7704

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

From Plane to Hierarchy: Deformable Transtormer
for Remote Sensing Image Captioning

Runyan Du"”, Wei Cao ¥, Wenkai Zhang

Shuoke Li

Abstract—With the growth of remote sensing images, under-
standing image content automatically has attracted many re-
searchers’ interests in deep learning for remote sensing image.
Inspired from the natural image captioning, the model with convo-
lutional neural network (CNN)-Recurrent neural network (RNN)
as the backbone and supplemented by attention has been widely
used in remote sensing image captioning. However, it is inefficient
for the current attention layer to simultaneously mine hidden
foreground from the background of remote sensing image and
perform feature interactive learning. Meanwhile, the new main-
stream language model has recently surpassed the traditional long
short-term memory (LSTM) in sentence generation. For solving
the above problems, in this article, we proposed a novel thought to
make the flat remote sensing images stereoscopic by separating the
foreground and background. Based on hierarchical image informa-
tion, we designed a novel Deformable Transformer equipped with
deformable scaled dot-product attention to learn multiscale feature
from foreground and background through the powerful interactive
learning ability. Evaluations are conducted on four classic remote
sensing image captioning datasets. Compared with the state-of-the-
art methods, our Transformer variant achieves higher captioning
accuracy.

Index Terms—Attention, remote sensing image captioning
(RSIC), transformer.

I. INTRODUCTION

EMOTE sensing image captioning (RSIC) [1], [9] is a
Rchallenging task for replacing human to automatically
understand the growing mass of high-resolution remote sensing
images. It is a translation task from visual modality to text
modality. Even now, how to bridge the semantic gap between two
modalities has always been a difficult problem for researchers to
overcome. With the gradual maturity of deep learning technol-
ogy, the main framework for processing RSIC is inspired from
the natural image captioning (NIC) [4], [12] in natural scene,
which is called “encoder—decoder framework.” The encoder
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is responsible for turning each image into a numerical vector.
Meanwhile, the decoder generates sentences by turning each
numerical vector into a specific textual content. The largest dif-
ference between image captioning in natural scenes and remote
sensing scenes lies in the image understanding module of the
encoder part.

This difference stems from the fact that natural images and
remote sensing images are worlds apart in terms of no matter
view or content. The natural image is recorded in a horizontal
view and its foreground and background are clear at a glance
from human’s sight. The protagonist in the image often occupies
most of the image area and is easy to identify. Humans can
naturally regard it as the subject and construct sentences. On
the other hand, remote sensing image is recorded in a vertical
view (God’s view) [17], which has a large number of objects
and more complex case for discriminating the foreground and
background. The main character in the image is similar in size to
the background, or is directly hidden in it, which is difficult to be
found even for human. All these factors make it harder to gen-
erate decent descriptions under the same framework for RSIC
than NIC. Since foreground elements are difficult to identify
in remote sensing image, if we first extract the relevant prior
knowledge from an upstream task and then directly tell the
caption model the position of these foregrounds, the difficulty
of RSIC will degenerate to be comparable to NIC. At the same
time, fine foreground and background separation can also benefit
the model to better understand remote sensing images.

In natural scenarios, using the object sequence extracted by an
object detection network [18] as the input of the model has be-
come a mainstream method. Due to the difference in perspective
between remote sensing images and natural images, the objects
in remote sensing images have smaller size, denser distribution,
more diverse aspect ratios, and unfixed directions compared to
natural images. The remote sensing images contain complex
background information, and much foreground is hidden in it.
These make ordinary object detector, which is very effective
in natural image caption, defuncts in remote scene. Instead of
spending much time on searching another better designed object
detector, we plan to design a unified and better Transformer
framework, which is customized for RSIC based on a widely
known feature extractor.

First, the attention in the current CNN-RNN framework
is weak in mining hidden foreground in remote sensing im-
ages. In order to perceive the hidden foreground informa-
tion from the complex background, a pixel-by-pixel analysis
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Fig. 1. Intuitive comparison diagram between the traditional RSIC framework
and our framework. The main difference lies in the hierarchical strategy at the
image understanding stage and the uniquely designed deformable Transformer.

method is adopted with a general pixel-level semantic segmen-
tation pretrained model to distinguish the foreground from the
background. In the previous methods, the foreground and back-
ground information in the grid-like feature map are entangled,
which makes it more difficult for the attention mechanism to
understand the visual content. Combining the above two points,
we establish a conceptual hierarchical structure with three floors
based on the foreground and background extracted by semantic
segmentation [31]. Fig. 1 shows its concept diagram. The bottom
floor is the original grid-like feature map, the second floor is the
background, and the top floor is the foreground. Each floor has
its own corresponding encoding method.

Second, the feature interactive learning ability is derived from
the global weighted summation of single-layer attention, which
does not consider the local interactive learning for each object
and has poor module depth. For solving this problem, Trans-
former has become our backbone with its powerful interactive
learning and better sentence generation abilities. Note that, the
shape of the foreground is variable. For adapting to such vari-
ability, we propose a deformable scaled dot-product attention to
learn the interaction between the subregions within the shape
to reduce the interference from other background information.
Based on the feature map, the deformable attention learns the
interaction within one object at pixel level, while the subsequent
self-attention learns the interaction between objects at object
level. Our model has both intra- and interclass feature represen-
tation learning, to build a powerful Transformer [19] variant to
generate better sentences. Overall, the main contributions of this
article can be summarized as follows.

Contributions:

1) From the view of overall framework, we designed a novel
Transformer framework specifically for RSIC, which is
equipped with the ability of understanding pixel seman-
tics. It is different from the commonly used Transformer
for understanding object categories in natural scenes.
Functionally, our encoder has the power of fine-grained
aggregation dealing with information within the object’s
structure.

2) The central idea of our framework is to divide the mul-
tiscale information of the image into three floors: a)
foreground, b) background, and c¢) raw information. The
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hierarchical encoding strategy we proposed has three cor-
responding perception functions for each floor to mine its
content.
3) The perception functions for foreground and background
are dedicated to learning the feature interaction between
pixel and pixel inside the object’s shape. We propose a
novel attention operator: deformable scaled dot-product
attention to implement this function. It understands the
foreground and background content region by region.
The rest of this article is organized as follows. Section Il intro-
duces the related works of RSIC and Transformer. In Section 111,
we describe the proposed deformable Transformer in detail. The
experimental results and analysis on four datasets are introduced
in Section IV. Finally, Section V concludes the article.

II. RELATED WORKS

In this section, the relevant works for RSIC and Transformer
will be briefly introduced.

A. Remote Sensing Image Captioning

In recent years, the mainstream frameworks for RSIC were
divided into three types: 1) template-based methods; 2) retrieval-
based methods; 3) encoder—decoder methods. The central idea
of retrieval-based methods is to search relevant sample in a
large database and take its caption as the result of current
input image. The model performance is highly depended on
the retrieval results and their match degree with the input.
Wang et al. [1] has presented a collective semantic metric learn-
ing architecture which constructed a shared space to compute the
distance for both image representation and caption representa-
tion. Given a test image, the caption with smallest distance will
be taken as the final output. However, retrieval-based methods
are suffered from the irrelevance of caption to image content,
which affects the caption’s accuracy. Another type is template-
based methods, which generates independent words and fills
them into an artificially set template by filling in the blanks.
Shi and Zou [2] have employed a fully convolutional network
(FCN)-based method [3] to capture the key words about objects,
attributes, and relationship content. But the caption generated
by the template-based method is too rigid in form and poor in
readability.

Inspired from the natural image captioning, the encoder—
decoder methods [4] are widely used in RSIC. The convolutional
neural network (CNN) [5], [6] is responsible for image under-
standing, while the recurrent neural network (RNN) [7], [8] is
responsible for sentence generation. During the same period,
Qu et al. [9] and Zhang et al. [10] have successively proposed
the encoder—decoder framework in RSIC and achieved good
results. Luetal. [11] added additional “soft” and “hard” attention
mechanisms [12] to the CNN-RNN architecture, which allows
the decoder to narrow the receptive field to one specific region
when generating word. The efficiency of the attention mecha-
nism has made it widely used in the field of RSIC. Researchers
have proposed many excellent attention mechanism variants to
insert between CNN and RNN.
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Zhang et al. [13] integrated attribute information reasoned
from the high-level image feature to assign higher attention
weight for the salient object in image. Sumbul et al. [14]
proposed a summarization-driven model, which used the
summarization of ground truth captions to combine the standard
captions. Li et al. [15] proposed a recurrent attention and se-
mantic gate framework to enhance the visual feature integration
and context vector generation. Zhang et al. [16] continued to
polish the attention mechanism, and used global visual feature
and linguistic state as the guiding factors to control the atten-
tion mechanism. Zhao et al. [17] proposed a structure-aware
feature pooling method to change the grid-like feature map [12]
according to the object’s shape. This is an excellent work and
takes into account the same utilization of object’s structure as
we do. But there is a fundamental difference with our method.
Zhao et al. [17] used the CNN-RNN architecture and changed
the Rol pooling [18] into a structure-aware pooling operator.
On our side, we focus on the Transformer architecture [19]
and change the interactive learning into a more fine-grained
structure-aware interactive learning among pixels.

Except researches on attention mechanisms, there are many
excellent works in RSIC. Lu et al. [20] introduced the sound
information into the model, which introduced the active at-
tention to generate sentence based on the sound-guided image
feature. On the decoder side, Hoxha and Melgani [21] aban-
doned the RNN and proposed a novel SVM-based [22] decoder
for better solving the long-term dependency problem. Wang
et al. [23] concentrated on the textual modality and proposed a
word-to-sentence framework for avoiding the unexplainable of
encoder—decoder architecture. On the training side, Li et al. [24]
proposed a novel truncation cross-entropy loss, which truncated
asample’s loss value when it was well learned by model. Cheng
et al. [25] proposed a grand new dataset NWPU-captions, which
was elaborate and data-heavy. They also proposed a new network
MLCA-Net for updating the attention into multilevel attention.
To our best knowledge, there are few effective Transformer-
based methods existing in the current stage of RSIC. Thus, in this
article, we specifically designed a Transformer-based method for
RSIC to understand multiscale information in remote sensing
images.

B. Transformer

Transformer was first proposed by Vaswani et al. [19], and
its novel full-attention network structure successfully achieved
breakthrough results in all text domain tasks [27], [28]. In the
field of multimodality [29], [30], Transformer has also achieved
great success. The scaled dot-product attention in Transformer
is a lightweight version of the attention embedded in CNN—
RNN [12]. The generation of its attention weight is no longer
through the fully connected network but through the vector dot
product. Zhu et al. [26] firstly introduced the Transformer into
image captioning, which took the object’s features reasoned by
the object detection network [18] as the input to generate sen-
tences. Many subsequent Transformer variants also continue this
framework. In this article, our method is not only to simply carry
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Transformer into RSIC but also to construct a customized inter-
active learning strategy for RSIC. Specifically, the Transformer
framework we designed takes the interactive learning of pixel
features within the object’s shape as the core to fully understand
the small-scale foreground content in remote sensing images.

III. METHODOLOGY

In this section, a brief introduction about the backbone Trans-
former and its functioning operator is firstly given, and then we
illustrate in detail each part of our model built on it.

A. Overview of the Method

The classical captioning model with Transformer involves
three parts: 1) an encoder (feature extractor), 2) arefiner (refining
visual feature), and 3) a decoder (generating sentence). The
overview of our method is shown in Fig. 2. Given a remote
sensing image, it will be feed into our feature extractor, which
charges the generation of its semantic map and feature map [12].
We use the 101-layer deep residual network (ResNet-101) [6]
to generate feature map produced by the last convolution block.
On the other side, the raw image will be first split into several
subparts and each part will be transferred to its corresponding
semantic map through the DeepLab v3+ [31]. Second, stitching
semantic maps of all subparts into one and scale it to be the
same size as the feature map. Inspired from zhao et al. [17],
we additionally employ the selective search [32] to enhance the
semantic map in the end.

Stepping in the feature refining stage, the foreground and
background are split with the semantic map. The three visual
contents, foreground, background, and raw feature map, are
hierarchically encoded. We propose deformable scaled dot-
product attention to constrain the interaction learning process in
object’s structure. The deformable scaled dot-product attention
is a variant of conventional scaled dot-product attention [19].
Different from Transformer, our refiner combines deformable
scaled dot-product attention and conventional self-attention [19]
for learning the interaction in structure-level and object-level.
We make a specifical design for it and this part will be described
in detail in the subsequent section. We first introduce some
preliminary knowledge about Transformer [19] and its scaled
dot-product attention. The conventional Transformer employed
an encoder—decoder framework. Both encoder and decoder are
stacked by several attention layers following layer normaliza-
tion [33] and residual connection [6]. In each attention layer,
it uses the scaled dot-product attention, which replaces the
traditional learnable attention weight with the similarity between
two vectors. The general scaled dot-product attention (Att) is

formulated as follows:
QKT>
Att (Q, K, V) = softmax< A% )
A Vi
MAtt (Q,K,V) = Concati—1.
x (Att (W,Q;, Wi K;, W, V,)). (2)

M Att is the multihead attention [19], which concatenates h at-
tention result after synchronously processing scaled dot-product
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and semantic maps. After SeedFilling, different objects are divided according to the foreground and background and input into the perception function (functioned
by deformable attention) to perform intraclass interactive learning. In the end, the output of deformable pooling will concatenate with the raw feature map and
learn interclass interactive among its elements, and then generate sentences through the Transformer decoder.

attention in h feature subspaces. W, are the learnable parame-
ters. Q, K, and V are the query, key, and value matrices. The
computation of each scaled dot-product attention is more like
a feature aggregation process. This makes the features of each
position in the sequence continuously strengthen the represen-
tation ability of its own characteristics as the number of layers
goes deeper and deeper, thereby, improving the performance of
model.

Finally, in the sentence generating stage, the decoder also
inherits a similar attention pattern and aligns the visual feature
and textual feature in each decoder layer. Different from the
sequential generation in the recurrent network, the words are
synchronously generated in each layer with consideration of all
previous context and encoder’s output. After going through sev-
eral layers, the final sequence is further fed into a fully connected
layer with a softmax to produce tth word probabilities p;

K

p: = softmax(y¢) = exp(y:)/ Y _ exp(y;). 3)
=1

B. Hierarchical Encoding Strategy

In the previous section, we mentioned about our feature
extraction strategy. Through it, we obtain an additional semantic
map and a conventional feature map. If following the traditional
framework, the boundary between foreground and background
information is difficult to be recognized by the model without
any additional guidance. The small-scale foreground informa-
tion is easily disturbed by surrounding large-scale background
information. However, the existence of semantic map makes
us having the ability to leverage a good prior knowledge to
separate small-scale foreground objects from their surrounding
background.

From this perspective, we propose a tower-like hierarchical
encoding strategy as shown in the middle of Fig. 2. For the
foreground, background, and feature map, we design corre-
sponding perception functions for encoding them. From the
process, the extracted feature map X, first passes through an
embedding layer to map each subregion’ feature to the model’s
feature space. Subsequently, the foreground and background are
divided according to the label value S; of each pixel belonging
to ¢th object in the semantic map S. The above three kinds of

information are encoded by the following formulas:

Ef = fp ((S - Sz) © X'raw) (4)
K

Ey=/fp | [[[S'=8i]©®Xeaw )

Eraw = emb (Xraw) . (6)

where K is the total number of detected objects and emb is the
embedding layer for raw feature map. E;, Ey, and E,,, are
the encoded foreground, background, and raw feature map, re-
spectively. The f,, is the perception function, which is composed
by several modified Transformer encoder layers. In each layer,
the scaled dot-product attention is replaced by our deformable
scaled dot-product attention. With the mask of foreground and
background, the interaction learning process of deformable
scaled dot-product attention is completely constrained within
the object’s shape. Theoretically, f,, charges the Internal feature
aggregation of a specifical object’s category and enhance the
representation ability of its feature.

The last layer of f,, is a deformable max/average pooling,
which is proposed for pooling features within the object’s shape
and summarize the statistical properties of an object from a
variable-length feature sequence. After passing through the f,,
the Ef, E;, and E,,,, are concatenated together as a final
hierarchical feature sequence for further feeding into the con-
ventional Transformer encoder layers. From the view of overall
encoder, the deformable scaled dot-product attention equipped
by fp learns the interaction of internal object’s category. The
scaled dot-product attention in the subsequent conventional
Transformer learns the interaction between different object’s
categories.

C. Encoder of Deformable Transformer

Different from the encoder of conventional Transformer, our
encoder is composed by the following two parts: 1) the percep-
tion function f, (main operator is deformable scaled dot-product
attention) and 2) self-attention layers (main operator is scaled
dot-product attention).

1) Deformable Scaled Dot-Product Attention: In each layer
of the perception function, the input of deformable scaled
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Schematic diagram of deformable scaled dot-product attention and deformable pooling. The former calculates the intraclass interaction of all foreground

and background at one time according to the connectivity relationship in the semantic map. The latter is to statistically process the features of the pixels within one

object’s shape.

dot-product attention is a flattened sequence: X = {z1,x2,

.,z }. Different from the conventional scaled dot-product
attention, when one element z; is taken as a query vector to
compute the similarity with its key sequence K = X, the ele-
ments in K will be verified with considering their connectivity
in the semantic map. Specifically, only the elements of K which
share the same connected domain R with the query x; in the
semantic map will be preserved. Fig. 3 shows the architecture
of our attention. However, the scaled dot-product attention has
no such restriction.

This advantage makes the feature aggregation only consider
the elements within the object’s shape and will not be disturbed
by external noise. The formula of our deformable scaled dot-
product attention is shown as follows:

x; (KoD)"
DAttt (xi, K, V) =softmax | ———— | (Vo) )
( ) ( NG > ( )
I 1, PK]. S le @®)
"o, Pk, ¢R.,

where I is the indicator function and its jth element determines
whether jth element of K needs to be contained. Py, means the
pixel of K; in the semantic map. R, represents the connected
domain where z; is located. Colloquially, when the pixel of K;
isin the same connected domain as x;, the K; will be putinto key
sequence K. The connected domain of z; is detected with Seed-
Filling method [34]. For enhancing the feature representation
ability, the multihead mechanism [19] is also exploited which
replaces the Att with D Att in (2). After the attention, the layer
normalization [33] and residual connection [6] are followed.
The deformable scaled dot-product attention layer can also be
stacked multiple times for enhancing the feature representation
ability.

2) Deformable Max/Average Pooling: The deformable sca-
led dot-product attention learns the interaction within one ob-
ject’s shape. Specifically, there are N pixels existing in the shape
of one object and the output will be an N-length sequence
X! through L deformable scaled dot-product attention layers.
Inspired from roi pooling [18] and structure attention [17], an

appropriate way needs to be found to summarize the features of
each pixel in the shape, and get the feature of the foreground
object. The architecture is shown in Fig. 3.

We perform max pooling on the pixel features within the shape
according to the connected area information provided in the
semantic map. The deformable average pooling is also imple-
mented. Both the calculation formulas are shown as follows:

DMP(XY) = C’orlwézt max(XF), i: feature dimension  (9)
DAP(XL Z x;,1: index in sequence X. (10)

i=1

The deformable pooling is effective to understand the objects
in the remote sensing image. Due to the particularity of God’s
perspective, the foreground objects concerned in remote sensing
images usually have a fixed shape. For example, whether a plane
is taking off or landing, the shape is fixed when viewed from
above. In contrast to natural scenes, the same person may have
wildly different shapes due to his different poses. Therefore, if
a human observes two remote sensing images, the objects of the
same category can be easily located and identified according to
their similar shapes. The deformable pooling and deformable
attention actually use the semantic map to make the positioning
work more detailed, and then use the excellent intraclass feature
aggregation capabilities to recognize the object’s category.

In summary, our encoder takes the split three visual informa-
tion as the input: 1) foreground, 2) background and 3) raw feature
map. The foreground and background information go through
the perception function, which contains L deformable attention
layers following one deformable pooling layer. According to
our hierarchical encoding strategy, through the perception func-
tion, the encoded foreground and background information E
and E; are obtained. The raw feature map goes through the
embedding layer to obtain E,,,,. Concatenating above three
kinds of features, the hierarchical sequence has contained the
large-scale information E,.,,,, the middle-scale background Ey,
and small-scale foreground E;. They will be further fed into
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the second part of our encoder: conventional Transformer en-
coder [19] to further learn the interclass interactions. In the
following Transformer encoder, the information of all scales
will be concatenated together as a visual sequence.

D. Decoder

For decoder, we apply the standard Transformer decoder [19].
Each decoder layer consists of two attention layers and one
feedforward layer. The attention layers are self-attention and
cross-attention, respectively. Self-attention operator is respon-
sible for encoding the textual information and cross-attention
reweights the internal features generated by encoder according
to the similarity between both modality. Following the standard
procedure, we employ the subsequent mask to prevent the word
from foreseeing subsequent words in ground true sentence.
Formally, given a textual input T:1 = {71 ¢571 ..t}
from the previous decoder layer and a encoder output E,,;, the
output of /th decoder layer is calculated as follows:

Dl = LN (MA#(T" ', T 1Y) + T (D
Diross =LN (MAtt(Dielﬁ E0U17 EOUl) + Déelf) . (12)

The D!; and DL, are output of self-attention layer and
cross-attention layer in the /th decoder layer. LN is the Layer-
Norm [33] and M Att is the multihead attention shown in 2. Each
attention layer is followed with the LayerNorm and residual
connection [6]. After stacking several decoder layers, the D*
(last decoder layer) will be used as the final textual features for
sentence generation.

From the view of overall framework, a raw remote image
becomes the feature map X4 € RNrxNexd with a pretrained
ResNet [6] and the segmentation map S € RN~*Nr*C with a
pretrained DeepLabv3+ [31]. NV, is the weight or height of the
feature map, C' is the number of detected instances, and d is the
model dimension. As shown in Fig. 2, with the segmentation
map S, the different foreground and background objects are split
and fed into the perception function f), to learn the intraobject
interaction with the deformable attention. The output of f;, is the
visual sequence E = [Ef, Ey, E,4,,] which contains the embed-
ding of foreground 4, background 5, and feature map 6. The E
will be further fed into the conventional self-attention to generate
the encoder output Eyy € RNt Ns+No)xd  yhere Ny and
Ny, are the number of foreground and background, respectively.
Then, E,, is passed to each decoder layer for performing
cross-attention. After stacking several decoder layers, the D’
(last decoder layer) will further feed into an F'C' following a
softmax to generate logit for each word from the vocabulary.

E. Loss Functions

The output of encoder will be fed into decoder for generating
words. Our decoder is the classic Transformer decoder [19]. It is
worth mentioning that the encoder framework we proposed can
also be easily spliced on any decoder based on the recurrent net-
work. Following the previous works, the cross-entropy loss [35]
has been used for training model and ensures fair performance
comparisons. Assuming that the generated words sequence of
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Fig. 4.  Some samples of our semantic map. The foreground (for example:
aircraft, etc.) is extracted by DeepLabV3+, while the background is mainly
enhanced by selective search.

final decoder layer is y = {y1,¥2,-..,¥n~}, the ground truth
sentence is y. The loss calculation formula is as follows:

N
Log=— Zyi * logy)'.

i=1

(13)

In order to alleviate the model overfitting problem to a certain
extent, the label smoothing [36] is employed on the ground-truth
label. For ensuring the fairness of model performance compar-
ison, we do not use reinforcement learning [37] to further train
the model as the natural image captioning task.

F. Implementation Details

1) Training Details: In the training phase, the Adam [38]
is used as the optimizer with its regularization coefficients «
and [ is set to be 0.9 and 0.98, respectively. Our framework
is designed for end-to-end training stage and the learning rate
is set to be 1 x 108, The batch size of images is set to 5 and
each image contains five samples with different ground-truth
caption. The model is trained for 100 epochs. In our feature
extractor, the ResNet-101 [6] is pretrained on the ImageNet [39]
dataset and the DeepLab v3+[31] is pretrained on the iSAID [40]
dataset. Both feature extractors are set to be untrainable. The
initialization of our model employs the xavier normalization [6].
In the testing phase, we use the beam search [4] method to
generate more stable captions. The beam size is set to 5.

2) Model Details: In our feature extraction stage, we divide
each input image into 16 subimages with the same size and in-
ference the semantic map on each subimage through a DeepLab
v3+ [31]. Finally, the submaps are spliced together to obtain the
final total semantic map. For detecting the connected domain of
each object in the semantic map, we use the seed-filling [34]
method. Fig. 4 shows some samples of our semantic map.
The encoder of our model contains three deformable attention
layers and six conventional Transformer encoder layers. On the
decoder side, our model contains six decoder layers. The drop
rate of the dropout layer in all attention layers is set to be 0.1.
In the deformable pooling layer, we use Max operator as the
pooling core. Besides, the dmogel and d sy of Transformer is set
to 512, 1024. The setting of the selective search [32] is followed
as Zhao et al. [17]
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IV. EXPERIMENTS

In this section, we introduce our experimental datasets, eval-
uation metrics, and the comparative results with other state-
of-the-art methods in detail. The ablation experiments, pa-
rameter analysis, and attention visualization are provided to
qualitatively and quantitatively verify the effectiveness of our
model.

A. Datasets

In the RSIC, there are three widely used datasets, includ-
ing Sydney-captions [9], UCM-captions [9], and RSICD [11].
Meanwhile, we note a grand new fascinating dataset pro-
posed in recent years. In order to verify the generaliza-
tion ability of our model, we also conduct experiments on
NWPU-Captions [25].

1) Sydney-Captions: The Sydney-captions dataset was pro-
posed by Qu et al. [9], which is based on the images provided in
Sydney [41]. There are a total of 613 images with seven different
scenes, including industrial, rivers, residential, meadow, runway,
airport, and ocean. All of them are collected from Google Earth
of Sydney, Australia. The resolution of each image is 0.5 m.
For each image, five reference sentences are given to abstract
its content from different observers. There are 80% images in
Sydney-captions used for training, 10% for validation, and the
rest 10% for testing.

2) UCM-Captions: The UCM-captions dataset was also pro-
posed by Qu et al. [9], which was based on the UC Merced
(UCM) land-use dataset [42]. There are a total of 2100
high-resolution remote sensing images. The UCM-captions
dataset contains 21 scene categories, including building, beach,
airplane, chaparral, forest, harbor, freeway, overpass, inter-
section, runway, river, agricultural, dense residential, ten-
nis court, sparse residential, golf course, baseball diamond,
medium residential, parking lot, mobile home park, and stor-
age tank. All the images measure 256 x 256 pixels with a
resolution of 0.3048 m. For each image, five descriptions
are also given by different observers. For training, there are
80% images. The rest is split equally for validation and
testing.

3) RSICD: The RSICD dataset was proposed by Lu et al.
[11], which contained 10 921 images measuring 224 x 224
pixels. All the images are collected from MapABC, BaiduMap,
Google Earth, and Tianditu with different resolutions. Similar
to the previous datasets, five reference sentences are provided
for each image. Its splitting ratio is the same as Sydney-captions
and UCM-captions.

4) NWPU-Captions: The NWPU-captions dataset was pro-
posed by Cheng et al. [25], which contains 31 500 images and
157500 sentences. It is constructed based on NWPU-RESISC45
[43], which contains 45 scene categories. The images are col-
lected from Google Earth and each one is annotated manually
in five different sentences. It is a balanced dataset and each
scene category contains 700 images (its size is 256 X 256).
In NWPU-captions dataset, there are 25200 images used for
training. The validation set and test set has 3150 images for each.
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B. Evaluation Metrics

In RSIC, five evaluation metrics proposed in the text field
are commonly used, including BLEU [44], METEOR [45],
ROUGE-L [46], CIDEr [47], and SPICE [48]. With higher score
of the above evaluation indicators, the generated sentence is
closer to the reference sentence. The value ranges of BLEU,
METEOR, ROUGE-L, SPICE is from O to 1. The value ranges
of CIDEr is from O to 5.

1) BLEU: BiLingual Evaluation Understudy (BLEU) is a
commonly used evaluation for sentence generation tasks. By
calculating the precision of n-gram of different lengths between
generated and reference sentences, BLEU focuses on measuring
the n-gram coincidence. In the captioning task, the value of n is
setto be 1, 2, 3, and 4 corresponding to BLEU1-4.

2) METEOR: Metric for Evaluation of Translation with
Explicit Ordering (METEOR) computes the single-precision
weighted harmonic mean and single-word recall rate when
comparing the generated and referenced sentences. It measures
the degree of the alignment between them. Comparing with the
BLEU, METEOR considers both precision and recall rate, which
can solve some of the defects inherent to the BLEU.

3) ROUGE-L: Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) is introduced from the field of text summa-
rization. Similar with BLEU, the ROUGE-L concentrates on cal-
culating the recall rate. The F-measure based on the longest com-
mon subsequence (LCS) is adopted in the ROUGE-L metric to
measure the similarity of the reference and generated sentences.

4) CIDEr: Consensus-based Image Description Evaluation
(CIDEr) is a specialized evaluation metric for image captioning,
which is one of the most important indicators for comparing
model performance. In CIDETr, each sentence is regarded as a
“document” and transformed into a term frequency inverse docu-
ment frequency (TF-TDF) vector. The cosine similarity between
the reference and generated sentences will be calculated by a spe-
cialized evaluation model. Compared with the aforementioned
evaluation metrics, the CIDEr considers the semantic correlation
between the generated sentences and reference sentences to
some extent. This makes the CIDEr evaluation indicator more
convincing.

5) SPICE: Semantic Propositional Image Caption Evalua-
tion (SPICE) is another specialized evaluation metric for image
captioning, which measures how effectively image captions
recover objects, attributes, and the relationships between them.
In SPICE, the reference and generated sentences are repre-
sented with a syntactic dependency tree through a Probabilistic
Context-Free Grammar (PCFG) dependency parser. According
to the dependency tree, the sentence will be transformed into a
scene graph and F-score will be measured between the objects,
attributes, and the relationships contained in caption.

C. Ablation Studies

The ablation studies are designed for verifying the effective-
ness of three modules: 1) hierarchical encoding strategy; 2)
deformable scaled dot-product attention; 3) deformable pooling.
The ablation studies are performed on all four datasets: 1) the
UCM-Captions dataset, 2) the Sydney-Captions dataset, 3) the
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TABLE I
COMPARISON OF MODEL PERFORMANCE UNDER DIFFERENT
BASIC FRAMEWORKS

Frameworks BLEU-4 | METEOR | ROUGE-L | CIDEr

Transformer 0.620 0.430 0.750 2.701
obj+Transformer 0.616 0.437 0.746 2.689
seg+Transformer 0.665 0.454 0.786 3.036

* obj refers to the object detector as the feature extractor, and seg
refers to the semantic segmentation model as the feature extractor.

RSICD dataset, and 4) the NWPU-Captions. For brevity, we
only report results on the Sydney-Captions, because our method
behaves similarly on all four datasets. For the simplicity of the
discussion, we only compare BLEU-4, METEOR, ROUGE-L,
and CIDEr evaluation indicators in the ablation experiments.

1) Hierarchical Encoding Strategy: We remove the hierar-
chical encoding strategy and design two experiments to demon-
strate the effectiveness of our hierarchical idea. First, the first
experiment is to directly replace the original CNN-RNN frame
with Transformer. The input is the feature map of 14 x 14, which
is flattened into a sequence of 196 and directly input into the
Transformer. This experiment shows the effect that if we do
not separate the foreground from the background, but directly
use the Transformer, so as to reflect the necessity of separating
the foreground and background. The second experiment is to
directly relocate the framework in natural image captioning
and input the object’s features extracted by a pretrained object
detector into Transformer. This experiment is to illustrate the
necessity of using image segmentation in combination with the
specificity of remote sensing images. Table I shows the improve-
ment, when we use our hierarchical strategy. In summary, the
method of directly relocating image captioning framework in
natural scenes is not ideal. The object detector: Faster RCNN
we used is pretrained on the MSCOCO dataset [49]. Before
passing through nms [18], we saved the feature of each region
proposals after Rol pooling as the object’s feature. Similar to
using the CNN pretrained on ImageNet, this method can retain
as much image information as possible. We do not recom-
mend using the result after nms, which leads to poor model
performance because most of the information is abandoned. A
single sample has an average of about 150 region proposals.
Directly transforming the object detector framework does not
bring much improvement to the model. Compared with using
Transformer directly on the feature map, the improvement is
insignificant (BLEU-4: —0.4%, METEOR: +0.7%, ROUGE-L:
—0.4%, CIDEr: —1.2%). Therefore, it is necessary to redesign
the model considering the characteristics of remote sensing
images. Our hierarchical encoding strategy performs better. The
hierarchical encoding strategy improves the accuracy with a
large margin in terms of all evaluation metrics (BLEU-4: +4.5%,
METEOR: +2.4%, ROUGE-L: +3.6%, CIDEr: +33.5%).

2) Deformable Scaled Dot-Product Attention: Deformable
attention is designed for constraining the feature interaction
among pixels within the object’s shape. For verifying the ef-
fectiveness of this operator, we design experiments to gradually
remove the limitation, allowing attention to be computed beyond
the structure of object. Specifically, our method is to use the
morphological processing to expand the accurate mask, so that
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TABLE II
COMPARISON OF MODEL PERFORMANCE UNDER THE SEMANTIC MAP WITH
DIFFERENT DIALATION TIMES

Dilation | BLEU-4 | METEOR | ROUGE-L | CIDEr
3 0.615 0.443 0.767 2.769
5 0.584 0.410 0.714 2.465
7 0.524 0.411 0.743 2.529
9 0.574 0.419 0.732 2.585
00 0.553 0.386 0.707 2.566
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Fig.5. Performance curve of the model under the semantic map with different
dialation times.

it can gradually cover the surrounding irrelevant environmental
elements. Our dilation operator is a cross-shaped structure with
the size of 3 x 3, and the original mask is expanded 3, 5,7, and 9
times to observe the impact on model performance. The extreme
case is to degenerate deformable attention into self-attention to
consider the whole picture. Table II shows the results. Fig. 5
shows the curve of the evaluation indicators as the times of
expansion increases. In summary, after the dilation operation, as
the noise continues to increase, the ability of the foreground and
background perception function to understand image gradually
deteriorates, which in turn leads to a decrease in the accuracy
of the generated sentence. When the dilation reaches a certain
level, thanks to the robustness of the dot-product attention, the
model performance gradually reaches a stable lower limit.

In summary, the purpose of deformable attention is to learn
the pixel-to-pixel interactions inside the object’s structure, while
the pixels outside the object naturally become noise. As shown in
Table II, after the segmentation mask is removed, the deformable
attention degenerates into a traditional self-attention model, and
the performance of the model drops significantly. The reason
is that after the segmentation mask disappears, the interactive
learning within the object introduces external noise.

3) Deformable Max/Average Pooling: Pooling is to aggre-
gate the features of each pixel in the object’s shape after the
deformable attention feature interaction and turn it into one
feature vector representing a foreground target. For this mod-
ule, we mainly make a comparison between max pooling and
average pooling to find which operator performs better under
our framework. Table III shows the results. In terms of results,
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TABLE III
COMPARISON OF MODEL PERFORMANCE UNDER THE SEMANTIC MAP WITH
DIFFERENT DIALATION TIMES

Methods BLEU-4 | METEOR | ROUGE-L | CIDEr
Avg pooling 0.611 0.441 0.776 2.887
Max pooling 0.665 0.454 0.786 3.036
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Fig. 6. Performance curve of the model under different number of deformable
attention layers.

the max pooling has improvement compared to average pool-
ing (BLEU-4: +5.4%, METEOR: +1.3%, ROUGE-L: +1%,
CIDEr: +14.9%). We conjecture the reason is due to the par-
ticularity of our framework, the role of deformable attention
layers is similar to the multilayer convolution in CNN, which
needs to understand the image. Compared with avg pooling, max
pooling is stronger for highlighting the difference in attribute of
one object.

D. Parameter Analysis

Both our deformable attention and the original self-attention
can be stacked with multiple times to enhance model’s learn-
ing ability. However, there is a valuable problem we want to
explore in this section: How many layers would we stacked are
appropriate to benefit model performance?

Therefore, we first fix the number of self-attention layer, and
constantly increase the number of deformable attention layer to
observe the result. Specifically, we set the number of deforma-
tion attention layers to 2, 3, 4, 5, 6 coupled with six self-attention
layers. We show the curve of the evaluation index on Fig. 6. With
the increase of deformable attention layers, the CIDEr score
first increases and achieves the highest point when we use three
layers. When the number of layers exceeds three, the model
appears overfitting problem but still has strong general ability.

After discussing the change in the number of deformable at-
tention layers, we continue to adjust the number of self-attention
layers to observe its impact. We fixed the deformable attention
layers to 3 and set the layers of self-attention to 2, 3, 4, 6, 8,
respectively. We also show the curve of the evaluation indicators
in Fig. 7. In comparison, when the self-attention layers are set
to 6, the model performance is best. There exists an interesting
case: When the number of self-attention layers is a multiple of
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Fig. 7. Performance curve of the model under different number of self-
attention layers.

3, its performance is often better than a multiple of 2. Besides,
we suppose that self-attention is more important to improve the
model ability than our deformable attention. However, it is not
true. In the case of underfitting, when we upgrade the layer
number from 2 to 3, its CIDEr improvement is only 4% points
(deformable attention increased by 23% points). In summary, we
believe that the number of self-attention layers does not have a
decisive impact on the performance of the model. Meanwhile,
in order to ensure the versatility of the model on different-scale
datasets, we finally adopt a 6-layer self-attention.

E. Comparison With Other Methods

In this section, we evaluate our method on four datasets
and compared our best model performance with a variety of
recent captioning methods. The comparison methods include the
CNN + RNN [9], [20], [50], ConvCap [51], Soft-attention [11],
Hard-attention [11], CSMLF [1], RTRMN [52], structure at-
tention [17], GVFGA+LSGA [16], SVM-D CONC [21], Word
_ sentence [23], MLCA-Net [25], RASG [15], CNN-T [54],
SCAMET [53]. Since the reinforcement learning of image
captioning in natural scenes will greatly improve the CIDEr
score (verified in natural scenes). Therefore, for the fairness
of the comparison, we only use CE loss to train our frame-
work, and do not use reinforcement learning. In this compar-
ison, we also do not compare against any method that uses
reinforcement learning.

1) CNN+RNN: CNN+RNN uses the VGG-16 [5] as the en-
coder and RNN-based model as the decoder. In this series, naive
RNN [9], LSTM [9], GRU [50], and GRU-embedword [20]
are used, respectively. We report the highest score given by
GRU-embedword for comparison.

2) ConvCap: The ConvCap [51] employs the VGG-16 as the
encoder and also equips a CNN-based decoder.

3) Soft-Attention and Hard-Attention: They use the VGG-
16 as the encoder and integrate the “soft” and “hard” attention
mechanism [11] with the LSTM [8] decoder. We choose the
“soft” attention method with better performance for reporting.
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TABLE IV
COMPARISON OF MODEL PERFORMANCE WITH OTHER STATE-OF-THE-ARTS IN SYDNEY-CAPTIONS DATASET

Methods BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr | SPICE
CNN+RNN [20] 0.6885 0.6003 0.5181 0.4429 0.3036 0.5747 1.6894 | 0.3701
ConvCap [51] 0.7472 0.6512 0.5725 0.5012 0.3476 0.6674 2.1484 | 0.3917
Soft-attention [11] 0.7322 0.6674 0.6223 0.5820 0.3942 0.7127 2.4993 -
CSMLF [1] 0.5998 0.4583 0.3869 0.3433 0.2475 0.5018 0.7555
Structure attention [17] 0.7795 0.7019 0.6392 0.5861 0.3954 0.7299 2.3791 -
Word_Sentence [23] 0.7891 0.7094 0.6317 0.5625 0.4181 0.6922 2.0411 -
SVM-D CONC [21] 0.7547 0.6711 0.5970 0.5308 0.3643 0.6746 2.2222 -
GVFGA+LSGA [16] 0.7681 0.6846 0.6145 0.5504 0.3866 0.7030 24522 | 0.4532
MLCA-Net [25] 0.8310 0.7420 0.6590 0.5800 0.3900 0.7110 2.3240 | 0.4090
RASG [15] 0.8000 0.7217 0.6531 0.5909 0.3908 0.7218 2.6311 | 0.4301
CNN-T [54] 0.8220 0.7410 0.6620 0.5940 0.3970 - 2.7050 -
SCAMET [53] 0.8072 0.7136 0.6431 0.5846 0.4614 0.7218 2.3570 -
Ours 0.8373 0.7771 0.7198 0.6659 0.4548 0.7860 3.0369 | 0.4839
TABLE V
COMPARISON OF MODEL PERFORMANCE WITH OTHER STATE-OF-THE-ARTS IN UCM-CAPTIONS DATASET
Methods BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr | SPICE
CNN+RNN [20] 0.7574 0.6983 0.6451 0.5998 0.3685 0.6674 2.7924 | 0.4147
ConvCap [51] 0.7034 0.5647 0.4624 0.3857 0.2831 0.5962 1.9015 | 0.2948
Soft-attention [11] 0.7454 0.6545 0.5855 0.5250 0.3886 0.7237 2.6124 -
CSMLF [1] 0.3671 0.1485 0.0763 0.0505 0.0944 0.2986 0.1351 -
RTRMN [52] 0.8028 0.7322 0.6821 0.6393 0.4258 0.7726 3.1270 | 0.4535
Structure attention [17] 0.8538 0.8035 0.7572 0.7149 0.4632 0.8141 3.3489 -
Word_Sentence [23] 0.7931 0.7237 0.6671 0.6202 0.4395 0.7132 2.7871 -
SVM-D CONC [21] 0.7653 0.6947 0.6417 0.5942 0.3702 0.6877 2.9228 -
GVFGA+LSGA [16] 0.8319 0.7657 0.7103 0.6596 0.4436 0.7845 3.3270 | 0.4853
MLCA-Net [25] 0.8260 0.7700 0.7170 0.6680 0.4350 0.7720 3.2400 | 0.4730
RASG [15] 0.8518 0.7925 0.7432 0.6976 0.4571 0.8072 3.3887 | 0.4891
CNN-T [54] 0.8390 0.7690 0.7150 0.6750 0.4460 - 3.2310 -
SCAMET [53] 0.8460 0.7772 0.7262 0.6812 0.5257 0.8166 3.3772 -
Ours 0.8230 0.7700 0.7228 0.6792 0.4439 0.7839 3.4629 | 0.4825

4) CSMLF: 1t is a retrieval-based method that uses seman-
tic embedding to measure the similarity between input image
representation and the candidate sentence representation.

5) RTRMN: RTRMN [52] uses ResNet-101 as the encoder
and adds topic information to guide the caption generation.

6) Structure Attention: Structure attention [17] uses the
CNN+RNN framework combined with the structure-aware
pooling to improve the attention mechanism.

7) GVFGA+LSGA: It supplies the missed global visual fea-
ture in the encoder and adds the linguistic state to guide the
attention process.

8) SVM-D CONC: It replaces the commonly used RNN de-
coder with multiple SVMs to generate sentence.

9) Word _ Sentence: It abandons the CNN-RNN framework
and employs a two-step sentence generator. Firstly, the content
in the image is changed into several independent words, and then
the words are connected into sentences.

10) MLCA-Net: Tt uses a multilevel attention module to
adaptively aggregate visual features on the encoder side. For
decoder, it introduces a contextual attention module to explore
latent context.

11) RASG: It introduces a recurrent attention mechanism to
improve the context vector and uses a semantic gate for more
precise semantic understanding.

12) CNN-T: CNN-T uses a multiscale feature extractor
based on CNN and a transformer-based decoder for generating
captionings.

13) SCAMET: SCAMET constructs a multiattention en-
coder from CNN visual features, which further proceeded to
memory-guided Transformer model.

Tables IV-VII report the accuracy of our method and the
above methods on the four different datasets. As shown in the
table, our method outperforms the abovementioned well-known
methods published in excellent journals on most remote sensing
datasets. On Sydney-captions, our method achieves state of the
art. On the UCM-captions, our model has the highest CIDEr
score compared to previous models. On the RSICD datset, our
model’s performance is higher than most of the methods but
sightly lower than RASG[15]. BLEU1-4, METEOR, ROUGE-L
of our model outperforms the GVFGA+LSGA [16] method. On
the NWPU-captions dataset, BLEU1-4 of our model is higher
than MLCA-Net [25].

F. Qualitative Analysis

1) Caption Generation Results: As shown in Fig. 8, we
extracted several caption results generated from our model in
RSICD, CNN+RNN, and basic Transformer. For comparison,
we show four caption results: 1) CNN + RNN (SA); 2) ba-
sic Transformer (Trans); 3) our model; 4) ground-truth (GT).
According to Fig. 8, compared with the previous method, the
caption generated by our method is more accurate in describing
the object and has a lower error rate. Specifically, note the
2-th image in Fig. 8, the foreground (red line) is hidden in the
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TABLE VI
COMPARISON OF MODEL PERFORMANCE WITH OTHER STATE-OF-THE-ARTS IN RSICD DATASET

Methods BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr | SPICE
CNN+RNN [20] 0.6885 0.6003 0.5181 0.4429 0.3036 0.5747 1.6894 | 0.3477
ConvCap [51] 0.6336 0.5103 0.4174 0.3452 0.3325 0.5770 1.6648 | 0.3933
Soft-attention [11] 0.6753 0.5308 0.4333 0.3617 0.3255 0.6109 1.9643 -
CSMLF [1] 0.5106 0.2911 0.1903 0.1352 0.1693 0.3789 0.3388 -
RTRMN [52] 0.6201 0.4623 0.3644 0.2971 0.2829 0.5539 1.5146 | 0.3322
Structure attention [17] 0.7016 0.5614 0.4648 0.3934 0.3291 0.5706 1.7031 -
‘Word_Sentence [23] 0.7240 0.5861 0.4933 0.4250 0.3197 0.6260 2.0629 -
SVM-D CONC [21] 0.5999 0.4347 0.3355 0.2689 0.2299 0.4557 0.6854 -
GVFGA+LSGA [16] 0.6779 0.5600 0.4781 0.4165 0.3285 0.5929 2.6012 | 0.4683
MLCA-Net [25] 0.7570 0.6340 0.5390 0.4610 0.3510 0.6460 2.3560 | 0.4440
Ours 0.7581 0.6416 0.5585 0.4923 0.3550 0.6523 2.5814 | 0.4579
RASG [15] 0.7729 0.6651 0.5782 0.5062 0.3626 0.6691 2.7549 | 0.4719
CNN-T [54] 0.7980 0.6470 0.5690 0.4890 0.2850 - 2.4040 -
SCAMET [53] 0.7681 0.6309 0.5352 0.4611 0.4572 0.6979 2.4681 -
TABLE VII
COMPARISON OF MODEL PERFORMANCE WITH OTHER STATE-OF-THE-ARTS IN NWPU-CAPTIONS DATASET
Methods BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr | SPICE
CNN+RNN [20] 0.7390 0.6170 0.5320 0.4680 0.3300 0.5930 1.2360 | 0.2760
Soft-attention [11] 0.7310 0.6090 0.5250 0.4620 0.3390 0.5990 1.1360 | 0.2850
CSMLF [1] 0.7170 0.5900 0.5040 0.4400 0.3200 0.5780 1.0650 | 0.2650
MLCA-Net [25] 0.7450 0.6240 0.5410 0.4780 0.3370 0.6010 1.2640 | 0.2850
Ours 0.7515 0.6291 0.5457 0.4828 0.3187 0.5858 1.2071 | 0.2678

background (ocean). In this case, it is very challenging and lacks
interpretability for the SA to generate sentences containing red
lines. In fact, the description generated by SA doesn’t contain
redline information. However, our model is able to effectively
extract this hidden foreground and embody it in the generated
sentences. Meanwhile, the sufficiency of the sentence also meets
the requirements. These improvements in sentences all benefit
from the fact that our deformable attention can reduce the
interference of external noise in the process of feature interactive
learning. The similar situations are present in 4-th and 5-th
sample shown in Fig. 8. Specifically, the “runway” is in the
corner of the image, which is difficult to be identified without
prior. As a result, both SA and Trans are missing this object
in the generated sentence. In the 5-th sample, the “wide river”
is missing because its a rare sample in the training set about
“residential area”. With the prior we extracted, our model has
the stronger generalization ability. The other samples presented
are also proved the superiority of our model. In the 1-th and
3-th samples, the missing “buildings” and “river” are detected
by our method. When describing the frequent appeared case like
“house” shown in 6-th sample of Fig. 8, our model also has the
satisfactory result.

2) Visualization of the Attention: Fig. 9 shows the feature
interaction learning process of a single aircraft object in the
image when the model generates the word “airplane”. The Soft
attention (SA) method is to make a global feature weighted
sum on raw feature map. Due to the shallow depth of the
attention module and the large number of regions involved in
the calculation, the actual allocation for all weights of aircraft
regions is only 46%. The remaining 54% contains a large amount
of irrelevant noise, which affects the performance to a certain
extent for shallow depth modules.

In contrast, the interactive learning of our model is more
effective and powerful. In the process of intra-class feature

interaction, the weight allocation for one single connected do-
main of “airplane” achieves 100% due to the effect of deformable
attention, which avoiding the influence of other irrelevant noise.
In the subsequent process of inter-class feature interaction, the
weight allocation of the relevant regions in the low-level layer
reaches 68%(+22%). Compared with SA, our model is more
effective on interactive learning.

The second sample shown in Fig. 9 also proves the effec-
tiveness of our hierarchical encoding strategy and Deformable
attention. The “river” in the image is an important object for
describing and also present in the ground truth. However, the
soft attention framework fails to attend river and can’t generate
the correct word (5-th sample in Fig. 8). The result is the lack of
prior information. This problem is well offset with our frame-
work by introducing the hierarchical encoding strategy with the
segmentation prior. Meanwhile, the deformable attention further
learns the interaction within the river’s structure to provide the
valid information.

V. CONCLUSION

A brand-new Deformable Transformer is proposed which is
customized for remote sensing image captioning, instead of
simply carrying the Transformer from the natural scene. Our
framework doesn’t require a very powerful pretrained feature
extractor to support extremely accurate semantic map. A widely
used semantic segmenter is satisfied to effectively drive our
model. Relying on the powerful interactive learning and noise
reduction capabilities of the deformable attention proposed in
our paper, our model achieves better caption accuracy on most
remote sensing datasets compared with previous methods. The
visualization experiments also demonstrate the effectiveness
of our framework. With the development of remote sensing
technology, image quality becomes clearer and clearer is an



DU et al.: FROM PLANE TO HIERARCHY: DEFORMABLE TRANSFORMER FOR REMOTE SENSING IMAGE CAPTIONING

Ours: Ours: This is a part of deep green sparkling sea

with a red line in the middle

An industrial area with many white buildings
and some roads go through this area

SA: Some roads on the roadside go through the SA: This is a part of deep green sparkling sea
industrial area
Trans: Some roads go through the industrial area Trans: This is a part of deep green sparkling sea

GT: Anindustrial area with some white buildings

densely arranged while some roads go through

GT: This is a part of ocean with deep green water
with a red line in the middle

Ours: A wide
through a residential area

Ours: Two white airplanes parked on the airport

with a runway beside

SA: There are many white airplanes parked on SA: A residential area with houses arranged
the airport neatly while many plants on the roadside
Trans: Two white airplanes parked on the airport Trans: A residential area with houses arranged

with some airport neatly and some roads go through this area

GT: GT: A wide river with deep green waters and

some boats on it

A white airplane parked on the airport with
some white buildings beside

Fig. 8.
the baseline models ignore but our model pays attention to. GT is ground truth.

Trans:
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Ours: A straight runway with white mark lines on
while a river beside

SA: There is a straight runway with many mark lines

on it while some lawns beside

This is a part of deep green sparkling sea

GT: There is a wide runway with white mark lines

on while a river beside

Ours: Aresidential area with houses arranged
neatly and some roads go through this area
SA: A residential area with houses arranged neatly
and divided into rectangles by some roads

Trans: A residential area with houses arranged neatly
and some roads go through this area

GT: This is a residential area with many houses
arranged in lines and some roads go across this

area

Comparison of generated sentences among soft-attention (SA), Transformer (Trans), and our framework. Red words indicate the object that the rest of

Encoder layer 3 Encoder layer 4 Encoder layer 5

Inter-category learning

Soft attention framework

There are some white
airplanes parked on the
airport

A wide river with deep
green waters and some
boats on it

Fig. 9. Learning process of the specific object (airplane) by the attention mechanism of different models. The basic soft-attention only fuses several regions, and
our framework can start from intraclass and interclass interactive learning to optimize the target features layer by layer.
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inevitable trend. It is worth noting that higher quality images can
further improve the performance of our model while bringing
more accurate semantic maps.

The limitation of our model is mainly from the inaccuracy
segmentation result and the limited representative ability of
the image encoder. As a result, our future work is to combine
our model with the full-transformer architecture. On the other
hand, the fine-tuned segmentation model is also sufficient for
improving current performance.
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