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ABSTRACT As a challenge in the field of smart medicine, medical picture segmentation gives important
decisions and is the basis for future diagnosis by doctors. In the past decade, FCN-based network topologies
havemade amazing progress in the field. However, the limited perceptual capacity of convolutional kernels in
FCN network topologies limits the network’s ability to acquire a global field of view. We propose BSANet,
a 3D medical image segmentation network based on self-focus and multi-scale information fusion with
a high-performance feature extraction module. BSANet can help the network to extract deeper features
by obtaining a larger range of perceptual capabilities by using its self-focus and multi-scale information
aggregation pooling modules. Brain tumor segmentation dataset and multi-organ segmentation dataset are
used to train and evaluate our model. BSANet produces excellent results with its high-performance feature
extraction network with an attention module and multi-scale information fusion module.

INDEX TERMS Deep learning, FCN, medical image segmentation.

I. INTRODUCTION
In the context of intelligent medicine, medical picture seg-
mentation can be considered as a semantic segmentation
technique application. One of the most difficult jobs in the
world of computer vision is the segmentation of lesions,
backdrops, and human organ tissues from a medical image.
This task necessitates the separation of each pixel. Due
to the ongoing advancement of deep learning techniques,
methodologies based on neural networks and deep learning
have recently gained popularity and acceptance as a main-
stream way of studying medical image segmentation. For the
purpose of semantic segmentation, Long et al. [1] proposed
the FCN network in 2014 and got excellent results. This
network’s encoder-decoder structure proposal has had a sig-
nificant influence on the creation of the following versions.
In order to combine low- and high-resolution feature maps
and effectively fuse low- and high-resolution image features,
Ronneberger et al. [2] proposed the U-Net network model for
medical image segmentation. U-Net has since established

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

itself as the industry standard for the majority of medical
image segmentation tasks. Since the majority of medical
data, including CT and MRI images, are 3D data in practice,
Çiçek et al. [3] proposed the 3DU-Net model using a 3D
convolution kernel to better mine the high latitude spatial
correlation of the data. Currently, 3DU-Net has become the
mainstream basic architecture in the field of medical image
separation. Compared to 3D-UNet, V-Net [4] uses residual
connectivity design [5] for a deeper network (4 sub-sampling)
to higher performance.

The MultiResUnet network was proposed by Ibtehaz and
Rahman [6] In order to extract spatial features at various
scales while reducing the computational effort required by
the network,MultiResUnetmodifies the convolutional blocks
and jump connections inU-Net using the concept of residuals.
U-Net uses a series of 3 × 3 convolutional kernels to simu-
late the perceptual field of 5 × 5 convolutional kernels and
7 × 7 convolutional kernels.

Cascade models are typically trained with two or
more models for image segmentation tasks to increase
segmentation accuracy. The segmentation of medical
images using this technique is particularly common.
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Three categories—coarse-fine segmentation, detection, seg-
mentation, and hybrid segmentation—can be used to classify
cascademodels. The first type is the coarse-fine segmentation
framework, which employs a cascade of two 2D networks
for segmentation. Using the findings of the first network’s
coarse segmentation, the second network model implements
fine segmentation. For the segmentation of the liver and
hepatic tumors, Christ et al. [7] suggested a cascade network.
The network initially utilized one FCN to segment the liver,
and then it fed the results of the prior liver segmentation
into a second FCN to segment the liver tumor. In order
to quickly and coarsely segment the liver of the entire
image of a CT volume, Tang et al. [8] trained a straightfor-
ward convolutional-deconvolutional neural network (CDNN)
model (19-layer FCN). They then applied a second CDNN
(29-layer FCN) to the liver region to segment the liver in
a more precise manner. This cascaded network efficiently
extracts richer multi-scale contextual information than a
typical cascaded network by using the posterior probability
produced by the initial network.

While 2D convolutional neural networks are unable to
learn the temporal information in 3D and 3D convolutional
neural networks are frequently computationally expensive
and have significant GPU memory consumption, medical
images are primarily composed of 3D body data. Con-
sequently, a few pseudo-3D segmentation techniques are
suggested. In order to forecast the core slice, Vu et al. [9]
employed the superposition of nearby slices as input. The
generated 2D feature maps were then fed into a conven-
tional 2D network for model training. Due to the use of
only local temporal information, these pseudo-3D algorithms
can segment targets from 3D data but have limited accuracy
improvement. 2D and 3D cascade networks perform better
than pseudo-3D networks. For the segmentation of the liver
and hepatic tumors, Li et al. [10] developed a hybrid densely
linked U-Net (H-DenseUNet). Using a simple ResNet, the
technique first achieves rough results for liver segmenta-
tion [5], extracts 2D image features effectively with a 2D
DenseUNet, then extracts 3D image features effectively with
a 3D DenseUNet, and finally constructs a hybrid feature
fusion layer for joint optimization of 2D and 3D features. The
model is still complex, and the 3D convolution still has a lot
of parameters, even if H-DenseUNet reduces the complexity
of the model relative to the entire 3D network. Similar in
structure to the H-DenseUNet, the lightweight hybrid convo-
lutional network (LW-HCN) suggested by Zhang et al. [11]
uses 3D depth-separable convolution, which requires fewer
parameters and lower processing costs.

It is typically difficult to recognize tiny anatomical fea-
tures with fuzzy noise borders using traditional UNet [2].
to deal with this issue. To conduct brain interlayer seg-
mentation, Valanarasu et al. [12]suggested the overcomplete
cascade network KiU-Net. By adding an upsampling layer
after each conversion layer of the encoder, the authors were
able to create a novel overcomplete structure called Ki-Net

in which the middle layer’s spatial size is greater than the
spatial size of the input data. In order to increase the over-
all segmentation accuracy, the suggested Ki-Net cascades
with U-Net and has a stronger edge capture capability than
U-Net. Along with improving segmentation accuracy,
Ki-Net’s low-level fine edge feature map and U-Net’s high-
level shape feature map enable quick convergence for small
anatomical markers and fuzzily noisy boundaries.

In order to build a particular kind of convolutional neural
network, dense connections are frequently used. Each layer’s
input in densely connected networks is taken from the outputs
of all preceding layers. Instead of each U-Net sub-block,
Guan et al. [13] proposed amodifiedU-Net made up of dense
connections. Although dense connection aids in obtaining
richer picture features, it also tends to increase the number of
parameters and somewhat lower the robustness of the feature
representation. All of the U-Net layers (from one to four
layers) were connected by Zhou et al. [14] This topology has
the benefit of enabling the network to automatically learn
the significance of features at various levels. Additionally,
the jump connections were changed to enable the decoder
to aggregate features with various semantic scales, creating
a highly adaptable feature fusion approach. The utilization of
thick connections continues to have the drawback of increas-
ing the number of parameters. In order to decrease the number
of parameters, a pruning procedure is incorporated into the
model optimization.

Deep networks typically outperform shallow networks
for CNNs, but they also have certain new issues such as
gradient disappearance, challenging network convergence,
and high memory footprints. Inception solves these issues.
Better performance is obtained by merging convolutional
kernels in parallel rather than deepening the network. Using
multi-scale convolutional kernels, the structure may extract
more complex visual features and combine those elements
to provide a better feature representation. Gu et al. [15] ’s
CE-Net proposal involved integrating Inception into the seg-
mentation of medical images. However, Inception is typi-
cally complicated, which makes it challenging to modify the
model.

Encoder-decoder-based structures have the drawback that
when downsampling, a certain amount of information is
lost that cannot be made up by upsampling. Hu et al. [16]
suggested a channel-based attention module to address this
issue. This module calculates the weights of each channel in
parallel in the convolution operation branch, suppressing the
channels with trivial features, and emphasizing the channels
with important characteristics.

A brand-new attention mechanism built on local space
and combining channel attention was put forth by Woo [17].
In order to segment medical images, they compared the
effectiveness of channel attention, spatial attention, and var-
ious combinations of the three types of attention. They
then proposed the CBAM (solution block attention module),
a lightweight attention mechanism with both local space and
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FIGURE 1. Structure of CBAM attention module.

channel suppression that can be quickly applied to a variety
of convolutional neural network models.

In 2022, Wang [18] proposed yolo_v7, which, thanks to
its accurate and lightweight encoder, outperforms yolo_v4 in
terms of accuracy while reducing the network size by approx-
imately 75%. We modified the YOLO_V7 model to make
it work with our 3D feature extraction network, increasing
network accuracy and lowering network parameter count.

Since full-volume neural networks (FCNs) [1] were pro-
posed for the division field, U-type symmetrical structural
networking has become mainstream in the field of med-
ical imaging, and the proposal of U-Net [2] has inspired
a lot of creative transformation and exploration, includ-
ing the modification of network coders such as V-Net [4],
3D-UNet [3], etc., using jump-connection guidelines for
sampling information recovery, such as U-NET++ [13],
AttentionU-Net [19], RA-UNEet [20] and so on. Currently,
the mainstream approach is to combine the attention mecha-
nisms such as Transformers [21], SE-Block [15], CBAM [17]
and U-net [2], such as TransU-net [22], Swin-Unet [23], and
other methods to introduce the improvement in network per-
formance, which is obvious, but also brings an increase in the
number of network parameters, so we chose the lightweight
attention module of CBAM to be embedded in our division
network. Figure 1 illustrates the structure of the CBAM atten-
tion module.

More and more models are trained utilizing multimodal
fusion due to the peculiarity of medical data formats, such
as Dense Multi-path U-Net [24], Cascaded U-Net [25], etc.,
which employ multimodal training and so on to mine the
deep information between various modalities. Medical image
segmentation networks’ performance can also be enhanced
by adding multi-scale feature fusion modules.Polar Transfor-
mation M-Net [26], Focal Tversky Attention U-Net [27], etc.

II. RELATED WORK
The FCN (Full Convolutional Neural Network) architecture
is the fundamental CNN architecture for the majority of
semantic segmentation problems. It can be thought of as
consisting of two encoder and decoder components, where
the encoder ismade up of a stack of convolutional and pooling
layers and the decoder is made up of an inverse convolutional
and convolutional layer. When compared to the basic CNN

architecture, the FCN [1] architecture omits the linear layer
and is more effective because it doesn’t have to deal with
issues with duplicate storage and computational convolution
because it uses pixel blocks instead.

It adds a jump layer to the FCN so that the encoder’s data
can be utilized to direct the decoder’s information recovery,
which boosts the network’s speed. U-Net [2] is a network
topology created expressly for medical picture segmentation.
In order to further boost the network’s performance, Res-U-
Net [5] uses a jump layer in the convolutional layer inside the
encoder and decoder. On the other hand, multiResUNet [6]
is expressly created with a ResPath rather than a jump
connection.

Based on the DeepLab architecture, Chen et al. intro-
duced the DeepLabV3+ architecture [28]. The DeepLab
technique [29] employs a null convolutional sum (ASPP)
(Atrous Spatial Pyramid Pooling) to tackle the segmentation
problem and a conditional random field (CRF) model for
post-processing. DeepLab, unlike FCN and U-Net, does not
focus on the symmetry of the structure, and this two-branch
synthesis structure can more effectively reduce the compu-
tational effort of the network. The encoder of DeepLabV3+
is primarily based on null convolution and ASPP, while the
decoder uses simple low-level and deep-level feature synthe-
sis. Figure 2 shows the structure of several networks, and their
similarities and differences can be seen.

Where the channel attention module calculation process
can be described as the following equation:

Mc (F) = σ (MLP(AvgPool (F)) +MLP(MaxPool(F)))

= σ (W1(W0(Fcavg)) +W1(W0(Fcmax))), (1)

the process of calculating the spatial attention module can be
described as the following equation:

MS (F) = σ
(
f 7×7 ([AvgPool (F) ;MaxPool (F)])

)
= σ

(
f 7×7([FSavg;F

S
max])

)
. (2)

Figure 2 demonstrates the difference and connection of the
four network structures, U-Net network adds hop connection
to FCN to enhance information fusion, and Res-U-Net spe-
cializes in U-Net by designing ResBlock for downsampling
and upsampling.DeepLab V3+ designs ASPP module for
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FIGURE 2. Top-down diagram of FCN,U-Net,Res-U-Net,DeepLabV3+ network structure.

image segmentation without pursuing a completely symmet-
ric structure.

III. BSANET
A. OVERVIEW
Figure 3 illustrates the network structure of BSANET, which,
from an overall view, consists of two large modules, the
encoder module and the decoder module. We use the FCN
structure as the most basic framework, incorporating the
most advanced encoder and decoder modules in the current
computer vision field, and adding a multi-scale feature fusion
and attention module, which allows end-to-end training of
medical images. We borrowed the high-performance feature
extraction module from YOLO_V7 [17] to design a feature
extraction network suitable for medical impact segmentation,
firstly, the image is passed through the first CBS layer to boost
the channel of the image to 32, and then two branches are
formed by two downsampling, and after two downsamplings,
branch one passes through the 3D-DAPPM [30] multi-scale

feature fusion module It reaches the decoder module. Branch
II passes through the SPPCSPC pyramid pooling module
after two more downsamplings, and then reaches the decoder
module after two upsampling. The branch that goes through
3D-DAPPM has low-level features, and the branch that goes
through SPCSPC has deep-level features, and after 2 upsam-
pling it is spliced with the low-level feature map of branch
one, and then it goes through 3×3 convolution to achieve the
effect of feature fusion, and finally it goes through upsam-
pling to get the output.

Each downsampling is followed by a CBAM hybrid atten-
tion module, which uses the global attention mechanism and
the channel attention mechanism to reduce the loss caused by
downsampling.

B. BACKBONE BLOCK
An efficient and accurate feature extraction module is the key
to the whole network. By controlling the shortest and longest
gradient path, the deeper network can learn and converge
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FIGURE 3. BSANet network structure diagram.

efficiently. As shown in Figure 3, ELAN is a four-branch
aggregation structure, which learns deeper features by deep-
ening the network while stitching and fusing features from
different levels to achieve efficient and accurate feature
extraction. Depending on the output dimension of the last
convolutional block in the ELANmodule, the ELANmodule
can optionally change the Channel dimension of the changing
feature map. The MP module combines the two methods to
extract features of different depths, giving full play to the
advantages of the two downsampling methods. An ELAN
module and an MP module can be regarded as one down-
sampling module. Unlike FCN and U-Net, which simply
combine convolutional layers for downsampling, ELAN and
MP modules combine for downsampling without increas-
ing the number of network parameters, the network level is

deeper, and shallow features are retained for fusion, which
is more efficient and accurate than other networks. sppcspc
module is a spatial pyramid pooling aggregation module, and
its role is to fuse multi-scale information. It is worth stating
that we are inspired by the efficient feature extraction network
of YOLO_V7.

C. 3D-DAPPM
We enhanced the DAPPM [30] (Deep Aggregate Pyramid
Pooling) module for our network, which is a five-branch
structure that uses convolution kernels of various sizes to
downsample the input feature maps for 2D semantic seg-
mentation. For 3D convolution, we use a triple convolution.
In 3D convolution, we use trilinear interpolation for upsam-
pling, stitch the results from each branch separately to get
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FIGURE 4. Deep aggregation pyramidal pooling detail diagram.

the outputs Y1–Y5, stitch the results from the five branches
together in the depth direction, and connect the residuals with
the input feature map to achieve feature fusion.

We use the multiscale information to guide the upsampling
information recovery by using a quarter size of the input
featuremap to input to the 3D-DAPPMmodule and fusing the
multiscale data of the shallow sub-feature map with another
branch of the higher-level feature map.

As shown in Figure 4, using the input feature maps and
picture level data produced by global average pooling, we use
a quarter feature map input and employ a large pooling kernel
with linear steps to construct 1/8, 1/16, and 1/32 image res-
olution feature maps, respectively. The y on each branch can
be expressed as the following equation for each input x:.

yi =


C1×1 (x) , i = 1
C3×3

(
U

(
C1×1

(
p4i−3,2i (x)

))
+ yi−1

)
, 1 < i < n

C3×3
(
U

(
C1×1

(
Pglobal (x)

))
+ yi−1

)
, i = n.

(3)

D. LOSS FUNCTION AND EVALUATION INDEX
The total loss is the sum of dice loss and cross-entropy loss:

Ltotal = Ldice + LCE , (4)

dice loss:

Ldice = −
2
|k|

∑
k∈K

∑
i∈I u

k
i v
k
i∑

i∈I u
k
i +

∑
i∈I v

k
i

, (5)

where u is the network’s softmax output and v is the split
label’s one-hot encoding.

An evaluation metric used in segmentation is called Miou.
Similar to semantic segmentation, medical picture segmen-
tation needs the classification of each pixel and the right

labels and expected results can be thought of as sets. It is
possible to determine the accuracy of the algorithm for var-
ious segmentation objects by taking the intersection of the
two sets, or the number of predicted pairs of pixels, for each
category and dividing it by the concurrent set of the two sets,
or the number of predicted pairs of pixels plus the number of
predicted wrong pixels.

MIOU =
1

k + 1

∑k

i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

. (6)

IV. EXPERIMENTS AND RESULTS
A. BRAIN TUMOR SEGMENTATION
1) OVERVIEW
Brain tumors are usually diagnosed using multimodal

MRI, including four four-modal data: native T1-weighted
(T1), contrast T1-weighted (T1-Gd), T2-weighted (T2) and
T2 liquid-attenuated inversion recovery (FLAIR) image
sequences, and we need to apply algorithms to label and
merge three nested subregions in the images: whole tumor
(WT), tumor core (TC) and enhancing tumor (ET) segmen-
tation. Brain tumor segmentation has proven to be a very
difficult subject.

Experiment A and Experiment B were carried out on a
Linux server equipped with an RTX A5000 (24 GB) graphics
card and an Intel(R) Xeon(R) Gold 6330 CPU running at
2.00 GHz. It was required to make sure that the GPU graphics
RAM was 12 GB or more because a 3D network has more
parameters than a 2D network.

2) DATASET
The BRATS2021 dataset, the oldest of all MICCAI contests,
served as the basis for our model’s training and validation.
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TABLE 1. Comparison with different networks of Dice and HD95 evaluation metrics.

TABLE 2. Ablation experimental data.

It is one of the most advanced resources for learning medical
picture segmentation and has been used for ten years straight
through 2021. The BRATS dataset, which contains a training
set (1251 cases), a validation set (219 instances), and a test
set (530 cases) of mpMRI scans from a total of 2000 patients,
is multi-institutional, multi-parametric, and multimodal. The
validation and test sets lack segmentation labels while
the training set has both photos and labels for each
section.

3) PRE-PROCESSING AND AUGMENTATION
We used picture enhancement methods on the images such
as center cropping, random flip, Gaussian noise, contrast
and brightness modification. Most of the medical impact
datasets are MRI multimodal datasets, so multimodal train-
ing provides a better test of the connection between several
modalities compared to unimodal training. We wrote images
of the same case in 3 modalities with GT images into the
same H5 file to synthesize 4D images for training. The seg-
mentation challenge for brain tumors has three categories,
four input channels, and the data format is H×W×D×C,
where C=4.

4) RESULTS
Figure 5 shows the loss curves of BSANet and U-Net dur-
ing the training process. We visualized some of the results,
as shown in Figure 6. The results are provided in Table 1 using
U-Net with Attention-UNet as the baseline criterion. When
we examine the convergence of BSANET and Unet during
the training process, we can see that the network converges

FIGURE 5. Comparison of the loss curves of BSANet and UNet during
training.

much more quickly than UNet and has a far lower initial
loss. We compared the outcomes with those of other widely
used models after validating our model on the validation set.
Our model performs better than other network models in
the test set, according to the experimental results. We also
examine the impact of the DAPPM and CBAM attention
modules on the network structure. The experiment’s findings
are displayed in Table 2. The results of the experiments
demonstrate that the accuracy of the network structure is pos-
itively influenced by both the CBAM attention module and
the DAPPM module. Because the attention mechanism will
lessen information loss during downsampling and multiscale
pyramidal pooling will fuse multiscale information to guide
the upsampling recovery, using FCN with attention mecha-
nism and multiscale information fusion model is preferable
to using FCN network alone.
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FIGURE 6. Tumor segmentation visualization images.

FIGURE 7. The loss curve during the training process.

The first column is the original image, the second col-
umn is the GT segmentation map, and the third and fourth
columns are the segmentation maps of 3DU-Net, TransUNet
and BSANet, respectively.

B. MULTI-ORGAN SEGMENTATION
1) OVERVIEW
Segmenting the abdominal organs is essential for clinical
diagnosis since the abdominal organs have some mobile
and variable features that cause them to have a diversity of
forms and sizes. The difficulty of segmenting the abdominal
organs is particularly challenging due to the indistinct demar-
cation between the abdominal organs. The most common

multi-organ segmentation methods today use deep learning
techniques.

2) DATASET
The 30 people in the BTCV dataset [31] had their abdomens
CT-scanned, and clinical radiologists at Vanderbilt Univer-
sity Medical Center directed interpreters to label 13 organs
on those scans. Each volume underwent different pre-
processing by having the intensity normalized between
[-1000,1000] HU and [0,1]. During the preprocessing phase,
every image was resampled to an isotropic voxel spacing
of 1.0 mm. The chosen data format was H × W × D × C,,
where C=1. As a 13-class, 1-channel input segmentation
job, multi-organ segmentation was completed and supplied
into BSANet.

3) RESULTS
Figure 7 shows the loss curve during training, and Figure 8
shows some of the visualization results. The outcomes are
reported in Table 3 using U-Net as our baseline crite-
rion. We still use the FCN network structure and add the
lightweight attention mechanism module to the network
structure, which reduces the overall network parameters.
We also use the 3D network, which is superior to the
2D network in mining the different modalities in medical
images, and the experimental results show that our network
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FIGURE 8. Shows the segmentation results of different algorithms on the multi-organ dataset.

TABLE 3. Comparison of the accuracy of different networks on multi-organ segmentation.

structure outperforms other networks in terms of accuracy
on the BTCV dataset. 3D networks have higher accuracy
rates than 2D networks because they are better able to mine
the spatial information of several imaging modalities in
medical images. The network using the Transformer global
attention mechanism has better performance than the tra-
ditional FCN architecture, but the fusion of information at
different scales and depths in the high-performance feature
extraction module of BSANet allows the whole network to
show superior performance in segmenting organs of different
sizes.

The first column shows the original image, the sec-
ond column shows the GT labels, and the third, fourth,
and fifth columns show the segmentation results of U-Net,
nn-UNet [32], and BSANet, respectively.

V. DISCUSSION AND CONCLUSION
In this study, we present a deep learning networkmodel with a
number of critical features, including a high-performance fea-
ture extraction module, an effective decoder module, a multi-
scale information fusion module, and an attention module.
These modules greatly increase the network’s segmentation
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accuracy for medical images, are highly flexible and adapt-
able, and are simple to include in different CNN architectures.

The performance of the CNN network can be improved
by designing an attention module with high accuracy and a
multi-scale information fusion module. We have conducted
experiments on the brain tumor segmentation dataset and
the multi-organ segmentation dataset, respectively. On the
brain tumor segmentation dataset, we have also conducted
comparison experiments. From the comparison experiments,
we can see the improvement of each module on the network
performance.

Since the majority of medical pictures are 3D structures
like CT and MRI, we suggest a network structure based
on 3-dimensional segmentation.Medical image segmentation
is crucial for clinical purposes. BSANet beats existing 3D
medical image segmentation networks now in use in terms of
network performance. Deep learning is playing an increas-
ingly visible role in the field of intelligent medicine, and
the use of artificial intelligence for medical research is of
extraordinary significance. Hopefully, in the near future, our
network will play a role in the medical environment, helping
doctors to diagnose patients’ conditions more accurately and
quickly.
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