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An Intelligent Rehabilitation Assessment Method
for Stroke Patients Based on Lower Limb

Exoskeleton Robot
Shisheng Zhang , Liting Fan , Jing Ye, Gong Chen, Chenglong Fu , and Yuquan Leng

Abstract— The 6-min walk distance (6MWD) and the
Fugl-Meyer assessment lower-limb subscale (FMA-LE) of
the stroke patients provide the critical evaluation standards
for the effect of training and guidance of the training
programs. However, gait assessment for stroke patients
typically relies on manual observation and table scoring,
which raises concerns about wasted manpower and sub-
jective observation results. To address this issue, this
paper proposes an intelligent rehabilitation assessment
method (IRAM) for rehabilitation assessment of the stroke
patients based on sensor data of the lower limb exoskele-
ton robot. Firstly, the feature parameters of the patient
were collected, including age, height, and duration, etc. The
sensor data of the exoskeleton robot were also collected,
including joint angle, joint velocity, and joint torque, etc.
Secondly, a gait feature model was constructed to deduce
the walking gait parameters of the patient according to
the sensor data of the exoskeleton, including the support
phase to swing phase ratio, step length and leg lift height
of the patient, etc. Then, the 6MWD and FMA-LE values
were collected by traditional methods, feature parameters,
gait parameters and human-machine interaction parame-
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ters (joint torque) of the patient were adopted to train the
rehabilitation assessment model. Finally, the assessment
model was trained by a machine-learning based algorithm.
The new stroke patients’ the 6MWD and FMA-LE values can
be predicted by the trained model. The experimental results
present that the prediction accuracy for the 6MWD and
FMA-LE values reach to 85.19% and 92.66%, respectively.

Index Terms— Intelligent rehabilitation assessment,
6MWD, FMA-LE, lower limb exoskeleton robot, machine
learning.

I. INTRODUCTION

STROKE is one of the top three causes of death worldwide
and a leading cause of adult disability [1]. Studies have

proved that up to 90% of the stroke patients have some kind
of dysfunction, with motor dysfunction highly prevalent [2].
Asymmetric gait patterns, lower limb spasticity on the hemi-
plegic side, impaired ability to stand and shift center of gravity
are observed in most of the stroke patients, thereby limiting
their walking ability. 65% to 85% of the patients can regain
basic walking ability within 6 months after stroke through
early rehabilitation training [3].

With the development of exoskeleton technology, therapists
are gradually replaced by robots in the rehabilitation training
process. Upper limb exoskeleton robots have been adopted
in rehabilitation training of the stroke patients [4], [5]. And
several lower limb exoskeleton robots have been developed to
promote gait rehabilitation for the patients, such as LOPES [6],
Lokomat [7], WalkTrainer [8] and ALEX [9]. Moreover, some
exoskeleton robots such as Indego [10], HAL [11], Exo [12]
and BEAR-H [13], have been routinely adopted in hospitals
and for individual patient.

Rehabilitation assessment is an important link to evaluate
the training effect and guide the formulation of training
programs [14]. Correct rehabilitation assessment provides
guidance and help therapists formulate rehabilitation training
process for the patients, so as to shorten their recovery
procedure. Clinically, 6-min walk distance (6MWD) [15],
[16] and Fugl-Meyer assessment lower-limb subscale (FMA-
LE) [17], [18] are important measurements and reference
indicators for evaluating the actual rehabilitation status of the
stroke patients. 6MWD is the test that records the distance a
patient walks in 6 minutes. The measurement process requires
not only the cooperation of multiple therapists and medical
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staffs, but also a large area of space for a long time [19].
The traditional 6MWD measurement wastes vast manpower
and resources of the hospital, which brings negative affects
to the rehabilitation training of other patients. For the FMA-
LE process, the patients are asked to complete the prescribed
movements in turn. The therapist observes and scores the
patients according to the difficulty of completing the move-
ments. A certain subjectivity in the scoring process causes a
negative impact on standardization [20]. Due to the subjective
bias, therapists could obtain different assessment results and
different rehabilitation plans for the same patient. Therefore,
it is expected to propose a standard, convenient and effective
method for intelligent rehabilitation assessment for the stroke
patients.

Assessing patients’ rehabilitation via exoskeleton is a con-
venient, efficient and economical approach with the relative
technology being gradually applied in patients’ rehabilitation
training. Lu et al. [21], proposed an unsupervised learning
approach to identify key features affecting the rehabilitation
process of the stroke patients based on the data collected
by rehabilitation robot sensors. Lee et al. [22], developed the
Harmony upper limb rehabilitation exoskeleton to measure the
arm and shoulder angles accurately. The accurate measurement
of angles brings the exoskeleton the ability not only to perform
rehabilitation training, but also to monitor training progress
and improve the training efficiency. Grimm et al. [23] demon-
strated the feasibility of effective assessment of upper limb
range of motion for the severely impaired stroke patients
by applying independent assessment of single joint motion
via exoskeleton in clinical trials. Ding et al. [24] proposed
a quantitative assessment system based on force feedback
and machine learning algorithm for the rehabilitation robot,
which provides refined and quantitative assessment for the
wrist motion function of the stroke patients. In conclusion,
it is feasible to evaluate the rehabilitation of the patients via
sensor data on robotics. However, there is no case about direct
rehabilitation assessment of the patients using exoskeleton
robot in the field of lower extremity rehabilitation.

This paper presents a novel intelligent rehabilitation assess-
ment method (IRAM) for the stroke patients based on lower
limb exoskeleton robot. Firstly, the feature parameters of
the patients were collected, including age, height, hemiplegic
side and duration (in days). Secondly, the gait feature model
was constructed based on the data collected by the sensors
when the patient was training with the exoskeleton robot.
The gait feature model deduces the gait parameters of the
patient, including the support phase to swing phase ratio, step
length and leg lift height, etc. Then, according to feature
engineering, the main features that affecting 6MWD and
FMA-LE values were analyzed and selected from the collected
parameters of the patients, such as feature parameters, gait
parameters and human-machine interaction parameters (joint
torque). Finally, a machine learning algorithm was adopted to
train a rehabilitation assessment model to predict the 6MWD
and FMA-LE values of the stroke patients. With the proposed
method, the 6MWD and FMA-LE values of a new stroke
patient can be predicted by the robot as the patient walking
smoothly on a flat surface for 30 seconds wearing the lower

limb exoskeleton. 66 stroke patients participated in the clinical
trial, the prediction results by the robot were compared with
the results collected in the clinical trials to verify the feasibility
and effectiveness of the method.

This paper is organized as follows. In section II, we intro-
duce the method of the IRAM. In section III, the experimental
results for the rehabilitation assessment prediction using the
IRAM will be presented. The discussion will be presented in
section IV, and the conclusion will be drawn in section V.

II. METHOD

The structure of the IRAM is presented in Fig. 1, which
contains the following modules. 1) Data acquisition module.
It collects and preprocesses patients’ body feature parameters,
sick condition and biomechanical parameters of motion. 2)
Feature extraction module. A gait feature model is con-
structed to deduce the gait parameters of the patient based
on the collected sensor data of the exoskeleton robot. 3)
Model training module. XGBoost machine learning algorithm
was adopted to train the rehabilitation assessment model
based on the patients’ feature parameters, gait parameters and
human-machine interaction parameters. 4) Model application
module. The rehabilitation assessment model predicts the
6MWD and FMA-LE values of stroke patients when working
in the module-assessment mode.

A. Data Acquisition
We firstly collected the basic body feature parameters and

sick condition of the patient. Including the following 7 feature
parameters, gender (GR), age (AG), height (HT) H , weight
(WT) W , hemiplegic side (HS), stroke type (ST) and duration
(DR). Then the therapists conducted lower limb gait rehabil-
itation training for the stroke patients with exoskeleton under
clinical conditions. Meanwhile, the 6MWD and FMA-LE val-
ues of the patients after rehabilitation training were regularly
collected via traditional methods.

The exoskeleton robot collected the biomedical parameters
of motion of the patients during the rehabilitation training pro-
cess with the following sensors. The collection of biomedical
parameters in this paper utilized 15 sensors of the BEAR-H
exoskeleton, including: two pressure sensors on the feet, six
angle sensors, six torque sensors, and one IMU. More detailed
description about the sensors will be presented in Chapter 3.1.
Prototype of the Exoskeleton Robot.

B. Feature Extraction
The effect of IRAM is determined by the feature factors

hidden in the mobility of patients. However, it is critical to
extract the feature factors of the stroke patients in order to
input the feature factors into the rehabilitation assessment
model. The feature parameters adopted in the rehabilitation
assessment model affects the accuracy of the prediction results
directly. Therefore, the feature parameters determine the upper
limit of the accuracy of the prediction results, while the
machine learning algorithm can only approach the upper limit
in various paths.
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Fig. 1. Diagram of the working principle of the IRAM.

The gait feature model was constructed to calculate the
feature parameters of the stroke patients during the reha-
bilitation training process, including the support phase to
swing phase ratio, the average step length, the average leg
lift height, the joint angles difference, the tilt angle and the
pace, etc. The joint torque value can be used to analyze the
patient’s gait function and the degree of muscle recovery [25].
As shown in Table I, 42 selected feature parameters were
adopted in constructing the model, including 7 (Index 1-
7) basic feature parameters collected from the patients, 16
(Index 8-23) feature parameters collected by the sensors of
the robot, and 19 (Index 24-42) feature parameters constructed
by the gait feature model. The explanation of the following
paragraphs will cover several critical feature parameters, while
the rest of the parameters will be presented in Appendix.

1) Construction of Parameter of the Support Phase to Swing
Phase Ratio:

K =
t1
t2

(1)

where t1 represents the time of support phase, t2 represents the
time of swing phase. The ratio of the left/right side support
matches with the ratio of the healthy/affected side support
(HSSR, ASSR) according to the patient’s specific condition.

2) Construction of Parameter of the Step Length: Step length
represents the distance between two feet when standing. Step
length is a critical parameter to evaluate the gait quality and
stability [25]. There are significant differences of the step

length between the healthy side and the affected side of the
stroke patients. Therefore, restoring the symmetry of step
length is a common goal for the rehabilitation training. The
feature parameter of the patient’s step length is constructed
by the gait model whose schematic diagram is presented in
Fig. 2.

L1 = l1 sin θ1 + l2 sin (θ1 − θ2)

L2 = l1 sin θ3 + l2 sin (θ3 + θ4)

M = W · sin α

L = L1 cos α + L2 cos α + M (2)

where l1 represents the thigh length of the exoskeleton robot,
and l2 represents the calf length of the exoskeleton robot.
θ1 represents the angle of forefoot hip joint, θ2 represents the
angle of forefoot knee joint, θ3 represents the angle of hindfoot
hip joint, and θ4 represents the angle of hindfoot knee joint.
α represents the hip joint rotation angle, W represents the hip
joint length of the exoskeleton robot, and L represents the step
length. The left/right step length (L L , L R) matches with the
average healthy/affected step length (HSL, ASL) according to
the patient’s specific condition.

3) Construction of Parameter of the Leg Lift Height: There
is a significant difference in the leg lift height between the
healthy side and the affected side of the stroke patients. What’s
more, it brings a positive influence to assess the recovery
situation of the patients with doing research on the change
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TABLE I
LIST OF FEATURE PARAMETERS OF THE REHABILITATION ASSESSMENT MODEL

Fig. 2. Schematic diagram of the gait model.

of leg lift height [25]. The following formula represents the
construction of parameter of the leg lift height.

H1 = l1 cos θ1 + l2 cos (θ1 − θ2) + l3 cos (θ1 + θ5 − θ2)

H2 = l1 cos θ3 + l2 cos (θ3 + θ4) + l3 cos (θ6 − θ3 − θ4)

H = H1 − H2 (3)

where l3 represents the foot length of the exoskeleton robot;
θ5 represents the angle of forefoot ankle joint, and θ6 repre-
sents the angle of hindfoot ankle joint. H represents the leg
lift height. The average left/right side leg lift height (HL , HR)
matches with the average healthy/affected side leg lift height
(HLLH, ALLH) according to the patient’s specific condition.

C. Construction of the Rehabilitation Assessment Model
Feature selection is an important problem in the field of fea-

ture engineering [26], whose goal is to find the optimal feature
subset. Feature selection can improve the generalization ability
of the model, reduce the possibility of overfitting, reduce the
time cost of model training, and increase the interpretability
between the feature and the target value by eliminating the

irrelevant or redundant features. The embedded approach [27]
is adopted to screen all feature parameters and eliminate
minor feature parameters. The mechanism of the embedding
approach firstly trains the machine learning algorithm to obtain
the weight coefficients of each feature. Then the features are
selected according to the weight coefficients sorted from the
largest to smallest. A total of 48 feature parameters were
generated during the feature parameter construction process.
After feature selection, the remaining 42 core feature param-
eters presented in Table I were adopted as the final input for
the model training. Meanwhile, the 6MWD and the FMA-LE
values of the patients were collected and set as the target values
for model training in clinical trials. The feature parameters
and the target values were input into the XGBoost regression
algorithm [28] for training in order to obtain the rehabilitation
assessment model. The trained model is able to predict the
6MWD and the FMA-LE values of the stroke patients.

The intelligent rehabilitation assessment method of the
exoskeleton robot for the stroke patients proposed in this paper
takes the XGBoost (eXtreme Gradient Boosting) regression
algorithm [28] as the theoretical base. This algorithm solves
the problem with the following advantages, including high
accuracy, high flexibility, parallelism supported. What’s more,
it reduces the potential issue of overfitting and the quantity of
computation by column sampling. A comparison of predictive
performance based on other machine learning algorithms, such
as random forests regression (RFRegressor), logistic regres-
sion (LRegressor), and multi-layer perceptual neural networks
regression (MLPRegressor), is also presented.

As presented in Table I, a total of 42 feature parameters
(X ) were collected and taken as the input of the rehabilitation
assessment model, including the 7 body feature parameters of
the patients, the 16 feature parameters collected by the sensors
of the robot, and the 19 feature parameters constructed by
the gait feature model. The 6MWD and the FMA-LE values
were set as the target parameters (γ ) which were collected
from the patients in clinical trials. The 6MWD and FMA-LE
values of the stroke patients predicted by the rehabilitation
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assessment model represent the prediction results of the model
(γ̂ ). t decision trees were constructed based on the feature
parameters (X ) and the target values (γ ) of the model, thus
the prediction result (γ̂ ) is generated via the decision trees.

The model dataset contains n = 2032 samples and m =

42 feature parameters. The integration of all the decision
trees is applied for the IRAM, as presented in the following
equation:

γ̂ = γ̂ (t)
=

n∑
i=1

f (t)
(
ϕ(t) (xi )

)
(4)

where f (t) represents the node weight of an independent tree
structure and the weight of the leaf node corresponding to
the decision tree t . ϕ(t) represents the sub-feature samples
xi which were selected from the feature parameters (X ) and
contained 80% of the total quantity by the decision tree t . The
samples of training data and feature parameters were randomly
selected in order to maintain the variety of the input values and
prevent the overfitting issue of the model. γ (t) represents the
6MWD and FMA-LE values of the stroke patients collected
in clinical trials which were extracted from the sample feature
ϕ(t). To train the decision tree model, the mean square error
(MSE) is adopted as the optimization function of the objective.
As presented in the following equation:

l
(
γ̂ (t), γ (t)

)
=

1
2

(
γ̂ (t)

− γ (t)
)2

(5)

The decision tree model may cause γ̂ (t) splitting in the
direction of approaching to γ (t), which could result in over-
fitting if only the mean square error is adopted as the opti-
mization objective. Therefore, the regularization term � ( ft )

is introduced to reduce the complexity of the model. The
additional regularization term smoothies the values of trained
weight and avoids overfitting. The object of the regularization
tends to select a model that adopts simple and predictive
functions which reduce the possibility of overfitting. Finally,
the equation of the objective function lists as following:

Obj (t) =

n∑
i=1

l
(
γ (t), γ̂ (t−1)

+ ft

(
ϕ(t) (xi )

))
+ � ( ft ) (6)

� ( ft ) = ϒT +
1
2
λ∥w∥

2 (7)

In Taylor expansion form:

f (x + 1x) ≃ f (x) + f ′(x)1x +
1
2

f ′′(x)1x2 (8)

Define:

gt = ∂γ̂ (t−1)l
(
γ (t), γ̂ (t−1)

)
ht = ∂2

γ̂ (t−1)l
(
γ (t), γ̂ (t−1)

)
(9)

Obj (t) ≃

n∑
i=1

[
l
(
γ (t), γ̂ (t−1)

)
+ gt ft

(
ϕ(t) (xi )

)
+

1
2

ht f 2
t

(
ϕ(t) (xi )

)]
+ � ( ft ) (10)

where T represents the number of the leaves of the decision
tree model. w represents the weight values of the leaves. ϒ

represents the difficulty of splitting the node. λ represents the
coefficient of the regularization L2.

Then, the greedy algorithm is adopted to optimize the
objective function to obtain the decision tree model. More
detailed derivation process is contained in [28].

D. Application and Performance Evaluation of Model
The exoskeleton robot will be able to predict the value of

6MWD and FMA-LE of the stroke patients working in the
assessment mode, as long as the patients walk smoothly and
continuously on the flat surface for 30 seconds. Despite being
measured in supine position under clinical conditions, the
value of FMA-LE exhibits a strong correlation with walking
parameters. Similarly, walking function can indirectly serves
as an indicator of the 6MWD and FMA-LE value [29].

The performance of the rehabilitation assessment model
depends on the bias between the 6MWD and FMA-LE value
γ of the patients collected in clinical trials and the predictive
6MWD and FMA-LE value γ̂ . We take two approaches to test
the performance of the rehabilition assessment model, mean
absolute error (MAE) and root mean square error (RMSE).

Mean absolute error:

M AE =
1
n

n∑
i=1

∣∣γ̂i − γi
∣∣ (11)

Root mean square error:

RM SE =

√√√√1
n

n∑
i=1

(
γ̂i − γi

)2 (12)

where γ = {γ1, γ2, . . . , γn} represent the collected data, γ̂ ={
γ̂1, γ̂2, . . . , γ̂n

}
represent the predictive value, n represents

the number of samples.

III. EXPERIMENT

A. Prototype of the Exoskeleton Robot
The Bilateral Exoskeletal Assistive Robot (BEAR-H) is

adopted as the prototype for clinical trials in this paper,
as shown in Fig. 3. BEAR-H is a product from Shenzhen
MileBot Robotics Co., Ltd. The product has been certified by
the National Medical Products Administration (NMPA) and
has been adopted for rehabilitation in clinical trials for the
stroke patients in several hospitals. Brief introduction of the
BEAR-H’s functions is as following:

• BEAR-H integrates a series of sensors to capture the
changes of patient’s limb and monitor the robot’s posture.
Specifically, angle sensors are adopted to measure the
flexion/extension of the robot hip/knee/ankle. Inertial
measurement units integrated in the circuit board are
adopted to measure the angle and acceleration informa-
tion of the lower limb. Pressure sensors embedded in the
sole are used to inspect the contact status. The output
torque/force can be obtained by measuring the deflection
of the elastic element (as read by encoders at both ends
of the flexible actuator).
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Fig. 3. Prototype of the exoskeleton robot.

• BEAR-H is the first commercial rehabilitation robot
whose kinematic joints are fully driven by flexible actu-
ators, making it flexible and safe for interaction from
the hardware’s perspective. The robot’s functions of joint
auxiliary mainly include: hip joint flexion/extension, knee
joint flexion/extension and plantar flexion/ dorsiflexion.

• BEAR-H takes the adaptive impedance control algorithm
to track the motion reference trajectory. It ensures the
safety of human-machine interaction, also provides more
voluntary movement space for the patients. Therefore,
it improves the effect and the experience of the reha-
bilitation training [13], [30].

• BEAR-H includes three rehabilitation modes, i.e., weight
support, training, and intelligent interaction. The weight
support mode is designed for early stages of rehabili-
tation. In the training mode, the robot is controlled to
follow a predefined trajectory to provide assistance for
the patient. In the intelligent interaction mode, the level
of assistance and frequency of the robot’s trajectory is
automatically adjusted online by monitoring the patient’s
walking pattern [13].

B. Clinical Trials
The feasibility and effectiveness of IRAM were verified

in clinical trials. As presented in Fig. 4, the stroke patients
wore the exoskeleton robot for gait rehabilitation training,
and the real values of 6MWD and FMA-LE were collected
regularly after the training. The patients were informed of
the purpose of the study and signed the informed consent
forms before the formal clinical trials. Then several initial
trainings were conducted to help the patients get familiar with
the robot. Therefore, the patients were ensured being able to
participate in subsequent formal trials. The initial trainings
lasted 3-5 days, the formal trials lasted for 4 weeks, and
5 days each week. During the formal trials, the patients were
asked to walk twice a day with the robot worn on, and each
walking trial lasted about 30 minutes. This study was approved
by the Ethics Committee of the First Affiliated Hospital of
Nanjing Medical University (No. 2019-MD-43). The study
was registered in the Chinese Clinical Trial Registry with
the unique identifier: ChiCTR2100044475. 66 stroke patients
participated in the formal clinical trials in total, with 49 male

Fig. 4. Clinical trials for the stroke patients. (a) The patient receives the
rehabilitation training with the exoskeleton robot. To ensure the safety
and avoid secondary damage for the patients by safety braces and
therapists. (b) The therapist collects the assessment metrics values of
the patient after the training.

patients and 17 female patients. The standards of selecting the
stroke patients are listed as following:

• The patients with stable vital signs and stable condition,
and the exercise test is suitable for the patients.

• The patients with age over 18 years or older and 75 years
or younger, weighting no more than 85kg, 1.55m-1.90m
in height, with no limits in gender.

• The patients were confirmed as first-episode stroke with
hemiplegia, including cerebral infarction and intracerebral
hemorrhage. The condition lasted between 2 weeks and
6 months after the onset.

• The patients with the ability to walk under supervision,
while the stability of walking decreased. The walking
speed of the patients was significantly lower than that
of person without disability of the same age.

• The patients with good cognitive function, who could
understand and actively participate in the training pro-
gram and agreed to sign the informed consent forms for
the clinical trials.

The patients with the following conditions were excluded:

• The patients with severely limited range of motion, which
limited the patients in walking movements.

• The patients with unhealed fractures or severe osteoporo-
sis.

• The patients with skin lesions or infections on the lower
limbs and the site where the robot was worn.

• The patients with other severe conditions.

The statistical data of physical feature parameters and sick
condition of the patients participating in the clinical trials
is presented in Table II. In Table II, the data of Duration
represents the time interval since the patient was diagnosed.
For example, a Duration of 15 means the patient was diag-
nosed 15 days ago. There are two types of strokes, cerebral
hemorrhage (CH) and cerebral infarction (CI). The condition
of hemiplegia is divided into left hemiplegia (LH) and right
hemiplegia (RH). Table II presents that the patients were
between 20 and 72 years old in age, 155 cm to 180 cm in
height, and 45 kg to 83 kg in weight. Therefore, the stroke
patients selected in the clinical trials are representative because
most of the feature parameters have been covered. The selected
patients in the clinical trials also covered the condition with
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TABLE II
STATISTICAL DATA OF THE PATIENTS

diagnosed time between 15 and 176 days, with 27 patients of
left hemiplegia (LH) and 39 patients of right hemiplegia (RH).
Additionally, the number of patients with CI is as twice as the
number of patients with CH, which matches the probability of
clinical trials occurring.

The process of the formal clinical trial consists of 2 parts,
gait training and data collection. The processes of gait training
process are listed as following. 1) Doing the initial test for
BEAR-H robot to ensure the functions of the robot system
are normal. 2) Assessing the patient’s condition by measuring
blood pressure and heart rate, continue the procedures when
the data readings are normal. 3) The patient wears the robot
and fasten the safety belt of the stent with the help of the
clinical staffs. Then the clinical staff input the patient’s body
parameters into the robot system. 4) The patient begins to
walk after the robot is turned on. 5) The therapists and the
clinical staff continuously monitoring and stop the procedure
is any safety issues arise. 6) The patient takes off the robot
after the walking phase. During clinical trials, BEAR-H adopts
intelligent interaction mode to encourage stroke patients to
exert voluntary efforts, so as to speed up the recovery and help
patients regain the functionality of natural limb movement.
The experiment lasted for 4 weeks and 5 days each week.
The patients walked twice a day with the exoskeleton robot
worn on, each walking test lasted about 30 minutes.

The data collection is divided into two parts. One part was
to collect the 6MWD and FMA-LE data before the treatment,
2 weeks after the treatment, and 4 weeks after the treatment
in the clinical trials. The other part was to obtain the motion
biomechanical data generated by the robot sensor during the
entire clinical rehabilitation experiment of the patients with
the exoskeleton robot worn on.

The data of the 66 stroke patients was collected during the
11-month clinical trials. It contained 2032 pieces of rehabili-
tation training data of the exoskeleton robot, 736 pieces of the
6MWD and FMA-LE data in clinical trials, and constructed
42 feature parameters. The four-fold cross validation method
was adopted to split the training data in order to verify the
effectiveness of the rehabilitation assessment model. As pre-
sented in Fig. 5, 12 stroke patients in the testing set were
randomly selected in one random cross-validation, the real
values collected in the clinical trials and the values predicted
by the model of the 6MWD and FMA-LE were analyzed.
The evaluation indexes of the model performance including
RMSE, MAE and accuracy present the statistical results after
the average processing.

C. Result
The 6MWD (in meters) values of the patients were com-

pared under two conditions, in the clinical trials and predicted
by the rehabilitation assessment model. The closer the pre-
dicted value of the rehabilitation assessment model of 6MWD
reaches to the real value in the clinical trials, the more
effective the model works in predicting 6MWD value, and
vice versa. The experimental results are presented in Fig. 5 (a)
and represent the distance deviation. It indicates the difference
between the distance that the patients walk in the clinical
trials and the distance predicted by the model after training.
The prediction accuracy of the model reached 85.19% when
the absolute value of the effective prediction deviation of the
6MWD was set as 20% of the real value.

Clinicians evaluate the effects of training by referring to
FMA-LE (Marks), which has become a standard for assessing
the rehabilitation efficacy after the stroke. Generally, the doctor
asks the patient to perform a series of tasks and then assesses
how hard the patient performs the task to calculate the value
of FMA-LE. Comparing the performance before and after
the rehabilitation training, the higher the score, the better the
rehabilitation efficacy, and vice versa. The results of FMA-LE
in the clinical trials and predicted by the model are presented
in Fig. 5 (b). The closer the FMA-LE value predicted by the
model reaches to the value collected in the clinical trials, the
more effective the rehabilitation assessment model performs
in predicting the FMA-LE value. The total score for FMA-LE
is 34. The prediction accuracy of the model reaches 92.66%
when the absolute value of the effective prediction deviation
of FMA-LE is set to 20% of the real value.

Fig. 6 presents the change trend of the prediction accu-
racy of the rehabilitation assessment model in predicting the
6MWD and FMA-LE values of the patients with the change of
the deviation value. In the situation of |γ − γ̂ | ≤ Deviation∗γ ,
the condition indicates the effectiveness of prediction when the
absolute deviation value is set to a percentage of the real value
(Deviation, in %). With the Deviation (in %) increases, the
prediction accuracy of the model for the 6MWD and FMA-LE
values of the patients gradually reaches to 100%. However,
the larger the Deviation (in %) value was set, the lower the
application value of the prediction model performs in the
clinical trials. Considering both the clinical application value
and the accuracy of the prediction model, the final Deviation
(in %) value was set to 20 (in %). Moreover, the variance
range of 6MWD and FMA-LE values of patients collected in
clinical trials is between 15% and 25%, which indicates that
it is acceptable to set the Deviation (in %) value to 20 (in %).

As the thermogram of correlation coefficient presented in
Fig. 7, there is a strong correlation between Rear Acceleration
(RA) with Average Healthy-Side Leg Lift Height (HLLH),
Average Affected-Side Leg Lift Height (ALLH) with HLLH,
Front Jerk (FJ) and Front Acceleration (FA), Rear Jerk (RJ)
and FA, Right Jerk (RTJ) and FJ, RJ and FJ, RJ and RTJ, Left
Jerk (LJ) and RTJ, Knee Torque Ratio (KTR) and Average
Affected-Side Knee Joint Torque (AKT) according to their
feature parameters (ρ > 0.85). The other feature parameters
present weak correlation or are basically irrelevant.
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Fig. 5. Value deviation of the 6MWD and FMA-LE collected in clinical
trials and predicted by the rehabilitation assessment model. (a) 6MWD
(in meters) and (b) FMA-LE (in Marks).

Fig. 6. The change trend of the accuracy of the intelligent rehabilitation
assessment model in predicting the 6MWD and FMA-LE value of the
patients when change the value settings of the Deviation (in %).

Fig. 8 (a) presents the influence of each feature parameter
on the prediction results of the 6MWD value. Stroke Type
(ST), Pace (PA) and Average Walking Frequency (WF) show
higher influence on the rehabilitation assessment model. Addi-
tionally, Bilateral Knee Angle Difference (BKAD), Weight
(WT), Age (AG), Average Affected-Side Leg Lift Height
(ALLH), and Average Healthy-Side Leg Lift Height (HLLH)
show decreasing influences on the model.

While Fig. 8 (b) presents the influence of each feature
parameter on the prediction results of the FMA-LE value.

TABLE III
STATISTICAL RESULTS OF THE RMSE AND MAE IN PREDICTING THE

6MWD AND FMA-LE VALUES BASED ON DIFFERENT MACHINE

LEARNING ALGORITHMS

Stroke Type (ST), Gender (GR) and Hemiplegic Side (HS)
are more important in the rehabilitation assessment model.
Additionally, Body Mass Index (BMI), Weight (WT), Average
Walking Frequency (WF), and Healthy-Affected Side Support
Phase to Swing Phase Ratio Difference (HASSRD) show
decreasing influences on the model.

In addition, Table III presents the statistical results of RMSE
and MAE for predicting 6MWD and FMA-LE values based
on different machine learning algorithms. It shows that the
rehabilitation evaluation model based on XGBoost algorithm is
effective in predicting 6MWD and FMA-LE values. Compared
with RFRegressor, LRegressor, and MLPRegressor algorithms,
the XGBoost algorithm presents better predictive performance
on this experimental dataset.

IV. DISCUSSION

A. Advantages
Experimental results presented in Fig. 5 prove that the

IRAM proposed in this paper is feasible and effective in
predicting the 6MWD and FMA-LE values of the stroke
patients. As presented in Fig. 8, the main feature parameters
that affect the value of the 6MWD and FMA-LE in the model
match with the results in clinical trials. Among them, the value
of 6MWD is mainly correlated with stroke type, pace and
average walking frequency, etc. [31]. The value of FMA-LE
is mainly correlated with stroke type, gender and hemiplegic
side, etc. [32]. The proposed method can alleviate the work
intensity of therapists and nursing staffs. It also increases the
efficiency and reduces the cost of measurement. What’s more,
the proposed measurement method is easy, convenient and
objective in execution.

The gait feature model constructed in this paper can solve
the gait parameters of the healthy side and the affected side
in the process of rehabilitation training. Clinically, analysis
on gait parameters and analysis on gait symmetry are often
included in the overall rehabilitation assessment of the stroke
patients. Analysis on gait parameters contains of the time
ratio of a single standing and swinging cycle, step frequency
and gait cycle of the affected side [33]. In the analysis of
gait symmetry, the swing phase symmetry rate (SPSR) and
step length symmetry rate (SLSR) of the stroke patients were
calculated by measuring the ratio of gait parameters between
the affected side and the healthy side [34]. The gait parameters
generated by the gait feature model can directly analyze the
gait and symmetry of the patients. This model brings several
advantages to the rehabilitation assessment procedures. Firstly,
it simplifies the measurement process of the patients. Secondly,
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Fig. 7. The thermogram of correlation coefficient between the feature parameters.

it does not require much intervention of therapists and nurses
in the process of collecting gait parameters of the patients.
What’s more, it saves the costs of the rehabilitation assessment
and much space for medical usage.

The exoskeleton robot achieves a closed loop of rehabilita-
tion training for the stroke patients. BEAR-H provides specific
training modes for each stroke patient in different stages
of rehabilitation, which meets the purpose of rehabilitation
training - “Assisted As Needed (AAN)”. Therapists diagnoses
the rehabilitation stage of the patients based on the assessment
indicators predicted by the rehabilitation assessment model
and the gait parameters constructed by the gait feature model.
With the generated parameters, therapists are able to adjust
the training mode of BEAR-H to provide suitable assistance
for the stroke patients.

B. Limitations
To some extent, the more feature parameters being con-

structed, the more accuracy of the model prediction. However,
more structural features mean more sensors are needed for the

exoskeleton system. The 42 features constructed in this paper
utilize 15 sensors of the BEAR-H exoskeleton, including: two
pressure sensors on the feet, six angle sensors, six torque
sensors, and one IMU. We expect that the rehabilitation assess-
ment model in this paper can be extended to existing exoskele-
ton robots. However, they, such as ALEX [9], Indego [10],
etc., have fewer sensors than BEAR-H exoskeletons, resulting
in fewer features constructed by these exoskeleton robots,
thus affecting the accuracy of model prediction. Therefore,
the method may not be directly applicable to existing rehabil-
itation exoskeletons. In the future, the corresponding sensors
can be added to the new version of these exoskeletons, and
then the rehabilitation assessment model in this paper can be
used for intelligent assessment.

The quantity of the training data is insufficient for the
rehabilitation assessment model. The rehabilitation assessment
model proposed in this paper has only 2032 training data
compared with the traditional machine learning models which
construct millions of training data. Insufficient training data
of machine learning algorithm could cause overfitting issues,
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Fig. 8. The influence of each feature parameter on the prediction results of the 6MWD value and the FMA-LE value. (a) Weight relationship
between 6MWD and feature parameters; (b) Weight relationship between FMA-LE and feature parameters.

which means the model performs well on the training set but
generalizes poorly on the testing set. With the increase of
clinical data of BEAR-H in the future, the training data of
the model will also be constantly increased. Therefore, the
rehabilitation assessment model will be constantly improved.

C. Future Plans
The prediction of the 6MWD and FMA-LE values has

been proved to be feasible and effective in clinical trials.
However, a rehabilitation assessment report of the stroke
patients is possibly directly generated based on the gait
parameters constructed by the rehabilitation assessment model.
The assessment report is able to score the stroke patient’s
rehabilitation status and provide suggestions for the subse-
quent rehabilitation training. The assessment report provides
the therapists with quantitative gait parameters of the patient
and predictive values of the rehabilitation assessment indexes.
The therapists can have a qualitative understanding of the
patient’s status of rehabilitation based on the score given by
the assessment report. Furthermore, the therapists would be
able to formulate corresponding rehabilitation training plans
for the patient with the advice given in the assessment report.
The above content presents our research plans in the future.

V. CONCLUSION

This paper presents a novel intelligent rehabilitation assess-
ment method (IRAM) for the stroke patients based on lower

limb exoskeleton robot. The assessment model predicts the
values of 6MWD and FMA-LE which are critical and nec-
essary indicators for the stroke patients in rehabilitation
assessment with minor involvement of therapists. The IRAM
based on lower limb exoskeleton robot proposed in this
paper actually extends the function of exoskeleton device.
The proposed assessment model works more efficiently and
objectively in obtaining the 6MWD and FMA-LE values than
the traditional manual measurement method. What’s more, the
exoskeleton robot achieves a closed loop for the rehabilitation
process of the stroke patients. The robot can be both adopted
for gait rehabilitation assessment and rehabilitation training
of the stroke patients at the same time. The results in clinical
trials have proved and verified the effectiveness and feasibility
of this proposed method. Additionally, the applications of the
IRAM can also be expanded to the single joint exoskeleton
robot, upper limb rehabilitation exoskeleton robot and pros-
thesis.

APPENDIX
THE REST OF THE MENTIONED GAIT FEATURE

PARAMETERS ARE AS FOLLOWING:
16 feature parameters are constructed directly by the sen-

sors on the exoskeleton robot. Average Walking Frequency
(WF) w; hip, knee, ankle joint angle on the left/right side
θL−h, θR−h, θL−k, θR−k, θL−a, θR−a . The left/right hip, knee,
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and ankle assisted torque TL−h, TRhh, TL−k, TR−k, TL−a, TR−a
with respective to the patient’s condition, which were matched
with the average hip, knee, and ankle torque (HHT, AHT,
HKT, AKT, HAT, AAT) on the healthy/affected side. Front
Tilt Angle (FTA) θT − f , Left Tilt Angle (LTA) θT −l , Right
Tilt Angle (RTA) θT −r , Front Acceleration (FA) a f , Rear
Acceleration (RA) ar , Front Jerk (FJ) J f , Rear Jerk (RJ) Jr ,
Left Jerk (LJ) Jl and Right Jerk (RTJ) Jr t .

Bilateral Hip Angle Difference (BHAD) 1θh

1θh = |θL−h − θR−h | (13)

Bilateral Knee Angle Difference (BKAD) 1θk

1θk = |θL−k − θR−k | (14)

Bilateral Ankle Angle Difference (BAAD) 1θa

1θa = |θL−a − θR−a | (15)

Bilateral Hip Motion Range Difference (BHMD) 1Mh

1Mh = |max (θL−h) − max (θR−h)| (16)

Bilateral Knee Motion Range Difference (BKMD) 1Mk

1Mk = |max (θL−k) − max (θR−k)| (17)

Bilateral Ankle Motion Range Difference (BAMD) 1Ma

1Ma = |max (θL−a) − max (θR−a)| (18)

Hip Torque Ratio (HTR) KT −h

KT −h =
TAHT

W
(19)

where, TAHT represents the Average Affected-Side Hip Joint
Torque (AHT), W represents the weight of the patient (WT).

Knee Torque Ratio (KTR) KT −k

KT −K =
TAKT

W
(20)

where, TAKT represents the Average Affected-Side Knee Joint
Torque (AKT), W represents the weight of the patient (WT).

Body Mass Index (BMI)

BMI =
W ∗ 10000

H2 (21)

where, W represents the weight of the patient (WT), H
represents the height of the patient (HT).

Healthy-Side Support Phase to Swing Phase Ratio Differ-
ence (HSSRD) 1K

1K = |KHSSR − 51| (22)

where, KHSSR represents the Healthy-Side Support Phase to
Swing Phase Ratio (HSSR).

Healthy-Affected Side Support Phase to Swing Phase Ratio
Difference (HASSRD) 1Kh−a

1Kh−a = |KHSSR − KASSR| (23)

where, KHSSR represents the Healthy-Side Support Phase
to Swing Phase Ratio (HSSR), KASSR represents the
Affected-Side Support Phase to Swing Phase Ratio (ASSR).

Step Length Difference (SLD) 1Lh−a

1Lh−a = |LHSL − LASL| (24)

where, KHSL represents Average Healthy-Side Step Length
(HSL), KASL represents Average Affected-Side Step Length
(ASL).

Pace v

v = (LHSL + LASL) ∗ w (25)

where, KHSL represents the Average Healthy-Side Step Length
(HSL), KASL represents the Average Affected-Side Step
Length (ASL), w represents the Average Walking Frequency
(WF).
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