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ABSTRACT Due to the development of its own technology, the Unmanned Aerial Vehicle (UAV) play an
increasingly important role in today’s social production practice. The complex and changeable environment
requires the development of innovative UAV path planning algorithms. In order to meet the requirements
of the increasingly complex UAV flight environment, a new UAV flight path planning algorithm based on
a version of the White Sharks Optimization (WSO) is proposed in this research. Firstly, the terrain matrix
is used to establish the three-dimensional terrain environment and constraint function, and then WSO is
improved for handling the path planning. In the process of path planning, multi-trajectory search, nonlinear
convergence factor and the model of fish movement behavior are adopted to enrich the population diversity,
excavate the search space, speed up the convergence and reduce the likelihood of falling into local optima.
Based on the simulation results, it can be observed that the proposed algorithm outperforms in terms of
optimization accuracy, convergence speed, and robustness, leading to improved outcomes in UAV flight
path planning.

INDEX TERMS Fight path planning, unmanned aerial vehicle, white sharks optimization, multi-trajectory
search, nonlinear convergence factor.

I. INTRODUCTION
The Unmanned Aerial Vehicle (UAV) can perform complex
and dangerous tasks, such as intelligence collection, recon-
naissance, and surveillance, through remote controls without
pilots in some extreme cases [1]. It plays a crucial role inmod-
ern military wars [2] in particular, and its application field is
still expanding rapidly [3]. Nevertheless, as non-contact com-
bat continues to evolve, UAVs frequently encounter a multi-
tude of threats including ground radar, jamming equipment,
anti-UAV missiles, and enemy reconnaissance aircraft [4].
It is still difficult to fully realize autonomous driving. There-
fore, it is urgent to develop an UAV flight path planning
algorithm that can adapt to more combat scenarios [4].
UAV path planning involves global and local components.

Global planning uses all available information to deter-
mine an optimal path [5], while local planning adjusts the
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flight direction based on current constraints and dynamic
obstacles, enhancing obstacle avoidance capabilities [6].
The research in this paper is global static path planning
for UAV. Commonly employed algorithms encompass the
graph search algorithm [7] and mathematical methods [8],
intelligent optimization algorithm [9], and reinforcement
learning [10].

The swarm intelligence algorithm, as a multi-agent and
gradient-free optimization technique [11], has demonstrated
good performance in many complex and coupled engineering
problems. At present, many scholars have been studying
the use of the swarm intelligence algorithms to improve the
path planning performance of UAVs. The traditional intelli-
gent optimization algorithm includes the Ant Colony Opti-
mization (ACO), Particle Swarm Optimization (PSO), Fish
Swarm Optimization (FSO), Bacterial Foraging Optimiza-
tion Algorithm (BFOA) and other improved strategies based
on these algorithms [12], [13], [14], [15], [16]. Although
these traditional algorithms are effective for simple problems,
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as the complexity of real-world problems increases, there is
a need for more powerful algorithms to handle them.

Maintaining a balance between global exploration and
local exploitation is crucial for the performance of swarm
intelligence algorithms. In recent years, researchers in the
field have been exploring various approaches to enhance
the algorithms. Wu and Tan [17] to enhance the exploration
and exploitation capabilities while maintaining a satisfac-
tory convergence rate, combines the hierarchical approach
of Grey Wolf Optimization (GWO) with the greedy strat-
egy of the Differential Evolution Algorithm (DE) within the
framework of the Whale Optimization Algorithm (WOA).
Jiaqi et al. [18] take the whale algorithm as a reference,
introduced spiral update, modified parameters and added an
adaptive leadership mechanism, which enhanced the overall
performance of the algorithm and solved the problems of slow
convergence of path planning and insufficient flight path.
Zhou et al. [19] integrated the improved BA algorithm into
the ABC algorithm based on the features of the standard bat
algorithm (BA) and artificial bee colony algorithm (ABC).
IBA uses ABC to modify BA, which overcomes the problem
of poor local search ability of BA. Zhang et al. [20] proposed
an improved Harris Hawke optimization (HHO) algorithm.
The algorithm combines the Cauchy mutation strategy and
adaptive weighting, and uses the oscillation characteristics of
the sine-cosine algorithm (SCA) to gradually converge to the
global optimum. This approach can combine the characteris-
tics and advantages of different algorithms, but it is difficult
to overcome the inherent limitations of the algorithms them-
selves.

The use of mathematical models or mathematical theories
to improve or modify algorithms provides a new and solid
and effective means of improvement for the improvement
of algorithms. Ji et al. [21] proposed a new learning particle
swarm optimization (DDBLPSO) algorithm based on dual
dynamic biogeography, which can avoid premature conver-
gence and maximize the chance of finding the global optimal.
Wan et al. [22] proposed an Elite-Guided Orthogonal Krill
Swarm (EODKH) algorithm that combines the benefits of
elite-guided evolution with traditional krill swarming meth-
ods to solve the path planning problem of UAVs in complex
terrain three-dimensional space. Zhang et al. [23] proposed
the QFOA algorithm based on the quantum theory. QFOA
introduces a search mechanism based on the quantum behav-
ior in FOA. By leveraging the principles of probability and
uncertainty from quantum theory, the proposed algorithm
effectively addresses the issues of premature convergence and
susceptibility to local optima that are commonly encountered
in the FireflyOptimization Algorithm (FOA). Tang et al. [24]
proposed an improved ant colony optimization (ACO) con-
sidering path security. Firstly, Tyson polygons are formulated
according to the position of the high-altitude mountain range
to obtain a feasible UAV path under the flight conditions.
Secondly, dense peak areas are avoided by framing path
safety constraints. Thirdly, the ACO algorithm is used to

search for the shortest path. Finally, the path is smoothened
to produce the best safe path that can be used for actual flight.
Mathematical methods can indeed be effective in improving
algorithms, but they can sometimes encounter theoretical
bottlenecks.

In recent years, some scholars have tried to combine swarm
intelligence algorithms and neural networks to solve the
problem of UAV path planning in dynamic environments.
Liu et al. [25] introduced a UAV path planning method that
combines the Sparrow Search Algorithm (SSA) with a Bionic
Neural Network (BINN). This integration of SSA and BINN
enables efficient and adaptive UAV path planning, consider-
ing both static and dynamic environmental factors. Although
various swarm intelligence algorithms are constantly emerg-
ing, no single algorithm could adapt to all the situations. The
above algorithms have different types of improvements in
efficiency, speed, etc. But they cannot be well balanced, and
cannot adapt to a wide range of environments having complex
and changeable obstacles. The MSWSO algorithm proposed
in this paper adopts the method of disorderly exploration and
then orderly development, taking into account its efficiency
and speed, so as to adapt to a more complex and large-scale
environment. However, the universality and robustness of this
approach still need to be validated.

Based on the advantages and limitations of the afore-
mentioned algorithms, a method has emerged that uti-
lizes multiple strategies to address different problems.
Chai et al. [26] proposed a multi-strategy fusion differential
evolution (MSFDE) algorithm. The algorithm combines mul-
tiple population strategies, adaptive strategies, and interactive
mutation strategies to strike a balance between develop-
ment and exploration capabilities. Hu et al. [27] proposed an
improved version of the QPIO algorithm. Firstly, the initial
population is logically mapped, and then the sub-parameters
are adaptively up-dated in each iteration. In the milestone
operations, an updated strategy of gradually reducing the
number of pigeons was introduced to prevent premature con-
vergence and local optima. Qian and Lei [28] proposed a
jointly improved adaptive cuttlefish algorithm that combines
chaotic perturbation and mutation learning into an adaptive
weighting mechanism. In addition, an automatic filtering
mechanism based on individual fitness is used to adjust
population diversity and eliminate local optimum, promot-
ing robustness optimization performance. Using a variety of
strategies, certain improvements are made at different stages
of the algorithm, and the algorithm is reconstructed to a
certain extent, which can improve the performance of the
algorithm to a high extent.

WSO has an advantage in handling global optimization
problems as it has the flexibility to deal with many differ-
ent types of problems. The mathematical model is suitable
for solving various engineering optimization problems, espe-
cially high dimensional optimization problems. Its simplicity
and robustness enable it to find global optimum solutions to
difficult optimization problems quickly and accurately, and it
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has a high convergence rate also. Although the White Sharks
Optimization (WSO) algorithm has shown promise in terms
of its low development cost and its ability to find effective
solutions for real-world optimization problems, it still faces
certain challenges in its basic form. Some of the common
issues include relying on a single search method, limited
exploration of the search space, and a tendency to converge on
local optima during optimization. These shortcomings high-
light the need for further improvements and enhancements
to enhance the algorithm’s performance and overcome these
limitations.

To further enhance the quality and efficiency of UAV flight
path planning, a flight path planning algorithm (MSWSO)
based on the multi-strategy improvement of WSO [29] is
proposed. Building upon the traditional WSO algorithm, the
MSWSO algorithm incorporates a multi-trajectory search
strategy to explore the planning space effectively. Addition-
ally, a nonlinear convergence factor is introduced to guide
the entire algorithm development process. The inclusion of a
fishmovement behavior model enhances population diversity
during later stages of the optimization. Furthermore, to ensure
the algorithm’s versatility across different terrains, two sets of
experiments are conducted, involving eight diverse complex
terrains along with their associated threat conditions.

The article is structured as follows. Section II provides
an introduction to the terrain environment model and the
constraints based on UAV flight conditions for path planning.
Section III presents an overview of the basic WSO algorithm,
its enhancements, and the application of the improved WSO
algorithm in UAV path planning. Section IV discusses the
testing and experimental results of the proposed algorithm.
Finally, Section V concludes the article by summarizing its
key findings and contributions.

II. MODELING AND CONSTRAINTS
A. MODELING
This paper focuses on the study of UAV trajectory plan-
ning in a three-dimensional environment. The mountain
altitude matrix is used for modeling a terrain, where the
two-dimensional matrix is visualized in three-dimension with
the Z-axis to control the bump of the terrain. The real moun-
tain surface is steep and often presents nonlinear changes.
Therefore, the matrix is resampled by using nonlinear inter-
polation to smooth the terrain model. Some threat areas and
obstacles are also presented through a matrix simulation.

Figure 1 shows the simulated terrain environment, where
the randomly generated complex terrain is on the surface, and
the red hemispherical and cylindrical models rep-resent the
threat area of the radar.

In general, a UAV has a certain volume. If simply the center
point of a drone is used to calculate its body distance, the edge
of the drone may hit the mountain. Therefore, it is necessary
to check whether the distance between the fuselage of the
drone and the mountain will cause a collision. Therefore, the
drone model is reduced to a sphere, as shown in Fig. 2. The

FIGURE 1. UAV flight terrain.

FIGURE 2. UAV flight model.

requirement for the safe transportation of a drone is that all
the obstacles can be avoided during flight. In order to ensure
the flight safety, the conditions in Eq. (1) should be met.
Where, Z (xm,ym) is the height of a single mountain,

U (x, y, z) is a point on UAV, and D(x,y,z) is a point on the
threat area. {

U (x, y, z) > Z (xm,ym)
U (x, y, z) > D(x, y, z)

(1)

B. CONSTRAINTS
To evaluate the quality of UAV flight paths, it is essential to
construct evaluation metrics that specifically assess factors
such as height, length, and smoothness of the flight path.
These metrics will provide a comprehensive assessment of
the flight path’s quality and help in analyzing and comparing
different trajectory planning algorithms. Equation (2) gives
the distance between UAV and the planned two points.

li = ||objijobji,j+1|| (2)

where objij and obji,j+1 are the two planned nodes, and li is
the planned shortest path.

In addition, the flight height of UAV should also be consid-
ered to be out of the range of the wireless control signals. The
easily exposed problems caused by the flight height of UAV
exceeding a limiting value, as well as the possible collision of
UAV with ground objects such as surface plants and stones,
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FIGURE 3. UAV flight angle.

are too low. Therefore, the flight height of UAV should also
meet the condition in Eq. (3).

hmin ≤ hi ≤ hmax (3)

where, hmin is the minimum flight height of UAV, hmax is its
maximum flying height.

In order to ensure the smooth flight of the UAV and reduce
the energy consumption, UAV should keep smooth flight as
far as possible. The flight angle is shown in Fig. 3, and the
smoothness of the path is expressed by Eq (4).
l1 and l2 are two adjacent displacements of UAV, θ is the

flight pitch angle or turning angle obtained through Eq. (4), φ
is the set of these angles throughout the entire flight process,
and the magnitude of the φ reflects the smoothness of the path
throughout the entire flight process.

φi =
li · li+1

||li||||li+1||
(4)

where φi is the smoothness of the path between the planned
nodes.

By combining Eqs. (1) to (4), the objective function for
UAV flight path planning can be expressed as Eq. (5), taking
into consideration the specific requirements of the task.

F =

N∑
i=1

(ω1li + ω2hi + ω3φi) (5)

where ω1, ω2 and ω3 are the weight parameters obtained
experimentally.

III. UAV FLIGHT PATH PLANNING BASED ON MSWSO
A. BASIC WHITE SHARKS OPTIMIZATION
WSO is inspired by the auditory and olfactory hunting behav-
ior of white sharks in the ocean, specifically targeting prey on
the sea floor. InWSO, the search agents, resembling the white
sharks, update their positions randomly based on the best
solution found so far, aiming to reach the optimal solution.
The algorithm consists of three distinct phases: global explo-
ration, local exploitation, and fish behavior. These phases
ensure a balance between exploration and exploitation, taking
into account the intensity of both auditory and olfactory cues
in the search process.

1) GLOBAL EXPLORATION
The movements of prey create waves. The great whites use
their organs to sense these changes and locate their prey.
In this case, the white shark uses its associated sense of
hearing and smell, and undulate wave motion to navigate to
prey, as expressed by Eq (6).

wik+1 =

{
wik · ¬ ⊕ wo + u · a+ l · b; rand < mv
wik + vik/f ; rand ≥ mv

(6)

where, ¬ is a negative number, a and b, are one-dimensional
binary vectors-, l and u represent the limits of the solution
space, wo represents a logical vector, f indicates the wave
movement frequency of the white shark, rand is a random
number created in the range from 0 to 1, and vik is the speed
at which the individual white shark moves with the wave.

2) LOCAL EXPLOITATION
The great white shark updates its position according to the
best white shark. So, it can occupy the best position to stay
close to its prey. This behavior is expressed by Eq (7).

w′i
k+1 = wgbestk + r1D⃗wsgn(r2 − 0.5)r3 < Ss (7)

where wik is the updated position of the white shark relative
to its prey, wgbestk is the global optimal individual of the
kth iteration, sgn(r2-0.5) gives 1/-1 to change the search
direction, is the distance between the prey and the white shark
r1, and, r2; and r3 are random numbers in the range of [1, 0].

3) FISH BEHAVIOR
The behavior of the population of white sharks is mathemat-
ically modeled in such a way that the two best solutions are
preserved, while the positions of the remaining white sharks
are updated based on these two best solutions. Equation (8) is
used to define the behavior of the fish school of white sharks.

wik+1 =
wik + w′i

k+1

2 × rand
(8)

where wik and w′i
k+1 are the first two optimal solutions for

retaining, and rand represents a random number evenly dis-
tributed within the interval of [1, 0].
Equation (8) describes how a white shark updates its

position by referencing the best position in proximity to its
prey. Consequently, the final location of the white shark will
closely align with the best prey found in the search space.
This behavior, coupled with the movement of white sharks
towards the best individual, exemplifies the collective behav-
ior observed in WSO. Such behavior expands the exploration
and exploitation capabilities of the algorithm.

B. MULTI-STRATEGY IMPROVED WSO
The original WSO algorithm employs random search and
wave-trajectory based search. However, it suffers from lim-
itations such as a single search method, insufficient search
space, susceptibility to local optima, and low convergence
accuracy. To address these issues, this study introduces a
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FIGURE 4. Sine and cosine model.

multi-trajectory search strategy by combining the sine and
cosine search algorithms with a variable spiral search strat-
egy. This strategy effectively expands the search space and
enhances search efficiency. Furthermore, a nonlinear con-
vergence factor is introduced to govern the entire iterative
process of the algorithm. In addition, fishmovement behavior
rules are incorporated to increase population diversity.

1) MULITY-TRAJECTORY SEARCH
SCA adopts the oscillation and periodicity of the sine and
cosine functions, and alters its position with the trajectory
of the wavy curve. The spiral search updates the position in
the form of a thread in the space, through which the solution
space can be developed quickly and effectively.

a: SINE AND COSINE ALGORITHM
The Sine Cosine Algorithm (SCA) utilizes the mathemati-
cal properties of sine and cosine functions to dynamically
adjust their amplitudes. By striking a balance between global
exploration and local exploitation, the algorithm effectively
adapts its search capabilities during the optimization process.
After exploring around one solution, the agent can run around
another solution on the next cycle, making full use of the
space defined between the two functions. SCA requires its
search agents to change dramatically during the initial phase
of optimization and slightly at the end of optimization. This
search method enables the agent to search the solution space
adequately and develop reliably near the location with better
fitness. SCA uses Eq. (9) to update the location as shown in
Fig. 4.

x it+1 =

{
x it + r1 · sin(r2) · |r3pt − xt |, r4 < 0.5
x it + r1 · cos(r2) · |r3pt − xt |, r4 ≥ 0.5

(9)

where, x it is the position of the individual at the tth iteration;
represents the position of the individual with the highest
fitness at the tth iteration; r2, r3, and r4 are random numbers,
and r1 is a function of the number of iterations.

b: SPIRAL SEARCH MODEL
There are three commonly used spiral searches: Archimedes
spiral, Fermat spiral, and logarithmic spiral as shown in Fig.5.

Among the three spiral search models mentioned above,
the logarithmic helix exhibits a wide exploration range in the
initial stage and gradually transitions to a localized search in
the later stage. This behavior closely resembles the search
process observed in swarm intelligence algorithms. Hence,

FIGURE 5. Spiral search model.

FIGURE 6. Logarithmic spiral search model.

the logarithmic spiral is adopted in this research. Equation
(10) gives the spiral search formula. Figure 6 shows the sim-
ulation of the logarithmic spiral search in a three-dimensional
space.

P = ebl ∗ cos(2π l) (10)

where P is the exploration factor, b is the logarithmic spiral
shape constant, and l is the exploration step size.

The span between the successive turns of the logarithmic
helix increases geometrically. The longer the distance from
the center, the larger is the span. As shown in Figure 6,
the individuals in each generation progressively converge
towards a spiral pattern during the position update process.
This behavior enables the algorithm to explore the neighbor-
ing search space, preserve population diversity, and enhance
its overall exploration capability. However, there might be
insufficient search space in the later stages of the search. So,
it is necessary to combine other methods. In this research,
nonlinear convergence factor is adopted.

2) NONLINEAR CONVERGENCE FACTOR
Nonlinearity, as opposed to linearity, is more closely aligned
with the intrinsic nature of objective phenomena. It repre-
sents an important category for quantitative research and
the comprehension of complex knowledge. By introducing
the nonlinear excitation function tahn in the neural network,
along with its derivative and some modifications, the nonlin-
ear con-vergence factor used in this paper is obtained. The
improved nonlinear convergence factor is expressed by Eq.
(11). Figure 7 shows how the nonlinear convergence factor α
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FIGURE 7. Nonlinear convergent silver changes with iteration.

changes throughout the iteration.

α = ω −
σ

t
Tmax

+ e(−λ·
t

Tmax
)2

− ϕ (11)

where, ω, σ , λ; and ϕ are three control parameters of the con-
vergence factor, Tmax is the maximum number of iterations,
t is the iteration counter, and is an experimental parame-
ter. The early value of the algorithm is large, which makes
it to pay more attention to the search for the global opti-
mum. However, in the iterative algorithm, the value gradually
decreases, which is convenient for fine search in the middle
and late stages, thus improving the convergence accuracy of
the algorithm. In the later iterations of the algorithm, this
value gradually increases to jump out of the local optimum.

Overall, in this research, the cyclic and oscillatory prop-
erties of WSO are combined with the ability to develop a
three-dimensional space of the logarithmic spiral strategy
and the nonlinear factor that controls the search strategy
in the iterative process. This al-lows WSO to fully explore
the entire search space during the global search phase and
reliably develop and leverage near the best individuals. The
convergence speed of the algorithm is also improved, which
can effectively help it to jump out of any local optimum. The
improved search is mathematically expressed by Eqs. (12)
and (13).

wik+1 = α · wik · ¬ ⊕ wo + u · a+ l · b; rand < mv (12)

wik+1 =

{
α · ebl · sin(2π l) · wik ; rand<0.5
α · ebl · cos(2π l) · wik ; rand ≥ 0.5

rand ≥ mv

(13)

3) RULES OF MOVEMENT BEHAVIOR OF FISH
WSO believes that the optimal solution found by the popu-
lation of individuals is not necessarily the location of prey,
but may also be the smell left by prey. Therefore, in this
research the movement behavior of fish is further used to
change the location of the optimal solution, i.e., the location
where from the prey may escape to avoid white sharks. The
position after the initialization of the population is considered

TABLE 1. Symbolic description of the rules of fish movement behavior.

FIGURE 8. Motion behavior of a school of fish.

to be the position of the shark that has sensed the prey. At each
time, the updated position is the position of the prey that has
been sensed earlier by the shark. The movement of the fish is
simulated ac-cording to these two positions, i.e., the optimal
solution is updated. The symbolic description of the rules of
movement behavior of fish is presented in Table 1.

The rules of sports are described below:
(1) Inertia rule: When a fish gets a signal requiring to

change its motion, the swimming direction of the fish cannot
be changed immediately; due to the effect of its inertia.

(2) Proximity rule: For not leaving the fish, it is necessary
to get as close to the center of the neighbors as possible,
as shown in Fig. 8(a).

(3) Alignment rule: In order to maintain the coherence of
the fish’s movement, each fish should try to move in the same
direction as its neighbors, as shown in Fig. 7(b).

(4) Avoiding rule. In order to maintain the consistency of
the fish movement, collisions of individual fish should be
avoided as much as possible, as shown in Fig. 8 (c).

The problem is simplified according to the path planning
model, where the prey will change its position only when
there is a threat (will not actively forage and move), and
there will be no neighbor (i.e., no individual collision, and
no population center), as shown in Fig. 9.
After simplifying the problem, let. The movement direc-

tion of individual fish at the next moment is expressed by Eq.
(14).

p5t = arctan
x0 − xs
y0 − ys

(14)

where (xs, ys) is the current position of the shark, i.e., the
optimal position during the population initialization, and (x0,
y0) is the current position of individual fish.
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FIGURE 9. Motion model of fish.

Algorithm 1MSWSO
Inputs: Population size N and iterations, T , and algorithm parameters
Outputs: The position and fitness value of the solved individual
Initialize the population Xi (i=1; 2;. . . ; N )
While(t<T ) // Loop T times
Calculate the initial fitness value for each individual //Loop T times
Calculate and update parameters mv, Ss, alpha //Loop T times
for (each White sharks (Xi)) do //Loop N times

if(rand< mv) then
Update the individual position of the population using Equation (12)
else
Update the individual position of the population using Equation (13)
end if

end for
for (each White sharks (Xi)) do //Loop N times

if (rand< Ss) then
if(t==1) then
The white shark population closing to the optimal white shark,

according to Equation (7)
else
Update the white shark population according to Equation (16)
end if

end if
end for
Do
Calculate the new fitness value for each individual
Update and save the best individuals
end while
Return the best optimal solution;
Record the mean, best optimal solution and standard deviation.

T(n)=T(T+T+N+N) = C+CN=N

The position coordinates of individual fish at the next
moment are determined by using Eq. (18).

wt+1
j =

{
wtj + v · cos ptθ < 0.5

wtj + v · sin ptθ ≥ 0.5
(15)

where pt is the determined direction angle.
In this paper, the solution after updating the current posi-

tions is set as the position of the current shark, which is also
the position of individual fish in the last iteration. In this
paper, the two solutions are brought into the fish movement
model to predict the next position of the fish. Figure 10 shows
the simple prediction model.

In this case, the optimal position of the shark is not the
position of the prey, but the position where the prey once
existed, i.e., the smell of the prey attracts the shark. Equation

FIGURE 10. Simple fish swarm prediction model.

FIGURE 11. Flowchart of the proposed path planning algorithm.

(16) represents the modified fish behavior.

W j
i+1 = W j

i + sin p ∗ V (16)

where is the position of the shark when capturing its prey, and
is the speed at which the shark approaches its prey.

The pseudocode of the proposed MSWSO is as follows.

C. UAV FLIGHT PATH PLANNING BASED ON MSWSO
The flow chart of the UAV path planning based on MSWSO
is shown in Fig. 11, and its steps are summarized below.

Step1: Establish a 3D model based on topographic data
Step2: Initialize the population and algorithmic parameters

mv, Ss and α, and then calculate the initial fitness value of
each individual
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TABLE 2. Eight benchmark functions.

Step3: When the individual white shark is far away from
the prey, a small kinetic force is obtained and Eq. (12) is used
for global search. When approaching the prey, a larger kinetic
force is obtained, and Eq. (13) is used for local exploitation
Step4: When individual renewal is completed, the white

shark population approaches the optimal individual using Eq.
(7), and then the population is updated using Eq. (16).
Step5: If the algorithm does not reach the completion con-

dition, continue the optimization process, otherwise report
the optimal path.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this research, eight benchmark test functions are used to
evaluate the improved MSWSO, and several common path
planning algorithms are used to verify the performance of
the proposed path planning algorithm. The simulation test
environment was as follows: operating system win10, 64-bit
operating system, memory 8 GB, CPU Intel i7 6500u, main
frequency 2.60GHz, power supply 150W, and simulation
software matlabR2018b.

A. EXPERIMENT ON BENCHMARK
In order to test the performance of the intelligent algorithm
in finding the global optimum, this article uses the standard
eight test functions presented in Table 2, which include both
unimodal and multimodal test functions. The performance of
the proposed algorithm is compared with those of SSA, SOA,
GWO, WOA, WSO, and MSWSO. The same test environ-
ment and same test parameters are used in all the experiments
in order to ensure their fairness.

The experiments are divided into two groups. The first
group is to conduct 500 iterations on each test function and
obtain the solution at each iteration. The second group is
to conduct 100 iterations for 30 times on each test function
to obtain the optimal value, mean value and standard devia-

tion. Then, the convergence speed, convergence accuracy and
robustness of the algorithm are analyzed in both groups of
experiments. The results of the two experiments are shown in
Fig. 12 and Table 3, respectively.
Fig. 12 shows the convergence plots of all test algorithms

under different test functions. It can be found that MSWSO
has a fast convergence speed in the test function and is
significantly ahead of all comparison algorithms. MSWSO
has strong exploration capabilities in the initial optimization
process, and then quickly switches to the development stage
in the middle, and can jump out to the global exploration
in the later stage. MSWSO can usually converge to the
global optimal solution based on this search characteristic. In
addition, it can be seen that the iterative process of MSWSO
is smooth and has a longer duration. The results show that
MSWSO has high robustness and adaptability in solving dif-
ferent optimization problems because it can achieve a balance
between exploration and development.

As shown in Table 3, MSWSO is able to obtain the opti-
mal values of these eight test functions and approach the
theoretical optimal values of each function. MSWSO has
higher search accuracy than the improved algorithm using
a single strategy, indicating that under the joint influence of
different strategies, the optimization ability and stability of
the algorithm have been maximized. The STD of the data can
reflect the degree of dispersion. Based on the test results in
Table 3, MSWSO has a minimal STD for each test function,
indicating that it is more robust and stable when dealing with
real-world problems.

Based on the analysis of Fig. 12 and Table 3, which
combine the results from single experiments and multiple
experiments, it is evident that the MSWSO algorithm demon-
strates significant advantages over other algorithms in terms
of optimal values, average optimal values, and algorithmic
stability. The overall performance of MSWSO outperforms
other algorithms in achieving optimal solutions. Despite the
inherent characteristics of specific functions affecting the
performance, MSWSO consistently converges to the optimal
solution with fewer iterations compared to other algorithms.
The convergence speed of MSWSO is noticeably superior.
Furthermore, the obtained standard deviation of MSWSO
indicates excellent performance in terms of algorithm robust-
ness. These findings validate the effectiveness and reliability
of the MSWSO algorithm.

The experimental results demonstrate that the enhanced
multi-trajectory strategy achieves a balance between ran-
domness and order in different stages of the algorithm.
This approach maintains sufficient exploration in the early
stage and introduces more targeted search in the later
stage, effectively expanding the search space and acceler-
ating convergence. The nonlinear convergence factor plays
a crucial role in guiding the algorithm to escape local
optima during the later stages of exploration. Additionally,
the incorporation of fish movement rules enhances pop-
ulation diversity, further aiding in the escape from local
optima.
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FIGURE 12. Comparison of evolutionary curves of different optimization algorithms.
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FIGURE 12. (Continued.) Comparison of evolutionary curves of different optimization algorithms.

TABLE 3. Comparative analysis of performance of 6 swarm intelligence algorithms.

B. EXPERIMENT ON UAV FLIGHT PATH PLANNING
To evaluate the performance of MSWSO in tackling the UAV
flight path planning problem, comprehensive experiments
are conducted in two different scenarios. The first scenario
involves normal task execution, where the map terrain, threat
area locations, and task start and end points are randomly

initialized to ensure unbiased and objective assessments. This
scenario aims to assess the algorithm’s ability to handle typ-
ical flight planning situations. In the second scenario, the
complexity is increased by introducing a higher number of
obstacles. Additionally, the map terrain is randomized to fur-
ther challenge the algorithm’s exploration and optimization
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FIGURE 13. Planned path under ordinary terrain.

TABLE 4. Topographic data of the first group of experiments.

capabilities. This scenario aims to test the algorithm’s robust-
ness and effectiveness in handling more challenging and
unpredictable environments.

The topographic data for these experiments are presented
in Tables 4 and 5, respectively. These tables provide impor-
tant information about the characteristics of the terrains,
including elevation, obstacle locations, and other relevant
details. By conducting experiments in these different scenar-

ios, the algorithm’s performance can be thoroughly evaluated
under various conditions, providing valuable insights into its
effectiveness and suitability for real-world UAV flight path
planning applications.

The SSA, SOA, GWO, WOA, WSO and proposed
MSWSO algorithms are used to plan the flight path of UAVs.
All the algorithms adopt their original rules. The algorithmic
population is formed in the same way, whose size is 60. Each
algorithm is executed for 100 iterations.

Figure 13 shows the UAV planned path under the first
group of ordinary terrain, and Fig. 14 shows that under the
second group of large range and multi-factor terrain. The
UAV first chooses the route with the shortest distance, and
then it gives priority to side-way bypassing rather than climb-
ing, when it needs to bypass obstacles. The average height of
the flight path is also taken into account throughout the flight.

The results shown in Figs. 13 and 14 demonstrate that the
improved algorithm, when applied to UAV path planning,
is capable of generating high-quality paths in both ordinary
and diverse environments. This indicates that the improved
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FIGURE 14. Planned path under large range and multi-factor terrain.

algorithm has practical applicability and can adapt effectively
to various scenarios.

The length and safety of the flight path of UAV directly
determine the success or failure of the mission, no matter
whether executed in ordinary or complex terrains. An excel-
lent path can not only improve the efficiency of the executed
task, but also ensures the safety of the UAV itself. In addition,
minimization of the climbing process during the flight can
reduce the energy consumption, so as to ensure the normal
execution of subsequent tasks. In the experiment, all UAVs
are set to drive at a constant speed, and the flight path and alti-
tude of the drones are used to reflect their flight costs. Tables
6 and VII shows the results of 30 times of execution of all the
compared algorithms in each terrain environment under eight
terrain conditions in the two groups of experiments.

As can be seen from Tables 6, the average path length and
height of the UAV flight have been improved significantly.
Although the obtained results do not have a large difference
under the action of the planning model and constraints, the
improved algorithm still has an excellent performance in
these two aspects. Compared with other algorithms, the path
length and height are approximately 12% to 15% and 2% to

TABLE 5. Topographic data of the second group of experiments.

5%, respectively. This is due to the introduction of the multi-
trajectory strategy, which enables a UAV to fully and quickly
explore the available space. Moreover, due to the existence
of nonlinear convergence factors, the UAV can timely get rid
of any local optimum and not easily lose itself. Moreover,
the application of the motion behavior rules of fish swarm
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TABLE 6. The results of 30 times of execution of all the compared algorithms.

enables it to further get rid of any local optimum in the
planning process and improve the convergence speed.

The application of the improved algorithm in UAV flight
path planning is evident in Figs. 13, 14, and Tables 6. The
obtained paths exhibit higher stability and efficiency com-
pared to other algorithms, showcasing the algorithm’s capa-
bility to assist UAVs in performing tasks effectively across
diverse environments.

V. CONCLUSION
This research is dedicated to applying the enhanced algorithm
MSWSO to UAV flight path planning. The algorithm incor-
porates a combination of random exploration and systematic
development to efficiently explore and exploit the solution
space. Furthermore, the integration of a nonlinear control fac-
tor enables the algorithm to effectively avoid getting trapped
in local optima during later iterations. Moreover, the inclu-
sion of fish movement behavior rules promotes population
diversity, thereby improving the overall performance of the
algorithm. To assess the efficacy of the enhanced algorithm
in path planning, two sets of experiments were conducted,
yielding positive outcomes that underscore the algorithm’s
effectiveness and its significance in the field of UAV flight
path planning. And in the future research work, the research
on the dynamic path planning of UAVs under dynamic con-
straints will also be carried out.
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