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ABSTRACT Predictive Maintenance (PdM) of lithium-ion batteries has garnered significant attention in
recent years due to their widespread application as energy supplies in various industrial equipment, including
automated guided vehicles and battery Electric Vehicles (EVs). Accurately estimating these batteries’
Remaining Useful Life (RUL) is crucial for ensuring optimal performance, preempting unexpected failures,
and minimizing maintenance costs. This article focuses on the importance of RUL prediction for lithium-ion
batteries and its implications in predictive maintenance. We suggest a novel method based on machine
learning techniques using optimization parameters to accurately predict the RUL of lithium-ion batteries.
Our approach uses several battery performance variables, such as voltage, current, and temperature, to build
a prediction model to anticipate the battery’s RUL precisely. We compare the performance of our suggested
process with existing models for battery RUL prediction, incorporating Harris Hawks Optimization (HHO)
for hyperparameter tuning.We evaluate the performance of our approach on a dataset of lithium-ion batteries
and compare it with other related methods. On a dataset of lithium-ion batteries, we assess our method’s
effectiveness and contrast it with other relevant techniques. The proposed method achieves high accuracy
in predicting RUL, as evidenced by low values of metrics such as MAE, MSE, RMSE, MAPE, R2, and
NMRSE. Also, it achieves high R2 scores of 0.979 and 0.971 for the training and testing data, suggesting the
model’s high effectiveness in predicting the RUL of batteries.

INDEX TERMS RUL prediction, random forest, LightGBM, Harris Hawk optimization, predictive mainte-
nance, lithium-ion batteries.

I. INTRODUCTION
Society is pressured to research and produce new energy due
to the traditional energy dilemma. Lithium-ion batteries are
among the most frequently used new energy sources due
to their high energy density, high output voltage, prolonged
cycle life, and wide operating temperature range [1]. But as
lithium-ion batteries are repeatedly charged and drained, the
internal resistance increases. The battery warms up signifi-
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cantly once the internal resistance increases, impacting the
battery pack’s functionality and everyday employ [2]. Rou-
tine and experience-based inspection and maintenance have
been widely used as preventative maintenance techniques for
many years. However, a more reliable and mature digital sys-
tem called the Battery Management System (BMS) has been
developed with the digital transformation trend and advance-
ments in lithium-ion battery technology. The BMS can use
the Internet of Things (IoT) to gather big data from numerous
large-scale sensors and track the status of lithium-ion bat-
teries in real time. A dependable and intelligent BMS uses
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precise sensor data analytics to prevent abrupt device failures
and save significant maintenance costs while providing early
warning signals of future degradation. Artificial intelligence
approaches are utilized to create efficient prediction mod-
els that correctly forecast the RUL and enable early defect
detection of lithium-ion batteries to achieve a smart BMS [3].
Conventional RUL prediction typically uses the data from the
acceleration sensor. This approach can produce accurate RUL
predictions if it exclusively targetsmechanical machinery like
bearings [4].

PdM has evolved an essential strategy for improving the
reliability and efficiency of industrial systems. By operat-
ing sensor data to detect potential equipment failures before
they occur, organizations can reduce downtime and mainte-
nance expenses and raise the safety and productivity of their
processes. In recent years, ML algorithms have shown sig-
nificant promise in PdM. RF and LightGBM are two famous
algorithms widely operated in RUL prediction for various
kinds of equipment. ML algorithms have the advantage of
being able to process vast volumes of sensor data and extract
complicated patterns that are challenging for human spe-
cialists to recognize. The choice of hyperparameters, which
are parameters that regulate the algorithm’s learning process,
has a significant impact on the performance of ML models.
In this paper, we utilize the harmony search algorithm to opti-
mize the hyperparameters of the RF and LightGBM models
for predicting the RUL of lithium-ion batteries. We ana-
lyze the impact of hyperparameters on the accuracy of RUL
predictions and compare the performances of the two algo-
rithms. The findings demonstrate that sensor data integration
and hyperparameter optimization may significantly improve
lithium-ion battery RUL predictions. Our study contributes
to PdM by providing valuable insights into utilizing ML
algorithms and sensor data for RUL prediction, which can
help reduce maintenance costs, prevent equipment failures,
and improve safety across various applications.

Our study aims to contribute to the field; the following list
summarizes our contributions:

• Developing a technique for predicting the RUL of NMC-
LCO 18650 batteries employing ML approaches.

• Comparing the performance of the suggested approach
with different models, the related work for battery RUL
prediction.

• Using HHO for hyperparameter tuning to optimize the
performance of the ML models.

• Highlighting the potential of ML methods for battery
RUL prediction, which can contribute to the field of
PdM.

• Demonstrating the effectiveness of the proposed method
in predicting the RUL of lithium-ion batteries, as evi-
denced by high R2 scores and low values of metrics such
as MAE, MSE, RMSE, MAPE, and NMRSE.

• Comparing the performance of two ML algorithms,
RF and LightGBM, for battery RUL prediction.

The remainder of the paper is structured as follows: In
Section II, we briefly review the relevant literature on PdM

and battery health monitoring. Section III present our pro-
posed method, which combines RF and LightGBM with
HHO for hyperparameter tuning. We also discuss the use
of data curation and analysis in Section IV. In Section V,
we present the implementation process, results, and perfor-
mance evaluation of our method. Finally, we conclude the
paper in Section VI, where we summarize our contributions
and highlight future research directions.

II. LITERATURE REVIEW
This section presents related work of PdM and the RUL
using ML. Estimating the remaining usable life is a crit-
ical PdM task that has grown important as a study area
during the past ten years. In order to build a success-
ful maintenance strategy, RUL prediction is essential to
ensuring the overall system’s dependability and safety. Data
from the past can be used to forecast RUL. The RUL of
assets may be predicted with increasing accuracy using
ML approaches. PdM is condition-based maintenance that
involves routinely inspecting the equipment. PdM’s ulti-
mate objective is to predict when an appliance will develop
defects to avoid unanticipated equipment breakdowns and,
as a result, save maintenance costs and downtime. Several
alternative ML approaches have been developed in order
to predict the matching RUL using the gathered historical
data [5]. Different approaches have been utilized in previous
studies, including classification, clustering, and regression
techniques, depending on the nature of the issue. For instance,
some studies have concentrated on classifying whether a
failure would occur, while others have employed clustering
approaches to group similar events. In addition to classifica-
tion techniques, regression methods have also been utilized
to predict numerical target variables, as demonstrated by
Uhlmann et al. [6]. Ellefsen et al. [7] investigated unsuper-
vised learning for predicting RUL using a semi-supervised
process. Other researchers have explored the potential of deep
learning strategies, such as Convolutional Neural Networks
(CNN), DeepNeural Networks (DNN), and Long Short-Term
Memory (LSTM), for estimating RUL [8], [9], [10].

A. RUL BASED ON THE MACHINE LEARNING METHODS
The primary difficulties and future directions for study in
battery health prognostics are outlined in this paper’s thor-
ough examination of aging processes and cutting-edge health
prognostic techniques. There has been a review and descrip-
tion of the complicated connections between aging processes,
aging modes, influencing elements, and aging kinds. After a
comprehensive review of each prognostic job and method,
the battery health prognosis approaches are separated into
groups depending on various time scales and purposes, such
as short-term SOH estimation, long-term End Of Life (EOL)
prediction, and deterioration trajectory prediction. Compar-
ative analyses have been conducted after the study has
explored the similarities and differences between the vari-
ous RUL battery-related procedures [11]. The combination
of the enhanced variational modal decomposition (VMD),
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particle filter (PF), and Gaussian Process Regression (GPR)
in this study has been recommended as a unique hybrid tech-
nique for estimating battery future capacity and RUL, which
the recorded battery capacity data is divided by the VMD
algorithm into several residual sequences and an aging trend
sequence, with the number of modal layers being determined
then the aging trend sequence and residual sequences are
then, respectively, have been predicted with using the predic-
tion models of the PF and GPR algorithms [12]. These days
for the RUL issue in the battery, there are many techniques
that many researchers use, such as deep learning-based fore-
casting techniques, in an attempt to enhance predicted out-
comes; some current deep learning-based forecasting tech-
niques focus on increasing the network depth and expanding
the training dataset, which can be highly resource-intensive.
The research has suggested a merging technique based on
the Long Short-Term Memory Neural Network (LSTM NN)
and the Broad Learning System (BLS) algorithm. A fusion
neural network model has also been developed to predict the
lithium-ion battery capacity and RUL correctly. To be more
precise, the BLS algorithm creates feature nodes initially
using historical capacity data and then creates enhancement
nodes by using enhancement mapping. The input layer of the
LSTM NN is then formed by concatenating all BLS-created
nodes to build the BLS-LSTM fusion NN [13].
After the IC curves are generated using the voltage data

from the constant current charging phase, they are denoised
using the smoothing spline filter. Using the Pearson corre-
lation coefficient technique, the significant HIs have been
selected based on the IC curve properties. The L2 regu-
larization parameter formed the BLS network, which was
then tuned to create the SOH estimate model. Based on
the Incremental Capacity Analysis (ICA) and enhanced BLS
network-based SOH estimate technology for lithium-ion bat-
teries, a PSO approach has filtered the shrinkage scale of the
enhancement nodes [14]. In order to predict battery lifespan,
this research has suggested a revolutionary semi-supervised
self-learning method in which the partial capacity-voltage
curve has been employed to obtain three Health Indica-
tors (HIs). Information from three randomly picked batteries
in the original part has been utilized to create the capac-
ity estimate and lifespan prediction models. The historical
capabilities have been recreated operating the HIs to offer
fictitious values for the lifetime model’s self-training. In the
research, future deterioration has been predicted utilizing the
self-trained lifespan model to provide a probabilistic forecast
of future capacity [15]. The novel cell-to-pack health and
lifespan prognostics method presented in the paper is based
on combining transferable deep learning and GPR, where the
partial discharge operation generates general health markers.
The sequential degradation model of the HIs has been devel-
oped and moved based on a deep learning architecture for the
prediction of battery pack deterioration; following that, the
probabilistically anticipated future deteriorated capacities of
the battery pack and each battery cell have provided a com-
plete lifespan prognosis. Additionally, experimental results

have been shown that define the weakest cell for maintenance
in advance and the battery pack’s desired capacity move-
ments [16]. A new approach for estimating RUL has been
suggested and is based on live model modification employing
transfer learning and optimal HIs. GPR has been utilized
to optimize the threshold for HIs to identify the EOL. The
RUL has been predicted based on the optimized HIs operat-
ing a mix of transfer learning and gated RNNs, which may
support online applications. The prediction model is further
fine-tuned to provide accuracy in performing the test batteries
before the deterioration cycle data. The model was trained
initially employing a suitable battery [17].

The study aims to enhance the accuracy of RUL pre-
diction for lithium-ion batteries, which is crucial for their
prognostics and health management. The authors proposed
a two-phase deterioration model with a dynamic transition
point utilizing binary segmentation. This model considers the
various ways that tested battery cells degrade, resulting in
more precise RUL predictions. The authors created a sys-
tem based on particle filtering to account for uncertainties
during RUL prediction [18]. The research has recommended
a specific RUL prediction technique for lithium-ion batter-
ies based on an LSTM network designed for use with an
Improved Sparrow Search Algorithm (ISSA) for lithium-ion
batteries. Because they directly affect prediction accuracy,
the LSTM hyperparameters that needed tuning were chosen.
ISSA then adjusts the LSTM’s hyperparameters depend-
ing on data about battery capacity from several datasets to
produce RUL prediction [19]. Accurate RUL prediction is
necessary for supercapacitors to operate securely and reli-
ably. The Bidirectional Long (BiLSTM) network and the
observer are the foundations of the two-stage online RUL
prediction framework that has been proposed in this study.
The Bayesian Optimization (BO) technique and the BiLSTM
network have been employed in stage 1 to estimate capac-
itance. The BiLSTM network’s hyperparameters have been
intended to be optimized by the BO method. The paper has
used short-term variations to reduce the Moving Average
Filter (MAF) employed in Stage 2 to manage the estimated
capacitance. The double exponential model has represented
the deterioration trajectory, which has been updated by the
observer using the estimated capacitance as the measure-
ment [20].

The proposed strategy propagates these points utilizing the
unscented KF to produce a complex proposal distribution,
then employs singular value decomposition to provide sigma
samples for the unscented transformation. Compared to the
traditional unscented particle filter method, the improved
method offers better performance in proposing the RUL of
storage batteries [21]. A hybrid framework that integrates
model-based and data-driven techniques has been proposed
to enhance the accuracy of battery lifetime prediction, which
leverages an empirical model based on physical principles
and a support vector regression model based on actual oper-
ational data to estimate the battery lifetime by computing the
battery capacity. In order to ensure that the model parameters
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remain current and accurate, particle filters are employed
to update the practical model dynamically in [22]. Refer-
ence [23] has demonstrated how to forecast how much use-
able life a battery has left using a unique hybrid Elman-LSTM
technique that combines LSTM and ENN with the exper-
imental model decomposition methodology. The empirical
mode decomposition method divides the recorded battery
capacity against cycle number data into various sub-layers.
The high-frequency and low-frequency sub-layers are then
predicted using recurrent LSTM and Elman-NN models.
In Table 1, there is a comparison of several model-based
methods for RUL prediction.

III. MATERIALS AND METHODS
This section provides a thorough discussion of the suggested
model.

A. PROPOSED FRAMEWORK
The strategy’smain goal is to create a PdMmodel that reliably
predicts the RUL of lithium-ion batteries using sensor data.
The three primary parts of the approach are the prepara-
tion and gathering of data, the creation of the model, and
the assessment of the model. The method’s main goal is
to create a PdM model that reliably predicts the RUL of
lithium-ion batteries employing sensor data. The methodol-
ogy comprises three main components: data collection and
preparation, model development, and model evaluation. The
required sensor data is collected and pre-processed in the
first step to remove any noise. The pre-processed data is then
used to extract relevant features using statistical andmachine-
learning techniques. In the second step, two ML algorithms,
namely RF and LightGBM, are employed to develop the
predictive model. Both algorithms are trained and optimized
using hyperparameters to improve their performance.

Further optimization of themodel’s parameters using HHO
is also used to get a more precise forecast of the RUL.
In the final step, the developed models are evaluated by
operating various metrics. Based on their sensor data, the
best-performing model is then selected and utilized to predict
the RUL of new lithium-ion batteries. The methodology gen-
erally involves a comprehensive approach that includes data
preparation, feature extraction, model development, hyper-
parameter optimization, and model evaluation, ultimately
leading to an accurate and reliable RUL predictive model
for Lithium-Ion batteries. Figure 1 depicts the suggested
approach’s implementation flowchart.

B. COMPUTATIONAL EFFORT AND COMPLEXITY
The computational effort and complexity in the RF and Light-
GBM models, using HHO for RUL prediction in batteries,
refer to the computational resources needed for hyperpa-
rameter tuning and model training. During hyperparameter
tuning with HHO, the algorithm explores the hyperparame-
ter space to find the optimal settings for each model. This
process involves a certain number of optimization itera-
tions and a specified population size, impacting the overall

computational effort. After hyperparameter tuning, the opti-
mized models are trained. Model training entails constructing
decision trees RF or applying gradient boosting (LightGBM),
adding to the computational complexity. The dataset size,
number of trees/boosting rounds, and other model-specific
settings further influence the computational effort during
training. To assess computational efficiency, we compare the
time required for hyperparameter tuning and model training
between the RF and LightGBMmodels. LightGBM typically
exhibits higher complexity due to its gradient-boosting tech-
nique. Evaluating the computational effort and complexity
offers insights into the feasibility and efficiency of using RF
and LightGBM with HHO for battery RUL prediction.

C. HARRIS HAWKS OPTIMIZATION
HHO is a meta-heuristic optimization technique inspired by
Harris hawks’ hunting methods. The algorithm mimics the
strategy these birds use to catch prey, which involves coop-
eration and competition among members of the hawk group.
HHO begins with an initial population of hawks, where each
hawk represents a candidate solution. The algorithm then
proceeds through a series of iterations, or generations, during
which the hawks search for the optimal solution. In each
generation, the hawks are evaluated based on their fitness,
which is determined by a fitness function that measures the
quality of the candidate solution. The HHO algorithm has
several key features that make it particularly well-suited for
optimization problems in engineering and other fields [29].
Figure 2 represents the system architecture of HHO.

First, the algorithm is easy to implement and requires
minimal tuning of its parameters. Second, a global optimiza-
tion algorithm can search the entire solution space for the
best possible solution. Finally, the algorithm is relatively
fast, which makes it particularly useful for large-scale opti-
mization problems. HHO is a useful tool for optimizing the
machine-learning algorithm parameters for PdM and RUL
prediction in the context of lithium-ion batteries. Through
parameter optimization, HHO can significantly enhance the
accuracy and reliability of RUL prediction, resulting in more
efficient maintenance planning and cost savings for battery
manufacturers and users.

xi,j(t + 1)=xi,j(t)+r1
(
xbest,j(t) − xi,j(t)

)
r2

(
xp,j(t)−xq,j(t)

)
(1)

where xi,j(t) is the j-th component of the i-th hawk’s posi-
tion at time t , xbest,j(t) is the best position found so far
in the search space, xp,j(t) and xq,j(t) are the positions of
two randomly selected hawks, and r1 and r2 are random
coefficients between 0 and 1. The position update equation
is used to move each hawk to a new position in the search
space based on the positions of other hawks and the best
position found so far. HHO is a good optimization algorithm
with excellent performance in many optimization problems.
Its ability to balance cooperation and competition among
population members and its simplicity and efficiency make
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TABLE 1. Comparative Analysis of several model-based strategies for lithium-ion battery RUL prediction.

FIGURE 1. The overall framework for RUL prediction of lithium-ion battery.

it a valuable tool for optimization problems in engineering
and other fields [30].

D. RANDOM FOREST ALGORITHM
In order to increase the precision and stability of predictions,
RF is a well-liked ensemble learning approach in ML. Both
classification and regression tasks can be accomplished using
the supervised learning algorithm. Building numerous deci-
sion trees, each learned on a random subset of the training
data and features, is the main goal of RF. A majority vote on
each individual tree prediction during prediction determines

the final result. One of the main advantages of RF is that
it is relatively insensitive to the choice of hyperparameters
and can handle a wide range of data types and distributions.
It is a reliable approach for predictive modeling since it
can deal with missing values and noisy data. Additionally,
RF offers helpful insights into the relative weights of each
feature in the prediction, which can aid in understanding the
underlying data patterns. Figure 3 displays the RF algorithm’s
flow diagram.

We have a training set of N samples with p input features
and an associated vector of N response values. To build a
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FIGURE 2. Flowchart of HHO.

decision tree that can accurately predict the response value
for new samples. RF is an ensemble method that creates
numerous decision trees and produces the average prediction
of each tree’s predictions. A subset of the training data (with
replacement) and a subset of the input features at each split
are required to build each decision tree in the randomly cho-
sen RF. This randomness helps to prevent overfitting to the
training data and improves the generalization performance on
new data. We select the feature that provides the best split
at each decision tree node according to a splitting criterion.
The tree recursively develops by dividing the data into smaller
groups according to the chosen feature and split point. Based
on the sample’s feature values, wemove from the root node to
a leaf node of the decision tree to forecast a new sample. The
prediction is then made using the response value connected to
the leaf node. Equation 2 represents the ensemble prediction
of the RF algorithm [31].

ŷ(x, 2) =
1
M

M∑
m=1

f (x; θm) (2)

where ŷ is the predicted response value, x is the input vector,
2 = {θ1, . . . , θM } is the set of decision trees, and f (x; θm) is
the output of the m-th decision tree.
The hyperparameters for the RF algorithm are:
• nestimators: the forest’s density of decision trees.
• maxfeatures: the number of features to consider when
looking for the best split at each node.

• maxdepth: the maximum depth of the decision trees.
• minsamplessplit : the least amount of samples necessary to
split an internal node.

• minsamplesleaf : the bare minimum of samples needed at a
leaf node.

To optimize the RF model, we use HHO for hyperparam-
eter tuning. HHO efficiently explores the hyperparameter
space, maximizing the R2 score during cross-validation. The
comprehensive hyperparameter grid (paramgrid ) includes

FIGURE 3. Flow diagram for RF algorithm structure.

nestimators, maxfeatures, maxdepth, minsamplessplit , minsamplesleaf ,
and criterion. The NatureInspiredSearchCV class is instru-
mental in performing the hyperparameter optimization. This
class orchestrates the optimization process by integrating the
RF model, the hyperparameter grid, and the HHO algorithm.
We specify important settings such as the population size,
maximum number of generations, and number of runs,
which influence the efficiency and effectiveness of the HHO
algorithm. The RF model captures underlying patterns in
the data, leading to improved RUL predictions. We validate
the model’s performance on diverse battery types, ensuring
practical applicability.

E. LightGBM
The LightGBM gradient-boosting framework creates the
usage of tree-based learning strategies. Similar to RF, it is also
an ensemble method that builds multiple trees and combines
their results. However, LightGBM uses a different approach
to construct decision trees and train the model, which leads
to faster and more accurate results. The main feature of
LightGBM is the ability to handle large-scale data efficiently.
It uses Gradient-based One-Side Sampling (GOSS) to select
only a subset of the training data for each iteration, reducing
computation time and memory usage. It also supports par-
allel and distributed computing, making it suitable for big
data problems. The number of trees, learning rate, and the
maximum depth of each tree must all be specified as hyperpa-
rameters before we can train a LightGBMmodel. LightGBM
also offers several advanced features, such as definite feature
handling and early stopping, which can improve the model’s
performance and reduce overfitting [32]. The objective func-
tion of LightGBM can be written as in Equation 3

Obj(2) =

N∑
i=1

l(yi, ŷi) +

∑
k = 1K�(fk ) (3)

Given a dataset with N samples, where Xij represents the
value of the j− th feature for the i− th sample, and yi is the
corresponding label. Where l represents the loss function, ŷi
is the predicted value for the i−th sample,2 represents the set
of all model parameters, including the decision trees and split
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FIGURE 4. Diagram of the histogram optimization approach.

points, fk is the k − th decision tree, K is the total number of
trees, and �(fk ) is the regularization term that penalizes the
complexity of the model. Training LightGBM aims to find
the set of model parameters 2 that minimizes the objective
function Obj(2). It is typically done using a gradient-based
optimization algorithm such as Stochastic Gradient Descent
(SGD).

F. HISTOGRAM OPTIMIZATION STRATEGY
The Histogram Optimization Strategy is a feature of Light-
GBM that optimizes the creation and usage of histograms
for faster training and better accuracy. Instead of predefining
the histogram bins, LightGBM applies a dynamic binning
approach that adapts to the data distribution. The algorithm
starts by finding each feature’s minimum and maximum val-
ues in the training data. Then, it divides each feature range
into equal-width bins and constructs histograms based on the
counts of samples falling into each bin. However, instead
of using all the bins, LightGBM applies an optimization
technique to select only the most informative ones. The opti-
mization is performed by iteratively merging adjacent bins
with the least gain in the loss function until the desired num-
ber of bins is reached. The Histogram Optimization Strategy
has several advantages over other binning methods. First,
it reduces memory consumption by using a smaller number of
bins. Second, it enhances the model’s accuracy by effectively
capturing the data distribution. Third, it speeds up the training
process by reducing the number of splits and simplifying the
optimization problem. The flow diagram of the Histogram
optimization strategy algorithm is shown in Figure 4.
In the histogram optimization strategy, LightGBM con-

structs histograms for each feature on the fly during the
tree-building process. By utilizing this histogram-based com-
putation, LightGBM can achieve faster and more efficient
tree building than traditional decision tree algorithms. The
objective function for finding the best split in LightGBM
using the Histogram optimization strategy is Equation 4:

1 =
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)2

HL + HR + λ

]
− γ (4)

In Equation 4, the GL and GR are the gradient statistics for
the potential split’s left and right nodes.WhereHL andHR are
the sum of Hessians for the left and right nodes, respectively,
and λ and γ are regularization parameters. The split with the
most significant value of 1 is chosen as the best split.

IV. DATA CURATION AND ANALYSIS
This section provides a detailed overview of this study’s
data curation and analysis process using the NMC-LCO
18650 battery dataset. The dataset utilized in our analy-
sis was obtained from the Hawaii Natural Energy Institute,
which conducted the experiments and collected the data. The
experimental data included measurements from 14 NMC-
LCO 18650 batteries with a nominal capacity of 2.8 Ah. The
batteries were subjected to cycling tests over 1000 cycles at
a temperature of 25◦C. During the tests, the batteries were
charged using a CC-CV (Constant Current-Constant Voltage)
charge rate of C/2 and discharged at a rate of 1.5C. To ensure
our predictive model’s reliability and generalization capabil-
ity, we employ a separate testing set consisting of batteries
that are not part of the training process. The decision to use
separate training and testing sets holds practical significance
for predicting the RUL of batteries. By training the model
on a subset of batteries and evaluating its performance on
unseen batteries, we aim to assess its ability to generalize
and make accurate predictions for batteries that have not been
encountered during the training phase.

A. DATA DESCRIPTION
The data was collected under various conditions, such as
different loading profiles of 1A, 2A, and 4A, shifting ambi-
ent temperatures of 4◦C, room temperature, and 44◦C, and
discharge voltages of 2.7V, 2.5V, and 2.2V. The external
temperatures, ranging from 4◦C to 44◦C,were alsomonitored
in addition to the battery temperatures. The total capacity
fluctuates between 2Ah and 0Ah in each charging and dis-
charging cycle. It is important to note that deep discharge
can harm the battery, and as a result, the battery voltage is
typically between 3.7V and 4.2V during operation.

B. DATA PROCESSING
In addition to the initial data cleaning steps, several data
processing techniques were employed to prepare the dataset
for analysis. These included feature engineering, normaliza-
tion, and data partitioning. In order to create new features
from the raw data and extract pertinent information, feature
engineering was used. In order to ensure that all features
were on an equal scale, normalization was used, which can
enhance the performance of ML algorithms. The features
were scaled precisely to have a unit variance and a zero mean.
The training, validation, and test sets were then created from
the dataset. Model selection and hyperparameter tweaking
weremade on the validation set, final model performance was
evaluated on the test set, and ML models were fitted on the
training set. In order to make sure that each set had a balanced
representation of the battery cycles, the data was stratified and
divided.

In order to produce predictions, the dataset’s several fields
must be analyzed. The operations of feature extraction, selec-
tion, normalization, and segmentation are included in data
preparation. A phase in data preparation is the creation of
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TABLE 2. Distribution of samples between training and testing sets.

FIGURE 5. RUL Histogram of Lithium-Ion Batteries.

training, testing, and validation datasets. Using the battery
dataset, we divided it into three categories: training, valida-
tion, and testing, using 65% training data and 35% testing
data. Table 2 displays the dataset partition that considers
training and testing.

V. RESULTS AND DISCUSSION
This section evaluates the proposed integrated process’s out-
comes and implementation strategy, including performance
evaluation and ML-based RUL prediction. RUL is the esti-
mated remaining lifespan of a machine or component before
it becomes inoperable or fails to meet performance criteria.
RUL prediction is essential to PdM to ensure machines’
reliable and safe operation and reduce maintenance costs.
Figure 5 shows the Remaining Useful Time (RUT) histogram
representation of the statistical distribution of the data con-
sidering only the battery life, in which the y-axis represents
RUL density or frequency. The x-axis represents RUL. The
frequency of each value refers to the number of occurrences
or the proportion of data points with a specific value. In the
context of the battery life represented on the graph, the fre-
quency of each value indicates how often a particular battery
life duration occurs in the dataset. Higher frequencies suggest
that certain battery life durations are more common, while
lower frequencies indicate less common durations. In fact,
the curves represent the distribution, and the frequency of
each value on each curve indicates the frequency of each
value. It is a valuable tool for visualizing the distribution of
RUL values and identifying trends or patterns in the data. The
RUT histogram can provide insights into the health status
of machines and help maintenance teams plan maintenance
activities and predict failures.

Table 3 outlines the technology and tools used in the
implementation and the necessary settings. The operative

TABLE 3. Proposed approach tools and strategies of implementation.

technique on which the strategy was implemented and run as
Windows 10 utilizing an Intel(R) CPU Core(TM), i5-9600K,
at 3.70 GHz, the RAMusedwas 16GB, and the programming
language was Python 3.8.3.

A. FEATURE SELECTION
The most important characteristics that can aid in predicting
the batteries’ RULwere identified during the feature selection
process. Selecting relevant features (variables, predictors)
from a more extensive set of features is known as feature
selection. By reducing overfitting, shortening training time,
and enhancing the model’s interpretability, feature selection
seeks to improve the model’s performance. Filter, wrapper,
and embedding methods are the three main categories into
which feature selection techniques can be divided. It was
accomplished using various feature selection techniques,
such as feature significance analysis using RF, mutual infor-
mation analysis, and correlation analysis.

B. EVALUATION OF RESULTS WITH DIFFERENT METRICS
In order to assess the effectiveness and accuracy of our
method in predicting the RUL of the batteries, we used several
metrics. The metrics we used include Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Mean Squared
Error (MSE), coefficient of determination (R2), Mean Abso-
lute Percentage Error (MAPE), Normalized Mean Squared
Error (NMRSE), and correlation coefficient. The MAE,
MSE, and RMSE measure the absolute, squared, and mean
squared differences between the actual and predicted RUL
values. MAPE also shows the percentage difference between
the actual and anticipated RUL values. The correlation coef-
ficient reflects the linear connection between the actual and
anticipated RUL values, whereas NMRSE is a normalized
measure of the RMSE that considers the data’s unpredictabil-
ity. These metrics provide a comprehensive evaluation of the
performance of our method and enable us to compare its
effectiveness with other techniques in the literature.

1) THE MEAN ABSOLUTE ERROR
MAE is a generally utilized metric to evaluate the per-
formance of regression models. In predicting the RUL of
batteries, MAE can be used to measure the average absolute
difference between the predicted RUL and the valid RUL
values. The MAE formula is defined as in Equation 5:

MAE =
1
n

n∑
i=1

|RULi,actual − RULi,predicted | (5)
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where n describes the total number of samples, RULi,actual
represents the actual RUL value for the ith sample, and
RULi,predicted defines the predicted RUL value for the ith

sample. The MAE is the average absolute difference between
the true and predicted RUL values across all batteries in the
dataset.

2) ROOT MEAN SQUARED ERROR
A common metric for assessing the precision of a predictive
model is the RMSE. It computes the average squared differ-
ence between a given variable’s predicted and actual values.
In the case of predicting RUL, the RMSE formula can be
written as in Equation 6:

RMSE =

√√√√1
n

n∑
i=1

(RULi,actual − RULi,predicted )2 (6)

where n defines the number of samples, RULi,actual is the
actual RUL for sample i, and RULi,predicted describes the
predicted RUL for sample i. The RMSE penalizes more
significant errors more heavily than minor ones, as it squares
the differences before taking the square root. A lower RMSE
indicates better predictive performance, as the predicted val-
ues are closer to the actual values.

3) MEAN SQUARED ERROR
The RUL can be defined in Equation 7, and the MSE cal-
culates the average of the squared differences between the
predicted and actual RUL values.

MSE =
1
n

n∑
i=1

(RULi,actual − RULi,predicted )2 (7)

The MSE is a statistic frequently used to assess the effec-
tiveness of regression models since it calculates the average
squared difference between the actual and projected RUL
values.

4) MEAN ABSOLUTE PERCENTAGE ERROR
The MAPE is a common metric for evaluating prediction
accuracy, particularly when utilizing time series data. It deter-
mines the average difference between the predicted and actual
values as a percentage of the actual values. The formula for
MAPE in terms can be expressed as in Equation 8:

MAPE =
1
n

n∑
i=1

∣∣∣∣RULi,actual − RULi,predicted
RULi,actual

∣∣∣∣ × 100% (8)

where n defines the number of observations, RULi,actual
describes the RUL for the ith comment, and RULi,predicted
describes the predicted RUL for the ith observation. The
MAPE is expressed as a percentage and helps compare the
accuracy of different models or methods for predicting RUL.
However, it is essential to note that the MAPE has some
limitations, such as its sensitivity to extreme values and the
fact that it can be undefined if any actual values are zero.
Therefore, it is often used with other metrics to provide a

complete evaluation of the performance of RUL prediction
models.

5) NORMALIZED MEAN SQUARED ERROR
The sum of the squared deviations between the actual and
expected RUL values is shown in the numerator. The denomi-
nator represents the total squared errors between the real RUL
values and their mean. The NRMSE measures the accuracy
of the predicted RUL values, normalized by the variability
of the actual RUL values. A lower NRMSE indicates better
accuracy and predictive power. The NRMSE formula in terms
of RUL is performed as follows in Equation 9:

NRMSE =

√√√√1
n

n∑
i=1

(
RULi,actual − RULi,predicted
RULi,max − RULi,min

)2

(9)

where n represents the number of observations, RULi,actual
represent the actual RULvalue for observation i,RULi,predicted
defines the predicted RUL value for observation i, RULi,max
represent the maximum RUL value in the dataset, and
RULi,min defines the minimum RUL value in the dataset.
The NRMSE value ranges from 0 to 1, with a smaller value
indicating better performance. A value of 0 indicates a perfect
match between the predicted and actual values, while a
value of 1 indicates that the predicted values are entirely
uncorrelated with the actual values.

6) R2

A statistical measure known as the coefficient of determi-
nation, or R2, quantifies the percentage of the dependent
variable’s variance that can be predicted from the independent
variable (s). It is frequently used to gauge the goodness of fit
of a regression model. In the context of predicting RUL of
batteries, R2 is calculated as indicated in Equation Equation
10:

R2 = 1 −

∑n
i=1(RULi,actual − RULi,predicted )2∑n
i=1(RULi,actual − ¯RULactual)2

(10)

where n is the number of samples, RULi,actual defines the
actual RUL value for the ith sample, RULi,predicted represents
the predicted RUL value for the ith sample, and ¯RULactual is
the mean actual RUL value across all samples. The range of
R2 is 0 to 1, where a value of 0 implies that the model does
not explain any variability in the dependent variable, and a
value of 1 suggests that it does. The real and anticipated RUL
values fit more closely when the R2 value is larger [33].

The Table 4 summarizes the performance of two ML mod-
els, RFt, and LightGBM, in predicting the RUL of batteries.
The models were optimized using HHO for hyperparame-
ter tuning. The models’ effectiveness was assessed using a
variety of metrics, including MAE, MSE, RMSE, MAPE,
R2, and NMRSE. The table’s first two rows show the RF
model’s training and testing scores. Themodel achieved a low
MAE of 36.883 and a low MSE of 2148.865 for the training
data, indicating that the model’s predictions were close to
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TABLE 4. Performance evaluation of the proposed method for predicting the RUL of batteries.

FIGURE 6. RUL battery dataset with predicted and actual values.

the actual RUL values. The RMSE value of 46.356 indi-
cates that the average prediction error was small. The model
also achieved a low MAPE of 0.239, which means that the
model’s average prediction error was only 0.239 of the actual
RUL value. The R2 score of 0.979 indicates that the model’s
predictions fit the training data well. The NMRSE score of
0.146 indicates a good fit of the predictions to the actual
data. The third and fourth rows of the table 4 show the
training and testing scores for the LightGBM model. The
model achieved a low MAE of 37.681 and a low MSE of
2209.121 for the training data, indicating that the model’s
predictions were close to the actual RUL values. The RMSE
value of 47.001 indicates that the average prediction error
was small. The model also achieved a low MAPE of 0.255,
which means that the model’s average prediction error was
only 0.255 of the actual RUL value. The R2 score of 0.979
indicates that the model’s predictions fit the training data
well. The NMRSE score of 0.148 indicates a good fit of
the predictions to the actual data. In general, both models
achieved high accuracy in predicting RUL, as evidenced by
the low values of the evaluation metrics.

Figure 6 provides the actual and predicted values by the
model. Our goal is to demonstrate the model’s performance
and how accurately it can make predictions. The y-axis repre-
sents RUL, and the x-axis represents the sample because we
have selected a set of samples to test the model. The blue data

TABLE 5. Comparison of MAPE and RMSE values for various RUL
prediction methods.

points represent the actual values, and the orange data points
represent our predictions, which closely match the data in
many points. This indicates a good performance of the model.
The values may deviate more or less in some points, and the
model’s error can be calculated based on these differences.

Figure 7 displays the predicted results for the RUL battery
prediction, showcasing a comparison between our model’s
actual and predicted values. The blue line shows the true RUL
values, while the orange line shows the corresponding pre-
dicted RUL values. By analyzing Figure7 in conjunction with
Figure 6, we gain deeper insights into the performance of our
RUL prediction model. The comparison between the actual
and predicted values allows us to assess the accuracy and
reliability of our method. Furthermore, the close alignment
of the blue and orange lines in Figure 7 indicates high accu-
racy in our RUL predictions. The model’s ability to closely
track the actual RUL values demonstrates its effectiveness in
forecasting battery RUL.
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TABLE 6. The list of abbreviations and formula symbols.

FIGURE 7. Prediction of RUL for the battery.

The x-axis in the R-Squared (Testing Data) Figure repre-
sents the predicted RUL values, while the y-axis represents

the measured RUL values. The blue dots in the figure repre-
sent the predicted RUL values for each sample. In contrast,
the diagonal line represents the perfect prediction line where
the predicted RUL values match the measured RUL values.
TheR2 score of 0.971 indicates that the proposedmodel based
on RF and Lightgbm optimization with HHO achieved a high
level of accuracy in predicting the RUL of batteries, with
the predicted values closely matching the measured values.
These outcomes illustrate the efficiency of the suggested
approach and its potential to enhance battery RUL prediction.
The proposed method offers increased accuracy in RUL bat-
tery prediction, providing an effective solution for predictive
maintenance in the field of battery technology.
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FIGURE 8. The R-Squared of RUL predictions using proposed model
based on RF and LightGBM optimization with HHO.

Table 5 compares the R2 values achieved by four different
methods for predicting the RUL of batteries. The first row
shows the reference method, the Unscented Kalman Filter
(UKF), used by Sangwan et al. [34]. The second row shows
the hybrid method Cong et al. [35] used, which combines
machine learning and statistical models. The third row shows
the Empirical-Data Hybrid-Driven Approach (EDHDA) pro-
posed by Chen et al. [36]. The fourth and final row shows
the R2 value achieved by the proposed method in this study,
which uses RF and LightGBM optimization with HHO for
hyperparameter tuning. The R2 values range from 0.84 to
0.97%, with the proposed method achieving the highest R2

value of 0.97%, indicating a high level of accuracy in pre-
dicting the RUL of batteries.

Table 5 presents a comparison of MAPE and RMSE values
for different methods used in predicting the RUL of batteries.
Our proposed method outperforms all other methods with
significantly lower MAPE (0.23) and RMSE (46.35) values.
These results highlight our approach’s superior accuracy and
precision, showcasing its potential for accurate RUL predic-
tion and ensuring lithium-ion batteries’ reliable and efficient
operation in various applications.

VI. CONCLUSION AND FUTURE WORK
RUL prediction plays a crucial role in ensuring systems’
overall reliability and safety, which is essential for develop-
ing successful maintenance strategies. ML techniques have
been increasingly used in various fields to predict the RUL
of assets, and historical data can be leveraged to predict
RUL, enabling efficient maintenance planning and cost sav-
ings associated with preventing equipment failures. The
proposed approach in this study, which combines RF and
LightGBMmodels with HHO and Sensor Fusion, effectively
predicts the RUL of Lithium-Ion Batteries, outperforming
traditional approaches. The HHO algorithm provided a better
search space for the models’ hyperparameters, resulting in
improved prediction accuracy. The incorporation of sensor

fusion helped extract more meaningful features from the
battery data, further enhancing RUL prediction accuracy. The
high R2 values for both training and testing data suggest
that the proposed approach is highly effective in predicting
the RUL of batteries. Thus, the proposed approach can be
a valuable tool for PdM of Lithium-Ion Batteries in various
applications, including EVs and renewable energy systems.
However, there is still room for improvement, and future
work could focus on exploring other optimization algorithms
and feature selection techniques to enhance the RUL pre-
diction’s accuracy further. Additionally, expanding the scope
of the study to include other types of batteries and different
operating conditions could provide a more comprehensive
understanding of the proposed approach’s effectiveness.

Table 6 displays the primary notations utilized in the sug-
gested strategy.
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