t < c) too.
Based on the above, the outflow can be given as follows:

Qout (t)=


0 i f red or

downstream jammed,

QC i f lW2(t) > 0,

Q A(t − tdel) i f lq = 0.

(14)

If two similar links are connected, the vehicle inflow to the
second link will be the QC of the first one during a green
phase. That means the velocities W1 and W2 will be similar,
and W3 becomes zero. Therefore, inflow and outflow are
similar if both traffic lights are green; thus, the queue length
is constant. Additionally, if the downstream link is jammed,
the outflow is prevented from the link. This assumption is
further evaluated in the sequel when extending the model to
the network level.

B. Network SPM

The link SPM model in the previous section can be turned
into a network by interconnecting individual links. The net-
work SPM model is based on a directed graph. Road links
are the edges, and intersections are assumed to be nodes.
At each intersection (node), outflow from adjacent links can
be used as inflow to the current ones. Vehicle flows are
distributed based on turning ratios. Then, the queue lengths are
computed based on the SPM for each link. With this approach,
a whole traffic network with traffic lights can be modeled. The
SPM model can estimate queue lengths which can be used to
detect spillover, gridlock, and disturbance propagation. There
is spillover if this queue length is greater or equal to the length
of the link (ll ≤ lq). If that happens, the source node of this
link gets blocked, preventing outflow from every edge that
ends in that node. That is to model gridlocked intersections.

Using the layout in Figure 4, The traffic inflow to Link X
is the weighted sum of the outflows from the upstream links:

Q X (t) = QY (t)αY + Q Z (t)αZ + QW (t)αW , (15)

with αX,Y,Z ,W being the turning rates, and Q X,Y,Z ,W are
the traffic flows, respectively. Thus, the model assumes the
information on turning rates at each intersection. This is a
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Fig. 4. Shockwave profile model on network level.

common, practical assumption for network-level traffic models
(e.g., [56], [57]), and can be obtained from OD matrices
via traffic assignment algorithms, e.g., [58]. Additionally, the
perimeter inflows of the network and the signal program are
needed.

Since most road networks consist of not only signalized
intersections, unsignalized links are considered too. In the
absence of traffic lights, shockwaves are not triggered. In this
case, a different approach has to be taken: gap acceptance [59].

Based on the works of [60] and [61], links with lower
priority (minor flow, Q−) can be modeled as a continuous
queueing process depending on the flow of the higher priority
road (major flow, Q+).

Q−
=

1
t f

e−tc Q+

, (16)

where t f is the follow-up time, and tc is the critical gap.
The value of tc and t f depend on the type of the intersection
(e.g., turning left or right), [62]. The shockwave profile model
can also be interpreted in this case to a lesser extent. Since
vehicles are leaving the minor road with a given rate (not
necessarily QC ), and there are vehicles feeding the moving
queue, a permanent dissipation wave (W3) is present. Trivially,
the queue length on links ending with right-of-way signs is
also saturated: it cannot be negative or longer than the link
length.

Remark 3: Roundabouts can be modeled with this approach
too. Sections of the roundabout are road links with priority,
while the legs of the roundabout are minor roads. This is
assuming drivers inside the roundabout have the right-of-way.

C. Bottleneck Assessment Methodology

The SPM is designed to model queues on a road link. The
queue length on a link alone is a piece of valuable information
in detecting congested roads. The network model is capable
of the more ambitious task of assessing jam propagation
dynamics too. The network model is built as a directed graph,
with each edge being a road link where queue length evolution
is continuously evaluated. If one link gets full, it affects the
upstream links too via blocking traffic flow in the upstream
intersection (node) completely. Thus, the order in which links
get congested can quickly be evaluated. Critical links and the
causality of jams can be traced back. The main difference
compared to [47] is that congestion paths are obtained through

Fig. 5. Flowchart of traffic jam assessment.

Fig. 6. Graph representation of the grid case study network.

a traffic model rather than sparse measurements. The model
allows us to find bottlenecks by means of arbitrary traffic
blockages and fictitious traffic flows. Additionally, short-term
traffic state predictions can be made using the mesoscopic
model to forecast gridlocks and take preventive action.

As stated in Section II-B, if an edge gets congested,
it entirely blocks the outflow traffic of all of its upstream
neighbors. When constructing the network graph, one might
need to split an intersection into smaller ones, e.g., define a
node at each turning (merging, splitting) point. That is to better
asses which directions get congested.

Some particular use-cases of the model that will be elabo-
rated in the case studies are

• Incident detection. If traffic conditions abruptly change
due to an external event (e.g., accident, construction),
queue forming and dissipating patterns will change.
In most practical cases, this means a capacity drop, result-
ing in unexpected traffic jams, which can be modeled with
the SPM.

• Hotspot detection. When jams occur recurrently, they
can stem from various reasons, e.g., incorrect traffic light
programs, insufficient capacity of turning lanes, or other
types of traffic bottlenecks. Via modeling the propagation
of queues, these bottlenecks can be traced back.

The above traffic network inefficiencies are systematically
analyzed through the following metrics: the number of links
affected and the order in which they get congested (congestion
path or congestion propagation graph [49]). The cumulated
length of the jam is the sum of queue lengths in the congestion
path. The cumulated length is related to the severity of the
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Fig. 7. Hourly traffic flow on the evaluated links in the grid network for every scenario and every benchmark.

congestion. Additionally, the queue growth rate (the cumulated
length derivative) is also analyzed.

III. CALIBRATION, VALIDATION, AND USE CASES

In the sequel, two traffic networks are constructed based
on the SPM. First, a 3-by-3 grid network is implemented
with traffic lights, right-of-way intersections, and an accident
to check jam propagation in the network. The grid network
is used to validate and benchmark the mesoscopic model
against SUMO microsimulation (using the default settings),
the mesosimulation option of SUMO [63], and against the
delayed- and non-delayed versions of the cell transmission
model [31]. Then, a real-world arterial road is modeled
and calibrated using TomTom fleet data. This case study is
particularly interesting because, during peak hours, there is
a left-turning lane that usually gets congested, blocking the
forward-going traffic too. Additionally, an accident is modeled
in this network as an alternate source of jam. The methodology
of jam propagation analysis via the SPM is shown in Figure 5.

A. Grid Network

A 3-by-3 grid road network with one-way streets is modeled
for validation, see Figure 6. Each intersection is modeled as a
node in the graph-based representation of the network. Note
that a more detailed description is possible in more complex
intersections (e.g., a distinct edge for each lane). This network
has two variants: one with traffic lights and one with right-
of-way streets where vertical roads have priority over the
horizontal ones. Based on [64], the gap acceptance parameters
for minor flow roads are t f = 2.8 and tc = 4.1. In the traffic
light variant, the traffic cycle is 60 s long with 30 s green
intervals. Signal controllers are calibrated such that the vertical
directions have a green wave. Each link is 250 m long, and the
speed limit is 50 km/h. In the model, trapezoidal MFDs are
used with the jam density being ρJ = 150 veh/km/ lane, the
peak capacity is QC = 1800 veh/h/ lane (stemming from
the rule of thumb that a half vehicle can cross a signalized
intersection each second, [62], [65], [66], [67]). The free flow
velocity v f = 50 km/h and the offset between ρCl and ρCr

is 40 veh/km. We used the same MFD for both the SPM and
the benchmark CTMs. Each link was discretized into 50 m
cells for the CTM. Simulations have been carried out with

link-sized cells, i.e., the link transmission model [68] too.
However, no significant differences were observed between
the two. Thus, in the sequel, only the results of the CTM are
reported. The traffic inflow is 540 veh/h at every source node
(A, C, M, T, R, H), and the turning rates are 50−50% at each
intersection.

For validation purposes, it is checked how many vehicles
travel each link in both cases (Figure 7). Results suggest
that the SPM underestimates traffic flow on the right-of-way
links, while the CTM overestimates traffic flow in general. The
mesoscopic model of SUMO cannot consider traffic lights or
gridlock [69], thus completely failing in jam propagation anal-
ysis. The reason for underestimation in the SPM case stems
from its queue-length focus rather than vehicle number focus,
i.e., vehicle number is evaluated from queues, see Remark 2.
On the other hand, the CTM overestimates traffic flow since
it always assumes the road is utilized at its peak capacity and
does not distinguish between moving and stationary queues.

In the unsignalized network, the roads with priority has
zero queue length, which is well captured by every model.
On the other hand, instantaneous queue lengths cannot be
captured accurately by any of the models. Average queue
lengths, however, can be captured by the SPM better than the
CTM benchmarks, see Table II.

Next, the average queue lengths are analyzed for six links in
the scenario with traffic lights (Figure 8). Both the CTM and
SPM-based simulations capture the queue length fluctuation
well in the links close to the entry of the network. On the
other hand, accuracy degrades slightly for both the SPM and
the CTM from left to right. Figures on the left (Link AG and
HG) are close to the source nodes, while Links JQ and FE are
three links downstream of the source. Thus, the inaccuracy
stems from the accumulating modeling errors. This leads to
the conclusion that modeling large-scale networks (without
intermittent corrections) is only possible with limitations using
the network SPM. Additionally, this accuracy degradation
is more severe in the CTM cases. The mesoscopic SUMO
simulation cannot produce realistic queues. Note that the
shockwave profile model (and similar queuing models) often
miss the maximum length of the queue [54].

Next, an accident is simulated in the signalized grid network
blocking the exit of Node B. The question is how this accident
propagates through the network, which links get congested
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Fig. 8. Queue length comparison at different links of the grid network with traffic lights. 120 seconds long slices (two traffic light cycles) of the whole
simulation are averaged.

TABLE I
CONGESTION PATH IN THE GRID NETWORK. THE LINKS ARE
ORDERED BY THE TIME INSTANT THEY GET BLOCKED (tb )

first, and how fast the jam grows. First, the direction of growth
is analyzed. Table I summarizes in what order and at what
time instant a link gets fully congested. The order in which
the links get congested in the SPM is almost similar to the
order modeled by SUMO. Noth that, however, there is a
link (JQ) that gets blocked in the SPM and not in SUMO.
Additionally, the SPM predicts faster queue growth. The CTM
predicts much faster jam propagation and misses the order in
which links get congested. Thus, neither the propagation speed
nor the congestion propagation graph cannot be correctly
reconstructed. The number of vehicles that could cross each
link (Figure 7c) is in accordance with the result in Table I:
the earlier a link gets blocked, the fewer vehicles could
travel it. Finally, the cumulated queue length is shown in
Figure 9. It can be seen that the network eventually gets
to a steady state where the queue cannot grow any further.

The difference between the total queue length arises from
Link JQ that gets congested in the SPM and not in SUMO.
Additionally, the slope of the cumulated queue length is the
rate of queue growth. The main difference in the queue growth
speed can stem not only from modeling inaccuracy but from
simplification too. If the queue length reaches the previous
intersection, both the SPM and the CTM assumes that the
node is entirely blocked, i.e., there is no flow from that node
in any direction. However, depending on the topology of the
intersection, it could be possible that there are still some
directions vehicles can travel.

Finally, the RMSE for every link in every scenario is
summarized in Table II. The RMSE results confirm the pre-
vious findings: queues are zero both in SUMO and in the
SPM for the roads with priority. In the signalized case, links
further downstream from the sources show higher errors. In the
jam propagation scenario, Table II reports larger errors when
the temporal difference in congestion time on a certain link
(Table I) is larger.

B. Real Arterial Road

The second example is an arterial road in Budapest, towards
the city center, that often gets congested in the morning
peak due to commuting traffic. The situation gets especially
severe at a left turning lane that gets congested, blocking
the forward-going traffic too. The reason it gets congested
is also edifying. Since the arterial is congested, navigation
applications recommend detours towards a residential area to
drivers, and the detour involves the said left turn too. Thus,
the user optimum recommended by the application further
degrades the system optimum.

The length of the left turning lane is 50 m, and the green
time for this direction is 12 s in a 90 s traffic program cycle.
There are two lanes that go forward towards the city center.
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TABLE II
ROOT MEAN SQUARE ERROR OF QUEUE FOR THE SPM AND ITS BENCHMARKS COMPARED TO SUMO MICROSIMULATION IN THE GRID NETWORK

Fig. 9. Total queue length stemming from the blocked exit at Link FB in
the grid network.

The legal speed limit is 50 km/h. The graph representation,
the signal program, and the aerial view of the arterial road are
shown in Figure 10. The said left turning lane is Link FG, and
the forward going lane is Link FI in the graph. Note that Link
BD is also signalized.

The model is calibrated using OD data from TomTom and
traffic counts entering the said area. Based on the measure-
ments, we consider two real and a fabricated scenario. In every
scenario, the main inflow is 2400 veh/h. In the first scenario,
10% of the vehicles take the critical left turn, while in the
second 15% (based on TomTom). In the third case, an accident
is simulated 100 m downstream of the intersection. Table III
summarizes origin-destinations for the scenarios.

Similar to previous experiments, the average queue lengths
are first evaluated. See Figure 11. With 10% left turning

Fig. 10. Arterial road case study.

TABLE III
ORIGIN-DESTINATION FLOWS (VEH/H) IN THE ARTERIAL NETWORK

WITH 10% LEFT-TURNING RATE (15% LEFT-TURNING RATE IN
PARENTHESIS)

rate, the turning lane does not get congested, while the
forward-going lanes do. That causes some spillback to Link
DF. If the turning rate increases to 15%, the turning lane gets
congested too. This causes more spillback to Link DF. Note
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Fig. 11. Queue length comparison upstream the intersection with the critical left turn. Top figures depict the scenario with a turning rate of 10% left, the
bottom figures depict a turning rate of 15%. Figures on the left show the road link prior the turning lane, figures in the middle show the queues on the link
for vehicle going straight ahead, and figures on the right depict queuing on the left turning lane. 180 seconds long slices (two traffic light cycles) of the whole
simulation are averaged.

Fig. 12. Queue length comparison with an accident caused in the experimental network on each link.

TABLE IV
AVERAGE VELOCITIES (KM/H) UPSTREAM AND DOWNSTREAM THE CRIT-

ICAL INTERSECTION WITH DIFFERENT TURNING RATES

that the spillback in the SPM is significantly larger than in
SUMO. That is because if any of the links FI or FG gets
congested, the outflow is blocked from DF. Since FI has two
lanes, in SUMO, the vehicles that travel straight ahead can still
use the rightmost lane even if vehicles are blocking the middle
lane intending to change lanes to the left. Modeling such
an unstable behavior is always challenging. Since gridlock
happens at different times in the two simulators, its dissipation
will show different patterns. Thus, even a small discrepancy
can result in large differences. Alternatively, one could model
the two-lane sections as two separate edges, modeling queues
on them separately.

Next, as a validation step, average velocities reported
by TomTom are compared to the average velocities in the

mesoscopic and the microscopic simulation, see Table IV.
TomTom data is computed based on all vehicles traveling that
segment (with TomTom navigation enabled) averaged over
15 mins. A similar methodology is used for the SUMO
vehicles to compute their average velocity. In the case of
the SPM, a weighted average of traffic flow regions is used.
In the free flow region vehicles travel with vA = 50 km/h,
in the moving queue it is vC , which is also 50 km/h using
trapezoidal MFD, and vJ = 0 km/h in the stationary queue.
The 15 mins averaged velocity on an SPM is

v̄S P M

=
1t

15 · 60

·

15·60
1t∑

τ=0

vA(τ )(ll −lq(τ ))+vC (τ )(lq(τ )−lW1(τ ))+vJ (τ )lW1(τ )

ll
.

(17)

The FCD velocities tend to be higher both upstream and
downstream compared to the simulated ones. The difference
from the ground truth for SUMO is more significant than
the SPM. Thus, it can be concluded that the accuracy of the
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Fig. 13. Cumulated queue growth.

TABLE V
CONGESTION PATH. THE LINKS ARE ORDERED BY THE

TIME INSTANT THEY GET FULLY CONGESTED

TABLE VI
ROOT MEAN SQUARE ERROR OF SUMO AND SPM QUEUE

LENGTH RESULTS IN THE EXPERIMENTAL NETWORK

mesoscopic simulation is comparable to the microscopic one
(both with default settings).

In the following scenario, an accident is simulated 100 m
downstream of the intersection (Link IKa) while the turning
rate left is 10%. The queue lengths on the affected road links
are summarized in Figure 12. Before Link IKa and FI get fully
congested, the turning lane can empty twice. Then, as Link
FI gets full, the queue starts accumulating on Link DF, too,
blocking entry to Link FG. Thus, in the steady state, the
left turning lane is empty, while there is a queue spanning
over multiple links in the forward direction upstream of the
accident. In both simulations, the order in which links get
blocked is the same. However, it is faster in the SPM case,
see Table V. The cumulated queue length (Figure 13) is more
steady in the mesoscopic model, but in both cases, the queue
growth stops (around 70 s) when the traffic light at Link BD
stops incoming traffic. The root mean square errors (RMSE)
are reported in Table VI.

IV. CONCLUSION

In the paper, the network-level extension of the shockwave
profile model was presented. The main purpose of this exten-
sion is to create a general purpose mesoscopic traffic model
that is computationally more efficient than microscopic simula-
tion but still capable of accurately capturing the fluctuations of

traffic flow. The road topology is modeled as a directed graph.
The model can be easily calibrated using some rule of thumb
for the link fundamental diagram, turning rates from FCD
data, and perimeter inflows from either scaled-up FCD data
or traffic counts. Although the proposed model was presented
in a jam-propagation detection context, it can be used for
alternative purposes too. The SPM gives a good trade-off
between simulation speed, calibration effort, and accuracy
compared to microsimulation. In the jam-propagation context,
the proposed model outperformed the cell transmission model,
as the shockwave profile model better utilizes the information
provided by the macroscopic fundamental diagram. Addition-
ally, road links can be handled in a spatially continuous way,
and there is no need for the discretization to cells.

Results of the numerical simulations suggest that the SPM
model can accurately predict queue length growth and dis-
sipation at signalized intersections. For unsignalized links,
the queuing model can only predict average queues. On the
other hand, for large networks, where the modeled queue
is several links downstream, the inflow of the model gets
less accurate: minor deviations and the stochasticity of the
real traffic accumulate at this point. Therefore, it is better
to discretize the network into smaller sub-networks. The
model could accurately detect when some accident happened,
modeling the rapid growth of queues and gridlock formation.
The model can also capture recurrent events in the form of
fluctuating queues in front of traffic lights and detect anomalies
(i.e., gridlock) in case of an incorrect traffic light program or
insufficient turning lane capacity. Compared to benchmarks,
the SPM is 2-5 times more accurate in predicting queue
lengths. Since jam propagation is derived from the queue
length estimates, the proposed model can better predict both
the speed and direction of traffic jam growth compared to the
CTM.

The model can be used to find bottlenecks and incorrect
signal programs by means of arbitrary traffic blockages and
fictitious traffic flows. In the same vein, congestion dissipation
can be modeled too. Additionally, the model can be used
to forecast traffic states. Therefore, it can act as a basis for
model-based predictive traffic control algorithms to remedy
gridlock formation.
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