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ABSTRACT State estimation in cyber-physical systems is a challenging task involving integrating physical
models and measurements to estimate dynamic states accurately in practical machine-to-machine and IoT
deployments. However, integrating advanced wireless communication and intelligent measurements has
increased vulnerability of external intrusion through a centralized server. This study addresses the challenge
of Gaussian filtering for a specific type of stochastic nonlinear system vulnerable to cyber attacks and delayed
measurements. These attacks occur randomly when data is transmitted from sensor nodes to remote filter
nodes. To address this issue, a new cyber attack model is proposed that combines false data injection attacks
and delayed measurement into a unified framework. The study also analyzes the stochastic stability of the
proposed filter and establishes sufficient conditions to ensure that the filtering error remains bounded even
in the presence of randomly occurring cyber attacks and delayed measurements. The proposed methodology
is demonstrated and compared with other widely used approaches using simulated data to highlight its
effectiveness and usefulness.

INDEX TERMS Delay measurement, FDI, Gaussian filtering, nonlinear Bayesian filtering.

I. INTRODUCTION
Filtering is a recursive process for state estimation of dynam-
ical systems from noisy measurements [1]. A popular non-
linear filtering method [2], Gaussian filter comprises of
prediction and update steps, and is based on Bayesian approx-
imation method. It approximates the unknown prior and
posterior probability density functions (PDFs) as Gaussian,
and characterizes them with mean and covariance [3]. The
computation of mean and covariance involves intractable
integrals, which are numerically approximated during the
filtering process. Some popular Gaussian filters are extended
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Kalman filter (EKF) [4], unscented Kalman filter (UKF) [5],
Cubature Kalman filter (CKF) [6], Gauss-Hermite filter
(GHF) [7], and others. An alternate choice of Gaussian fil-
tering is particle filtering, which is beyond the scope of this
paper due to its huge computational complexity [8].

In this context, Gaussian filtering, a commonly used state
estimation technique, often underperforms or fails to pro-
duce accurate results in the presence of irregularities [9].
In this paper, we consider two complex irregularities namely
unknown delay which is caused by data propagation time, and
‘‘cyber attacks’’, in which intruders inject false data into the
true measurement data.

The cyber attacks occur in cyber-physical systems (CPS)
[10]. To connect geographically dispersed sensors, the CPS
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utilizes wireless communication networks. The extensive
controller components and complex CPS networks makes
them susceptible to security threats in both physical and
cyber domains through cyber attacks [11], [13], [14], [15].
In a related study, [12] and [13] presented improved
Lyapunov-Krasovskii functions (LKFs) with fuzzy mem-
bership functions to estimate the performance degradation
caused by denial-of-service (DoS) attacks in T-S fuzzy net-
worked control systems, whereas [14] and [15] proposed
robust estimators to estimate the states accurately in presence
of false data injection (FDI) attacks.

The term ‘‘FDI attack’’ is used in this paper to refer
to cyber attacks. The FDI attacks can occur due to vari-
ous reasons [16], including: i) exploitation of vulnerabilities
in the communication protocols or software components
that can allow unauthorized access, ii) sensor-level attacks,
iii) altering data packets by tampering with the communica-
tion channels, and iv) manipulating the control algorithms.
As an example scenario, let us consider a sensor-level attacks,
where the attack is to mislead and deceive the target sys-
tem via secretly compromising measurements (generally,
by a small margin). Such manipulation of measurement data
adversely harms the performance of the proposed filtering
algorithms [17].
In the literature, there are some contributions which inde-

pendently handle both the irregularities: delay and FDI attack.
For example, [18], [19], and [20] address the delays to dif-
ferent extents. They reformulate the measurement model to
incorporate the delay possibilities and re-derive the tradi-
tional Gaussian filtering method for the reformulated mea-
surement models. While [18] and [19] handle only small
delays (up to two sampling intervals), [20] addresses larger
delays. As compared to these methods, a different approach
is adopted in [21] and [22], where the delay (or delay prob-
ability) is identified using likelihood, and the traditional
Gaussian filtering method is readjusted (in time) accordingly.
Furthermore, for handling the FDI attacks, [23] extends the
traditional EKF to address this problem. However, it does not
apply to other Gaussian filters, such as UKF, CKF, and GHF,
which provide higher accuracy. In later developments, [14]
and [15] introduced a generalized Gaussian filtering method
for handling the FDI attacks. They reformulate the measure-
ment model stochastically to incorporate the possibility of
FDI attacks and re-derive the traditional Gaussian filtering
accordingly. As [14] and [15] are generalized extensions of
Gaussian filtering, it applies to any existing Gaussian filters,
such as the EKF, CKF, and GHF.

Although [14], [15], [16], [18], [19], [20], [21], [22], [23],
and [24] address the delay and cyber-attacks indepen-
dently, they fail to handle their simultaneous occurrences
while the simultaneous occurrences cannot be ignored
in practice. In addition to the above literature, recent
studies in [25], [26], [27], and [28] handle both delay
and cyber-attack simultaneously. Reference [25] presented
security-oriented filtering that considers two types of

disturbances: randomly occurring sensor saturations and FDI
attacks. The occurrence of an FDI attack is modeled using
the Bernoulli process, which accurately captures the charac-
teristics of their presence. Another recent contribution [26]
addresses the secure particle filtering problem for a spe-
cific category of discrete-time nonlinear CPSs. The adver-
saries launch a variety of attacks, including DoS attacks,
FDI attacks, and flipping attacks, which manifest randomly.
Furthermore, [27] investigates the feasibility of a coordi-
nated attack known as a time-delay and FDI attack on CPS.
This coordinated attack combines the detrimental effects of
time-delay attacks and FDI attacks in a synchronized manner,
resulting in increased potency compared to each individual
attack alone. However, assessing the stealthiness and effec-
tiveness of such a coordinated attack presents significant
challenges, and the current formulation is restricted to lin-
ear systems, requiring further advancements for nonlinear
dynamical systems. Additionally, [28] faces difficulty in set-
ting an upperbound of the delay whichmay affect the filtering
performance.

In this paper, for the first time, we redesign the tradi-
tional Gaussian filtering method to simultaneously handle
delay and FDI attacks in a nonlinear dynamical system.
We named the proposed method Gaussian filtering with
delay and FDI attack (GFDF). The proposed GFDF refor-
mulates the traditional measurement model using Bernoulli,
Geometric, and Gaussian random variables to incorpo-
rate the possibility of delay and FDI attack. The pro-
posed GFDF subsequently re-derives the traditional Gaus-
sian filtering method for the reformulated measurement
model. The re-derivation of the traditional Gaussian fil-
tering method (for the modified measurement model)
mainly requires re-deriving the expressions of measurement
estimate, measurement covariance, and state-measurement
cross-covariance. Interestingly, the proposed GFDF is a
general extension of Gaussian filtering, which applies to
any existing Gaussian filters, such as the EKF, CKF,
and GHF. We study the stability of the proposed GFDF
for its EKF-based formulation. Moreover, we validate the
improved accuracy of the proposed GFDF for its CKF-based
formulation.

This article presents several noteworthy contributions and
innovations outlined as follows:

• A stochastic model is developed to capture the simulta-
neous occurrences of FDI attacks and delayed measure-
ments.

• An advanced filtering approach is proposed to improve
estimation accuracy where FDI attacks and measure-
ment delays simultaneously occur.

• The need for ambiguous selection of an upper bound
of delay could be avoided [28], further contributing to
improved accuracy.

• A stochastic stability analysis is derived for the
EKF-based formulation of the proposed filtering
method.
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II. PROBLEM DESCRIPTION
At first, let us consider process and measurement models,
expressed as

xk = 8k−1(xk−1) + ωk−1, (1)

zk = 9k (xk ) + ζ k , (2)

where xk ∈ Rn is state variable, ωk ∈ Rn is process error, and
8k : xk−1 → xk is general propagation function representing
the state dynamics at the k th instant. While zk ∈ Rr is
measurement equation, ζ k ∈ Rr is measurement error, and
9k : xk → zk is general measurement propagation function
at the k th instant with k ∈ {1, 2, . . . .}. Moreover, without loss
of generality, the errors ωk and ζ k are assumed independent
and uncorrelated with approximation zero mean Gaussian
with covariances Qk and Rk , respectively. Please note that
the scope of this article is limited to Gaussian approximated
distribution.

As mentioned earlier, the true measurement zk may be
subject to various irregularities, such as delayedmeasurement
or FDI attacks. These irregularities can result in the observed
measurement yk . Consequently, the fundamental aim of fil-
tering is to deduce the current state xk based on the received
measurement data yk .
Attackers frequently make intermittent changes to mea-

surement data to conceal their intrusion. We hypothesize
that data is manipulated by FDI and delayed measurement
at a particular time instant. To accommodate these factors,
we modify the measurement model equation (2) for yk by
utilizing the following modeling techniques:

• To capture the occurrence of data alterations, we intro-
duce two Bernoulli random variables, βk and αk . Our
approach comprises of the following steps: i) employ-
ing a likelihood test to identify instances with no data
alteration and to estimate the value of βk . ii) performing
a correlation analysis to detect delayed measurements
and estimate the value of αk . iii) infer the presence of
FDI attacks and estimate the true dynamical states.

• After detecting an FDI attack, it is possible to model
the uncertain false data using a Gaussian distribution.
The true measurement is randomly altered through an
amplification/attenuation multiplicative process. To do
this, appropriate Gaussian distribution is identified using
data preprocessing techniques, as outlined in [14].

• Incorporating the Geometric distribution is an effec-
tive method for accounting for uncertain measurement
delays caused by limited resources. This approach
enables delayed measurements to be incorporated into
the analysis without requiring prior knowledge of the
maximum delay. Moreover, using the Geometric distri-
bution to model instantaneous delays is an effective way
to handle larger delays.

It is worth noting that the data pre-analysis and preprocessing
are performed separately and not included in the proposed
methodology.

Throughout rest of this manuscript, we will use the nota-
tions 2′ and p′ to denote (1−2) and (1−p), respectively, for
any random variable 2 and any probability p. This notation
applies to all random variables and probabilities.

The Bernoulli random variables βk and αk are subject to
the following notation{

P (βk = 1) = E [βk ] = E
[
(βk )m

]
= pa

P (αk = 1) = E [αk ] = E
[
(αk )m

]
= pd

(3)

where E[·] denotes the statistical expectation operator and
m ∈ R is a constant. Moreover, pa and pd denote the proba-
bilities of no-attack and FDI attack, respectively. Similar to
equation (3), corresponding to P(βk = 0) = p′

a, we get
E
[
β ′
k

]
= E

[
(β ′
k )
m
]

= p′
a and E

[
(βk − pa)2

]
= E

[
(βk )2

]
−

E [βk ]2 = pap′
a. Similar conclusions for αk , corresponding

to P(αk = 0) = p′
d , we get E

[
α′
k

]
= E

[
(α′
k )
m
]

= p′
d and

E
[
(αk − pd )2

]
= E

[
(αk )2

]
− E [αk ]2 = pdp′

d . In addition,
we can represent d-delay at time tk using a Geometric random
variable denoted by Gd,k . This random variable accounts
for delays of up to d sampling intervals. The probability of
obtaining a value of one for each entry ofGd,k can be denoted
by pg. This random variable follows:

P
(
Gd,k (i) = 1

)
= E

[
(Gd,k (i))m

]
= 0i

P
(
Gd,k (i) = 0

)
= E

[
(Gd,k (i)′)m

]
= 0′

i

E
[ (
Gd,k (i) − 0i

)2 ]
= 0i0

′
i,

(4)

where 0i = (p′
g)
i−1pg is the probability of i-delay ∀i ∈

{1, 2, · · · , d} at tk .
Identifying and countering false data is crucial to avoid its

effects on filtering. Various techniques can be employed to
achieve this. Stochastic quantitative methods are instrumental
in mitigating the impact of false data, as stochastic rules can
be more effective in the presence of unknown intruders and
arbitrary data injection. Pre-analysis rules, such as heuristic
rules and normalization methods, can also aid in identifying
and normalizing false data. In addition, stochastic heuristics
can determine the probability of receiving a measurement
and adjust amplification, and attenuation factors accordingly.
Using appropriate heuristic rules and normalization methods,
false data can be closely approximated as Gaussian data.
Specifically, if false data is injected at time tk , it can be
represented as 1k , which can be approximated as N(δ̂, 6δ)
in the event of an FDI attack at tk . It is important to note that
E[12

k ] = 6δ + δ̂2 is used in the next section of the discussion.
As discussed in [14], δ̂ and 6δ is computed using predefined
heuristic rules and normalization methods.

To model the received measurement yk and address the
issue at hand, we adopt the modeling strategy depicted in
equation (5). Additionally, the random variables are assumed
to be independent and uncorrelated. Specifically, we express
yk as yk = βkzk + β ′

k [αk1kzk + α′
k
∑d

i=1Gd,k (i)zk−i]. This
equation can be further simplified to yield

yk = (βk + β ′
kαk1k )zk + β ′

kα
′
k

d∑
i=1

Gd,k (i)zk−i. (5)
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TABLE 1. αk and βk values for different attacks.

In Table 1, we present the values of αk and βk corresponding
to different types of attacks. This study aims to re-derive
the traditional Gaussian filtering method from a modified
measurement model.
Remark 1: In cyber-attacks, this modified measurement

model is useful to counter both data replay attacks and FDI
attacks jointly. Moreover, this approach ensures data security
and integrity in various contexts and comprehensively con-
trols cyber-attacks.

III. DESIGN METHODOLOGY OF GFDF
In this section, a proposed Gaussian filtering strategy is intro-
duced to handle FDI and delayed measurements that occur
concurrently. Prior research has shown that irregular mea-
surements can affect the filtering accuracy in a way unrelated
to the system’s state dynamics. Therefore, the proposed filter-
ing strategy only requires the re-derivation of measurement-
related parameters because the traditional Gaussian filters
prediction is independent of measurement, and only the
update step is influenced by measurement. Specifically, the
measurement estimate, covariance, and cross-covariance for
a true measurement are denoted as ẑk|k−1, Pzz

k|k−1, and
Pxz
k|k−1, respectively. Similarly, the corresponding parameters

for an actually received measurement are denoted as ŷk|k−1,
Pyy
k|k−1, and Pxy

k|k−1, respectively. The proposed Gaussian
filter replaces the parameters for a true measurement with
those for an actually receivedmeasurement. In the subsequent
discussion, the authors derive the parameters for the modified
measurement model that accounts for FDI and delayed mea-
surements that occur concurrently.

We derive ŷk|k−1, P
yy
k|k−1, and Pxy

k|k−1 with respect to yk
(modeled in equation (5)) through three subsequent lemmas.
Lemma 1: The estimation of the measurement yk in the

presence of both delays and cyber-attacks can be described
as follows:

ŷk|k−1 = (pa + p′
apd δ̂)ẑk|k−1 + p′

ap
′
d

d∑
i=1

0iẑk−i|k−1. (6)

Proof: Let us denote ŷk|k−1 = E
[
yk
]
, for yk given in equation

(5), computed as

ŷk|k−1 = E
[
(βk + β ′

kαk1k )zk + β ′
kα

′
k

d∑
i=1

Gd,k (i)zk−i

]
.

Please note that βk , αk , 1k , and Gd,k (i) characterize mea-
surement irregularities and they are independent of zk , which
defines measurement values at the current instant. Since,
E
[
zk
]

= ẑk|k−1, after simplification of βk , αk and Gd,k ,
we get

ŷk|k−1 = E
[
βk + β ′

kαk1k
]
ẑk|k−1

+ E
[
α′
kβ

′
k
] d∑
i=1

E
[
Gd,k (i)

]
ẑk−i|k−1.

Substituting E [αk ], E [βk ], and E
[
Gd,k (i)

]
from equations

(3) and (4), and their subsequent discussions, the above
equation reduces to equation (6). □
Lemma 2: The covariance matrix Pyy

k|k−1 for yk can be
given in the form of equation (7), as shown at the bottom of
the page.
Proof: The covariance matrix Pyy

k|k−1 is given as

Pyy
k|k−1 =E

[
(yk − ŷk|k−1)(yk − ŷk|k−1)T

]
. (8)

We can express the difference between yk and ŷk|k−1, as given
in equations (5) and (6), respectively, using the equation (9),
as shown at the bottom of the next page. By substituting
yk − ŷk|k−1 from equation (9) into equation (8), we obtain
Pyy
k|k−1 =

∑4
i=1

∑4
j=1 E

[
JiJTj

]
. In stochastic filtering the-

ory, it is common to simplify calculations by assuming
stochastic independence properties for independent random
variables. Applying this assumption, we can easily conclude
that E[JiJTj ] = 0 ∀i ̸= j. As an example, we can write
E[J1JT2 ] = E[(βk + β ′

kαk1k )(zk − ẑk|k−1)(βk + β ′
kαk1k −

(pa + p′
apd δ̂)]ẑ

T
k , which can be rewritten as E[J1JT2 ] =

E[(βk + β ′
kαk1k )]E[(zk − ẑk|k−1)]E[(βk + β ′

kαk1k − (pa +

p′
apd δ̂)]E[ẑTk ]. After further simplification and substituting
the values from equation (3), we get E[J1JT2 ] = 0. Similarly,
we can trivially conclude for other expressions E[JiJTj ] ∀

i ̸= j. Thus,

Pyy
k|k−1 =

4∑
i=1

E
[
JiJTi

]
. (10)

Pyy
k|k−1 = (pa + p′

apd (6δ + δ̂2) + 2pap′
d δ̂)P

zz
k|k−1 + (pap′

a + p′
apd δ̂

2(1 − p′
apd ) + p′

apd6δ)ẑk|k−1ẑTk|k−1 + p′
ap

′
d

d∑
i=1

0iPzz
k−i|k−1

+

d∑
i=1

(
p′
ap

′
d0i(1 − p′

ap
′
d0i)

)
ẑk−i|k−1ẑTk−i|k−1 +

d∑
i̸=j=1

(
p′
ap

′
d (p

′
g)
i+j−2p2g(1 − p′

ap
′
d (p

′
g)
i+j−2p2g)

)
ẑk−i|k−1ẑTk−j|k−1.

(7)
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We now derive E[JiJTi ] ∀i ∈ {1, 2, · · · , 4}, which we add
later to obtain Pyy

k|k−1.
For J1 given in equation (9), we can write

E
[
J1JT1

]
= E

[
(βk+β ′

kαk1k )2(zk−ẑk|k−1)(zk−ẑk|k−1)T
]
.

Please note that αk and βk are independent of zk and
ẑk|k−1. Moreover, as αk and βk are independent Bernoulli
random variables, we obtain E

[
(βk + β ′

kαk1k )2
]

=

E
[
(β2
k + β ′2

k α2
k1

2
k + 2βkβ ′

kαk1k )
]
. Substituting the val-

ues from equation (3) and 12
k = 6δ + δ̂, we get

E
[
(βk + β ′

kαk1k )2
]

= pa + p′
apd (6δ + δ̂2) + 2pap′

d δ̂.
Subsequently, the above equation is simplified as

E
[
J1JT1

]
= (pa + p′

apd (6δ + δ̂2) + 2pap′
d δ̂)P

zz
k|k−1. (11)

Similarly, for J2 given in equation (9), we obtain

E
[
J2JT2

]
= E

[
(βk+β ′

kαk1k−(pa + p′
apd δ̂))

2ẑk|k−1ẑTk|k−1

]
,

which is further simplified as

E
[
J2JT2

]
=

(
pap′

a + p′
apd δ̂

2(1 − p′
apd ) + p′

apd6δ

)
ẑk|k−1

× ẑTk|k−1. (12)

Now substituting J3 from equation (9) intoE
[
J3JT3

]
to obtain

E
[
J3JT3

]
=E

[ d∑
i=1

β ′
kα

′
kGd,k (i)(zk−i − ẑk−i|k−1)

×

d∑
j=1

β ′
kα

′
kGd,k (j)(zk−j − ẑk−j|k−1)T

]
.

Here are some notes we ought to consider: 1) zk−i and zk−j are
independent of ∀i ̸= j, 2) Gd,k (i) and Gd,k (j) are independent
of ∀i ̸= j, and 3) αk and βk are independent of each other,
and also independent of zk−i and Gd,k (i) ∀i ∈ {1, 2, · · · , d}.
Based on their independently derived properties, we can sim-
plify the above equation further as

E
[
J3JT3

]
= p′

ap
′
d

d∑
i=1

0iPzz
k−i|k−1. (13)

To this end, for J4 given in equation (9), we get

E
[
J4JT4

]
= E

[
d∑
i=1

(
β ′
kα

′
kGd,k (i) − p′

ap
′
d0i

)2 ẑk−i|k−1ẑTk−i|k−1

]
.

(14)

According to various independence properties for indepen-
dent random variables, the above equation can be written as
follows:

E
[
J4JT4

]
=

d∑
i=j=1

p′
ap

′
d0i(1 − pap′

d0i)ẑk−i|k−1ẑTk−i|k−1

+

d∑
i̸=j=1

(
p′
ap

′
d (p

′
g)
i+j−2p2g

)(
1 −

(
p′
ap

′
d (p

′
g)
i+j−2p2g

))
× ẑk−i|k−1ẑTk−j|k−1. (15)

Substituting E[J1JT1 ], E[J2JT2 ], E[J3JT3 ], and E[J4JT4 ],
from equations (11), (12), (13), and (15), respectively, into
equation (10), Pyy

k|k−1 can be expressed in the form of
equation (7). □
Lemma 3: The cross-covariance matrix between xk and yk

can be obtained as

Pxy
k|k−1 = (pa + p′

apd δ̂)P
xz
k|k−1 +

d∑
i=1

p′
ap

′
d0iP

xz
k−i|k−1.

(16)

Proof: For yk − ŷk|k−1 given in equation (9), we get
Pxy
k|k−1 =

∑4
i=1 E

[
(xk − x̂k|k−1)JTi

]
. As ẑk|k−1, ẑk−i|k−1,

and δ̂ are constants and xk is independent of 1k , we can
conclude that

∑
i E
[
(xk − x̂k|k−1)JTi

]
= 0, ∀i ∈ {2, 4},

giving

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)JT1

]
+ E

[
(xk − x̂k|k−1)JT3

]
.

(17)

To this end, for J1 given in equation (9), we obtain

E
[
(xk − x̂k|k−1)JT1

]
= E

[
(xk − x̂k|k−1)(βk + β ′

kαk1k )

× (zk − ẑk|k−1)T
]
.

yk − ŷk|k−1 = (βk + β ′
kαk1k )(zk − ẑk|k−1)︸ ︷︷ ︸

J1

+ (βk + β ′
kαk1k − pa − p′

apd δ̂)ẑk|k−1︸ ︷︷ ︸
J2

+

d∑
i=1

β ′
kα

′
kGd,k (i)(zk−i − ẑk−i|k−1)︸ ︷︷ ︸

J3

+

d∑
i=1

(
β ′
kα

′
kGd,k (i) − p′

ap
′
d0i

)
ẑk−i|k−1︸ ︷︷ ︸

J4

. (9)
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which is simplified as

E
[
(xk − x̂k|k−1)JT1

]
= (pa + p′

apd δ̂)P
xz
k|k−1. (18)

Moreover, for J3 given in equation (9), we get

E
[(
xk − x̂k|k−1

)
JT3
]

= E
[(
xk − x̂k|k−1

)
×
( d∑
i=1

β ′
kα

′
kGd,k (i)(zk−i − ẑk−i|k−1)T

)]
.

Applying the independent property, we get the following after
a few simplifications and rearrangements.

E
[
(xk − x̂k|k−1)JT3

]
= E

[
β ′
kα

′
k
] d∑
i=1

(
E
[
Gd,k (i)

]
× E

[
(xk − x̂k|k−1)(zk−i − ẑk−i|k−1)T

] )
.

As E
[
β ′
kα

′
k

]
= p′

ap
′
d and E

[
Gd,k (i)

]
= 0i, we obtain

E
[
(xk − x̂k|k−1)JT3

]
=

d∑
i=1

p′
ap

′
d0iP

xz
k−i|k−1. (19)

Substituting equations (18) and (19) into equation (17),
we get Pxy

k|k−1 in the form of equation (16). □
In light of the above discussion, we have derived a new

method known asGFDF to counter cyber-attacks onmeasure-
ments and delay measurements concurrently. This method
replaces the traditional Gaussian filters estimated measure-
ment vector ẑk|k−1, the covariance matrix of the measurement
error Pzz

k|k−1, and the cross-covariance matrix between the
state and measurement Pxz

k|k−1 with their counterparts for the
altered measurements, namely the estimated measurement
vector ŷk|k−1, the covariance matrix of the measurement error
Pyy
k|k−1, and the cross-covariance matrix between the state and

measurement Pxy
k|k−1. These values are computed by utilizing

the three lemmas. Incorporating measurement irregularities
into GFDF allows more precise estimation of the system
state even under attack and delayed measurement. The esti-
mated measurement vector ŷk|k−1 considers the impact of
the attack on the measurement as well as delayed measure-
ment, while the covariance matrix of the measurement error
Pyy
k|k−1 captures the measurement uncertainty caused by these

irregularities. The cross-covariance matrix between the state
and measurement Pxy

k|k−1 reflects the relationship between
the system state and the altered measurement. For estimating
the status of systems affected by cyber-attacks, GFDF is
more resilient and accurate. Through the inclusion of the
effects of these irregularities in the estimation process, the
system becomes more resilient and remains uninterrupted in
the scenario of malicious attacks.
Remark 2: The proposed GFDF utilizes some estimate

and covariance expressions from past instants, which
increases its storage requirement.

IV. STABILITY OF THE GFDF
This section undertakes a stochastic stability analysis of the
proposed filter, utilizing the concept of ‘‘exponential bound-
edness in mean square.’’ To accomplish this, we opt for the
EKF-based formulation of the proposed filtering algorithm,
abbreviated as EKFDF. To begin, we construct a dynamic
model for the estimation error of the EKFDF. Subsequently,
we demonstrate that the estimation error of the EKFDF
remains exponentially bounded in the mean square. To ensure
stability, the associated parameters must be bounded, for
which a detailed explanation is given in the later part of
the manuscript. Prior to continuing, we review the conven-
tional notion used to evaluate the aforementioned stability
concept [29].
Statement 1: A stochastic process is said to be exponential

bounded in mean square sense if there are real numbers θ1 >

0, θ2 > 0, φ′ > 0, and 0 < κ ≤ 1, and there exists a positive
definite function V(ξ k ) for a stochastic process ξ k , satisfying
the following conditions θ1

∥∥ζ k∥∥2 ≤ V(ζ k ) ≤ θ2
∥∥ζ k∥∥2

E
[
V(ζ k )|ζ k−1

]
− V(ζ k−1) ≤ φ′

− κV(ζ k−1) ≤ 0

(20)

that jointly conclude

E
[∥∥ζ k∥∥2] ≤

θ2

θ1
E
[∥∥ζ 0

∥∥2] (1 − κ)k +
φ′

θ1

k−1∑
i=0

(1 − κ)i,

(21)

where ∥·∥ denotes the L2-norm. For further elaboration,
please refer to [29].
Remark 3: equation (21) is the mathematical definition of

‘‘exponential boundedness in a mean square’’ [29]. There-
fore, if the stochastic process ζ k satisfies this equation, it is
stable in the sense of exponential boundedness. Moreover,
equation (21) is inferred from equation (20); thus, ζ k must
satisfy the conditions in equation (20) to be exponentially
stable in mean square.

To proceed with the dynamic model for the estimation
error of the proposed filter, we recall the traditional EKF
parameters [4].{

x̂k|k−1 = 8(x̂k−1|k−1)
Pk|k−1 = Fk−1Pk−1|k−1FTk−1 + Qk−1,

(22)

where x̂k|k−1 and Pk|k−1 represent the predicted state and
its error covariance, respectively at tk ; Fk−1 represents the
Jacobian matrix of 8(xk−1). Now consider the measurement
update parameters [4]

ẑk|k−1 = 9(x̂k|k−1)
Pzz
k|k−1 = HkPk|k−1HT

k + Rk

Pxz
k|k−1 = Pk|k−1HT

k

x̂k|k = x̂k|k−1 + K
(
zk − ẑk|k−1

)
,

(23)

with Hk denoting the Jacobian of 9(xk ).
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Moreover, the Taylor series approximations for 8(xk ) and
9(xk ) can be given as{

8(xk ) = 8(x̂k|k ) + Fkek|k + Ft (xk , x̂k|k )
9(xk ) = 9(x̂k|k−1) + Hkek|k−1 + Ht (xk , x̂k|k−1),

(24)

where ek|k = xk − x̂k|k and ek|k−1 = xk − x̂k|k−1 are the
estimation and prediction errors, respectively; Ft (xk , x̂k|k )
and Ht (xk , x̂k|k−1) denote the respective remainder terms.
The posterior estimate for yk is x̂k|k = x̂k|k−1 +

K
(
yk − ŷk|k−1

)
, giving ek|k= ek|k−1 −K(yk − ŷk|k−1). Sub-

sequently, from equations (1), (5), (6), (23), and (24), the
dynamical model of ek|k can be obtained as

ek|k = ¯Akek−1|k−1 + B̄k + C̄k + D̄k , (25)

where ¯Ak , B̄k , C̄k , and D̄k , are given by equation (26), as
shown at the bottom of the page.

Following Remark 3, the error (25) should satisfy equation
(20) for the EKFDF to be exponentially bounded in the mean
square. Let us first introduce the following bounds and condi-
tions required to prove the stochastic stability of EKFDF [29].

• Fk is non-singular ∀k .
• Matrices and vectors are bounded via equation (27), as
shown at the bottom of the page, where η1, η2, τ1, τ2,
χ1, χ2, ξ , H , P1, P2, Q1, Q2, R1, and R2 are real
numbers.

Theorem 1: For the bounds presented in equation (27), the
stochastic dynamic model ek|k (equation (25)) remains expo-
nentially bounded in mean square. Alternatively, it satisfies

E
[∥∥ek|k∥∥2] ≤

θ2

θ1
E
[∥∥e0|0∥∥2] (1 − κ)k +

φ′

θ1

k−1∑
i=0

(1 − κ)i,

(28)

Proof: We now consider the positive definite function
as V(ek|k ) = eTk|kPk|kek|k , and substitute ek|k from equation
(25). Thus, we can express V(ek|k ) as given in equation (29),
as shown at the bottom of the next page. We now adopt the
following steps for proving that V(ek|k ) satisfies the condi-
tions given in equation (20).

• Similar to [30], we obtain ¯A T
k P−1

k|k
¯Ak ≤ (1 −

κ)P−1
k−1|k−1, which further gives eTk−1|k−1

¯A T
k P−1

k|k
¯Ak

ek−1|k−1 ≤ (1 − κ)V(ek−1|k−1).
• Note that V(ek|k ) is scalar. Thus, following [30],
we calculate: i) C̄ T

k P−1
k|k (2 ¯Akek−1|k−1 + C̄k ) ≤ λ1ξ

2,
ii) B̄T

k P
−1
k|kB̄k ≤ λ2, iii) 2D̄T

k P
−1
k|k ( ¯Akek−1|k−1 + C̄k ) ≤

λ3ξ
3
+ λ4ξ

2
+ λ5ξ + λ6, and iv) D̄T

k P
−1
k|kD̄k ≤ λ7ξ

2
+

λ8ξ +λ9, with λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, and λ9 being
expressions in terms of η1, η2, τ1, τ2, χ1, χ2, ξ , H , P1,
P2, Q1, Q2, R1, and R2. For more details, please refer
to [30].

• The expectation operator afterward gives E[2B̄T
k

P−1
k|k ( ¯Akek−1|k−1 + C̄k + D̄k )] = 0, as B̄k comprises

the noises ωk−1 and ζ k .

Following the discussion, we obtain (30), as shown at the
bottom of the next page.
Let us now define φ′

= λ3ξ
3
+ (λ1 + λ4 + λ7)ξ2 + (λ5 +

λ8)ξ+λ2+λ6+λ9. Subsequently, the above equation satisfies
the second condition of equation (20).
Let us now apply the inverse operator and multiply eTk|k and

ek|k to the inequality of Pk|k given in equation (27). Thus,
we get

1
P2

∥ek|k∥2 ≤ V(ek|k ) ≤
1

P1
∥ek|k∥2. (31)

Substituting θ1 = 1/Pu and θ2 = 1/PL , the above inequal-
ity satisfies the first condition of equation (20).



¯Ak = (I − (pa + p′
apd δ̂)KHk )Fk−1

B̄k = ωk−1 − K

(
(βk + β ′

kαk1k )ζ k + β ′
kα

′
k

d∑
i=1

Gd,k (i)ζ k−i

)

C̄k = Ft (xk , x̂k|k ) − K

(
(βk + β ′

kαk1k )Ht (xk , x̂k|k−1) + β ′
kα

′
k

d∑
i=1

Gd,k (i)Ht (xk−i, x̂k−i|k−1)

)

D̄k = −K
[
(βk + β ′

kαk1k )Hkek|k−1 + β ′
kα

′
k

d∑
i=1

Gd,k (i)Hk−iek−i|k−1 + ((βk + β ′
kαk1k ) − (pa + p′

apd δ̂))

×9(x̂k|k−1) +

d∑
i=1

(β ′
kα

′
kGd,k (i) − p′

ap
′
d0i)9(x̂k−i|k−1) + (pa + p′

apd δ̂)HkFk−1ek|k−1

]
.

(26)


∥ωk∥ ≤ η1, ∥ζ k∥ ≤ η2, ∥Ft (xk−1, x̂k−1|k−1)∥ ≤ τ1∥xk−1 − x̂k−1|k−1∥

2, ∥Ht (xk , x̂k|k−1)∥ ≤ τ2∥xk − x̂k|k−1∥
2

∥Fk∥ ≤ χ1, ∥Hk∥ ≤ χ2,
∥∥xk−1 − x̂k−1|k−1

∥∥ =
∥∥ek−1|k−1

∥∥ ≤ ξ,
∥∥xk − x̂k|k−1

∥∥ =
∥∥ek|k−1

∥∥ ≤ ξ∥∥9(x̂k|k−1)
∥∥ ≤ H, P1I ≤ Pk|k ≤ Pk|k−1 ≤ P2I, Q1I ≤ Qk ≤ Q2I, and R1I ≤ Rk ≤ R2I,

(27)
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We now emphasize that equations (30) and (31) alto-
gether satisfy equation (20). Thus, for chosen V(ek|k ) =

eTk|kPk|kek|k , the estimation error ek|k (equation (25)) satisfies
equation (21), which concludes the exponential bounded-
ness of ek|k . Therefore, the EKFDF remains exponentially
bounded in mean square if the inequalities presented in
equation (27) holds true.

V. SIMULATION AND RESULTS
In this section, we use the CKF-based formulation of the
proposed GFDF to solve nonlinear filtering problem. To com-
pare its performance, benchmark filters including: i) ordinary
CKF [6], ii) CKF with FDI attack handling [14], and iii)
CKF with delayed measurement handling [20], [21] were
considered. We will refer to the CKF-based formulations of
as CKF_FA [14], MLCKF [21], and CKF_GD [20].

To validate the improved accuracy of the proposed method
as compared to its existing techniques, 200Monte Carlo (Mc)
simulations were conducted. The average of root mean square
error (RMSE) and average of mean absolute error (MAE)
were selected as performance metrics along with the corre-
sponding execution time. The RMSE and MAE are obtained
as

RMSE (xk) =

√√√√ 1
Mc

Mc∑
i=1

∥∥∥x̂ik|k − xik
∥∥∥2
2

(32)

MAE (xk) =
1
Mc

Mc∑
i=1

∣∣∣x̂ik|k − xik
∣∣∣ (33)

We present the results for two simulation examples, such as
multiple sinusoid estimation and power system state estima-
tion problem.

A. MULTIPLE SINUSOIDS ESTIMATION
Consider a problem of estimating multiple sinusoids [14],
[20]. The state space model is given as

xk = Ixk−1 + ωk−1 (34)

zk =

[ 3∑
j=1

aj,k cos(2π fj,kkτ ),
3∑
j=1

aj,k sin(2π fj,kkτ )
]T

+ ζ k ,

(35)

where x = [f1, f2, f3, a1, a2, a3]T contains the frequencies
fi and amplitudes ai of three sinusoids; τ = 0.25 ms is
the sampling time. The covariance matrices are assigned as
Q = diag([σ 2

f σ 2
f σ 2

f σ 2
a σ 2

a σ 2
a ]) and R = diag([σ 2

r σ 2
r ]).

FIGURE 1. Case 1: ARMSE comparison of CKF, MLCKF, CKF_FA, CKF_GD,
and GFDF against varying delay probabilities.

We perform the simulation over 400 time-steps for two
cases i) pa = 0.2, σf =

√
25 mHz, σa =

√
0.8 mV , and

σr =
√
0.9 V and ii) Case 2: pa = 0.5, σf =

√
0.9 Hz,

σa =
√
0.1 mV , and σr =

√
0.1 V . The true initial state is

chosen as x0 = [200, 500, 1000, 3, 4, 3]T , the estimate x̂0|0
are considered to be normally distributed with mean x0 and
covariance P0|0 = diag

([
20, 20, 20, 0.5, 0.5, 0.5

])
. During

the simulation, we set 1k to follow a normal distribution
with a mean of 0.5 and a variance of 0.4. In the presence
of an attack, we assume pd = 0.5. The mean RMSEs for
amplitudes and frequencies are compared.

The mean RMSEs for all filters for two cases are pre-
sented in Figures 1 and 2. The figures indicate that the
proposed GFDF achieves improved accuracy compared to
all existing filters. The computation times relative to CKF,
MLCKF, CKF_FA, CKF_GD, and GFDF are 1, 1.4937,
1.3254, 1.3253, and 1.3289, respectively. This implies that
the computational time of the proposed method is slightly
increased compared to the traditional CKF, however remains
comparable to existing CKF extensions for handling these
irregularities.

We presented the results obtained in this study and derived
some noteworthy conclusions. Figures 1 and 2 demonstrate

V(ek|k ) = eTk−1|k−1
¯A T
k P−1

k|k
¯Akek−1|k−1 + C̄ T

k P−1
k|k

(
2 ¯Akek−1|k−1 + C̄k

)
+ 2B̄T

k P
−1
k|k

(
¯Akek−1|k−1 + C̄k + D̄k

)
+ B̄T

k P
−1
k|kB̄k + 2D̄T

k P
−1
k|k

(
¯Akek−1|k−1 + C̄k

)
+ D̄T

k P
−1
k|kD̄k . (29)

E[V(ek|k )|ek−1|k−1] − V(ek−1|k−1) ≤ λ3ξ
3
+ (λ1 + λ4 + λ7) ξ2 + (λ5 + λ8) ξ + λ2 + λ6 + λ9 − κV(ek−1|k−1). (30)
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FIGURE 2. Case 2: ARMSE comparison of CKF, MLCKF, CKF_FA, CKF_GD,
and GFDF against varying delay probabilities.

that the accuracy, as measured by ARMSE, deteriorates
with an increase in delay probability (pg), as expected. This
implies that the filtering performance is not significantly
impacted if only a few measurements experience delay while
others are time-synchronized. Similar observations have been
made in [20] and [21]. It is important to note that this
trend may vary depending on the system dynamics and envi-
ronmental factors. To this end, it can be inferred that the
current FDI attack methodology fails to address delayed
measurements adequately. On the other hand the proposed
GFDF method demonstrates its viability in simultaneously
addressing the challenges posed by FDI attacks and delayed
measurements.

B. POWER SYSTEM STATE ESTIMATION
In this section, we estimate the power system states, namely
the voltage magnitude and phase angle at each bus or node,
using a limited number of noisy measurements. The analysis
is performed on the IEEE 14-bus benchmark power system
network. Please refer to [31] and [32] for more details.

Table 2 presents the measurement locations of phasor mea-
surement units (PMUs) and remote terminal units (RTUs).
The PMUs are placed at specific locations to measure voltage
and current phasors (Vr , Vi, Ir , and Ii), while the RTUs
provide power injections (Pi andQi) at the installed buses and
power flows (Pf andQf ) through the specified branches. The
detailed expressions for these measurements can be found
in [31]. This simulation considers that RTU data packets are
updated every two seconds, and 30 PMU data packets were
received between two adjacent RTU data packets. The pro-
posed GFDF-based PSSE was implemented over 40 seconds
at the PMU scan rate by incorporating the most recent PMU
sensor data with the last available RTU sensor data.

FIGURE 3. RMSE comparison of CKF, CKF_FA, CKF_GD, and GFDF at Bus-9
for 0.3 delay probabilities.

The power system state dynamics are simplified as a ran-
dom walk model due to the low likelihood of significant
changes occurring between successive PMU scans. This sim-
ulation considers a 3% randomly changing load condition
throughout the simulation period. For validating the proposed
approach for large and random voltage fluctuations, a signif-
icantly larger process noise covariance, Qk = 9× 10−6In×n,
is considered rather than a value mentioned in [32]. Let us
consider δrv , δ

r
pi, and δrpf represent the standard deviations of

sensor noises for RTUmeasured voltage, power injection, and
power flow, respectively, and δ

p
v and δ

p
i are the corresponding

values for PMU measured voltage and current, respectively.
To characterize sensor noises, the following values were
considered [31]: δrv = 0.001, δrpi = 0.02, δrpf = 0.02,
δ
p
v = 0.001, and δ

p
i = 0.001. The simulations were carried

out with true initial bus voltages of x0 = 1̸ 0◦ and the PSSE
was performed with x̂0|0 = x0 and P0|0 = 10−6In×n. During
the simulation, we set1k to follow a normal distribution with
a mean of 0.5 and a variance of 0.4. In the presence of an
attack, we assume pa = pd = 0.5.

We conducted a comparative study of the proposed
GFDF-based PSSE and other existing filters, as shown in
Figures 3 and 4, and Table 3. The RMSE plots for voltage
magnitudes and voltage phase angles at bus 9 (Vk,9 and
δk,9) are displayed in Figure 3 and 4 for delay probabili-
ties of 0.3 and 0.5, respectively. These plots reveal that the
CKF_FA and CKF filter has significantly higher RMSEs as
it did not consider falsely injected data, resulting in poor
performance compared to other filters. Furthermore, Fig-
ures 3 and 4 demonstrate that CKF_GD exhibit inferior esti-
mation performance compared to the proposed GFDF-based
PSSE.

Table 3 presents ARMSE and AMAE of all considered
filters for varying probabilities of delay. The results show that
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TABLE 2. PMU and RTU measurements locations for the IEEE 14-bus benchmark power system networks.

TABLE 3. Performance indices (in 10−3) of the proposed GFDF-based PSSE with the existing benchmark filters obtained by averaging the voltage
magnitude (V) and phase angle δ across all buses.

FIGURE 4. RMSE comparison of CKF, CKF_FA, CKF_GD, and GFDF at Bus-9
for 0.5 delay probabilities.

the proposedGFDF-based PSSE achieves the lowest ARMSE
and AMAE. Moreover, the table indicates that the filtering
performance deteriorates with an increase in the probability
of delay.

The computation times relative to CKF, CKF_FA,
CKF_GD, and GFDF are 1, 1.051, 1.063, and 1.171, respec-
tively. This implies that the computational time of the pro-
posed GFDF is marginally higher than traditional CKF but
remains comparable to other existing CKF extensions for
handling these irregularities.

VI. DISCUSSION AND CONCLUSION
The practical applications of nonlinear estimation and fil-
tering are vast, spanning fields such as defence, power, and
network systems. However, the widely accepted Gaussian
filtering method falls short in accounting for irregular mea-
surements caused by delay and cyber-attacks. Given such
irregularities commonly observed in practical measurements,
the applying an advanced Gaussian filtering method becomes
crucial.

We introduce a method that employs stochastic modeling
of delayed and cyber-attack measurements to meet this need.
The proposed stochastic model employs a Bernoulli random
variable to indicate whether a measurement has been altered,
either through an FDI attack or delay. We then redesigned
the traditional Gaussian filtering method to account for these
modified measurements.

The detailed analysis demonstrates that the proposed
method outperforms traditional Gaussian filtering, resulting
in improved estimation accuracy even in the presence of both
delay and cyber-attacks. However, it is important to note
that the computational budget and storage requirement of
the proposed method are higher compared to the traditional
Gaussian filtering method.
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