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Abstract— This article proposes a novel stochastic agent-based
framework to predict the day-ahead charging demand of electric
vehicles (EVs) considering key factors including the initial and
final state-of-charge (SOC), the type of day, traffic conditions,
and weather conditions. The accurate forecast of EVs charging
demand enables the proposed model to optimally determine the
location of common prime urban parking lots (PLs) including
residential, offices, food centers, shopping malls, and public
parks. By incorporating both macro- and micro-level parameters,
the agents used in this framework provide significant benefits to
all stakeholders, including EV owners, PL operators, PL aggre-
gators, and distribution network operators. Furthermore, the
path tracing algorithm is employed to find the nearest PL for
the EVs and the probabilistic method is applied to evaluate the
uncertainties of driving patterns of EV drivers and the weather
conditions. The simulation has been carried out in an agent-based
modeling (ABM) software called NETLOGO with the traffic
and weather data of the city of Newcastle Upon Tyne, while
the IEEE 33 bus system is mapped on the traffic map of the
city. The findings reveal that the total charging demand of EVs
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is significantly higher on a sunny weekday than on a rainy
weekday during peak hours, with an increase of over 150 kW.
Furthermore, on weekdays higher load demand could be seen
during the nighttime as opposed to weekends where the load
demand usually increases during the daytime.

Index Terms— Electric vehicle (EV), multiagent framework,
parking lot (PL), PL aggregator, power forecast, power tracing
algorithm, urban planning.

NOMENCLATURE

A. Acronyms
EV Electric vehicle.
PL Parking lot.
SOC State-of-charge.
REPL Residential PL.
OFPL Office PL.
FOPL Food center PL.
SHPL Shopping mall PL.
PUPL Public park PL.

B. Indices
k Type of EV index, 1 to NK .
n EV index, 1 to NN .
t Time-step index, 1 to NT .

C. Parameters
at EV acceleration [ms−2].
Ak Vehicle fontal area in type k [m2].
Bk Battery capacity of the type k [kWh].
Cbatt

k EV battery capacity [kWh].
C D

k Aerodynamic drag coefficient [-].
Cπ Coefficient of rolling resistance [-].
g Gravitational acceleration [ms−2].
mk EV mass [kg].
PEV Charging power [kW].
PEV/fast Electric motor power [kW].
SOCi /SOC f Initial/final EV battery SOC [%].
α Road slope [%].
ηb/ηm Battery/motor efficiency [-].
ρ Air density [kgms−3].
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D. Decision Variables
SOCkn Min SOC for path tracing algorithm [%].
F A Aerodynamic drag force [N].
FG Gradient resistance force [N].
F I Initial force [N].
F R Rolling resistance force [N].
FTOT Total force to the road by the vehicle [N].
P E

t /P M
t Electrical/mechanical power [W].

Paux Auxiliary power [W].
SOCt EV battery SOC [%].
Vt Speed of the EV at t [ms−1].

I. INTRODUCTION

A. Motivation and Aim

AT present, EVs contribute a significant amount in reduc-
ing CO2 emissions and decreasing climate change, while

renewable energy sources (RESs) such as wind and solar
power decrease the risk of rising price in fossil fuel and
dramatic coal depletion [1], [2]. The escalating interest in
RESs over fossil fuel has influenced revolutionized changes
in EVs, which could mitigate the renewable sources’ intermit-
tency and benefit the environment in terms of CO2 emission
and air quality. In 2020, around three million new EVs were
registered where 1.4 million new registrations were found in
Europe, followed by China with 1.2 million registrations [3].
According to the U.K. government, the transportation sector
is the highest greenhouse gas emitting source which is 22% of
total greenhouse gas emissions. Therefore, a greater number of
leading vehicle manufacturers have been focused on EV tech-
nologies and their improvements to satisfy the EVs demand
in the near future. For example, the U.K. government has
announced to fully convert light-duty vehicles from fossil fuel
to battery-EVs by 2030 and heavy-duty vehicles by 2050 [4],
[5]. However, the trending demand for EV usage could result
in significant stress on the local power distribution system
and increase EV congestion and charging prices, because
of inadequate EV PLs [6]. Moreover, a high concentration
of EVs charging during peak hours can destabilize the grid
system. To address these issues, a peak demand management
system can be introduced to encourage EV owners to charge
their vehicles during off-peak hours. As per research, more
than 95% of a day, EVs are available at parking areas [7].
Therefore, more EVs could gain the opportunity to participate
in the power management system by reducing the electrical
charge during on-peak hours.

With the increasing demand for EVs, the insufficiency
of the PL infrastructure is beyond the breaking point. For
instance, 2020 has presented a 40% rise in EVs demand in
the U.K. while the PLs have only increased by 24% compared
to the previous year. Therefore, the lack of PLs availability
would result in bottlenecks when recharging, increase the
range anxiety and demotivate the EV drivers, while limiting
EV growth. Accordingly, 50%–80% of PLs in the world are
installed in residential areas, 15%–25% PLs are installed in
office areas, and less than 10% of PL could be found in
other public locations [8], [9], [10]. As the energy require-
ment accelerates with EVs charging demand employed, the

necessity of a reliable and adequate power distribution system
is essential to accomplish the peak power demand, prevent
power failures, and control EV charging costs. Therefore,
the optimal planning of EVs charging infrastructure could
optimize the amount of supply and demand to solve the energy
dilemma. It is essential to consider the charging behaviors of
EV drivers when implementing EV charging infrastructure.
In this regard, the factors which enhance the efficient usage
of PL infrastructures are important to recognize. In addition,
the properly planned PL infrastructure in a city is important
to supply the required power demand for EVs in the city.
Hence, the U.K. government has funded a B#2.5 billion in
grants to implement charging infrastructure near residential
areas, streets, and commercial areas [5], [11]. Therefore,
properly planned adequate PL infrastructure has become a
global utmost requirement.

B. Literature Review

Many studies have been conducted to analyze the grid
performance over the EVs charging patterns under several
parameters. In [12], a probabilistic modeling Queuing theory
was introduced to evaluate the EV charging load behavior in
residential areas. This study focused on the mobility behavior
of EVs from historical data with respect to peak time, vehicle
type, type of day, and average daily mileage. The departure
time, arrival time, and distance were generated randomly to
identify whether the vehicle is parked or moving. However,
the study neither considered weather conditions nor elaborated
on any method for analyzing EV arrival to PL. In addition,
this work is limited to residential areas. Furthermore, a study
in [6] has investigated the daily EV charging load profile
for demographics and social characteristics (age, gender, and
education level), with respect to day type (weekday or week-
end), and location by using a spatio-temporal probabilistic
model. The additional factors included are power consumption
rate and charging preference, using a Monte-Carlo algorithm.
Nevertheless, this model ignored key parameters such as SOC
while vehicle type, weather conditions, and driving patterns
that were limited to homes and offices, charging, as well as
other places which are not specified properly. Furthermore,
an optimal charging scheduling was presented in [13] with
large-scale EV deployment considering transport system infor-
mation and grid system operation at the same time. Road
length, EV type, vehicle speed, and waiting time are taken as
transport system information, while load deviation and node
voltage are considered as the grid system information. When
the battery level is less than 30%, the vehicle is supposed
to be scheduled for charging and the schedule is obtained by
multiobjective optimization. This is achieved by the weighting
of the roads considering four factors such as road length, time
for passing the road, the ratio of traffic around the PLs, and
traffic around the charging load. However, this model did not
examine some essential factors such as type of day (weekday
or weekend), weather conditions, and driving patterns with
respect to the location. Moreover, this study is a real-time
process and did not assess any economic impact on the power
distribution network. Khalili et al. [14] proposed a day-ahead
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EV scheduling strategy to mitigate the system’s imbalance
by controlling the single-phase charging demand of EVs with
vehicle-to-grid option and charging of the EVs as a price-based
demand response program. Huang et al. [15] considered the
mobility of EVs and the stochastic nature of EV demand and
have formulated the charging scheduling of EVs as a Markov
decision process to capture the uncertain EV charging demand
in the microgrid of buildings.

Many previous studies have considered parameter variables
as deterministic or stochastic. The deterministic method uses
average parameter values while the stochastic approach mostly
utilizes probabilistic distribution [5], [16]. A number of each
of those methods have been applied to simulate the parameters
to find the EV charging demand in previous studies. In [17],
a mathematical model with the spatial and temporal approach
was presented, to calculate the EVs charging demand, while
in [18], a BCMP queueing network model was developed to
estimate the PEV charging demands in multiple PLs. Similarly,
probabilistic methods have been utilized in several literature.
For instance, studies [5], [16], [19], and [20] applied support
vector machines and the Monte-Carlo method to obtain the
charging demand for EVs. Several other methods have been
applied in the literature to determine the optimal path for
EVs to reach PLs. For example, EVs find the optimal route
by considering the distance to the nearest PL selected [21].
However, some studies have considered the minimum time to
reach the PL [22], while other considered transport system
information (i.e., traffic jam) and grid condition [13]. A route
mapping approach was used in [23] and [24] to reach the PLs
where the vehicle speed is taken as the primary factor, and
in [25], road gradient, wind speed, vehicle speed, and ambient
temperature were applied to find the best PL for the EVs. In
particular, this study applied a novel path-tracing algorithm
considering the peak time and the distance to the PL when
searching for the optimal PL. In [26], optimal placement of
EV charging stations was presented in a radial distribution
network considering a road network. Charging demand in
different places such as supermarkets and road junctions were
accounted for, with the objective to minimize the energy loss,
voltage deviation, and land cost. Karimi Madahi et al. [27]
and Mansour Saatloo et al. [28] formulated a stochastic mixed
integer linear programming model for stand-alone charging
stations for EVs using green energy of renewables. The
stochastic behavior of EVs and renewables has been con-
sidered. A novel carbon-oriented expansion planning model
for EV fast-charging stations was proposed in [27], [28] to
determine the optimal locations and size of charging stations.
Pal et al. [29] proposed a realistic and sustainable framework
for optimal planning of the location and capacity of the EVs
charging stations and expansion of the electrical distribution
system to handle future load growth.

Agent-based models could make individual decisions and
interact with other agents. Therefore, in smart traffic control
modeling, each vehicle and charging station is considered
as separate agents and these agents are accompanied by
individual behavior settings which is more realistic than
other methods of simulations [5], [16]. Agent-based modeling
(ABM) has been used in numerous previous power system

implementation studies. Ahmadi et al. [5], [16] proposed an
agent-based approach to estimate the EV demand considering
each EV driver as a different agent with the characteristics of
mobility needs, charging requirements, and economic needs.
Furthermore, every distributed energy storage (DES) unit
was taken as individual agents in [5] and [16] where the
dynamic consensus approach was applied to communicate
between agents. Moreover, in [30], renewable energy gener-
ation and load demand were applied as two different agents
to predict energy consumption and production. Nevertheless,
in this study, EVs were defined as individual agents with
the characteristics of different SOC, battery capacity, and
mobility patterns, while the PLs were considered as agents
with different charging types and charging locations. A coop-
erative hierarchical multiagent system was introduced in [31]
to propose an optimal EV charging scheduling strategy to
minimize the demand and energy charges and meet the EVs’
energy requirements.

To the best of our knowledge, there is no model which
considers the weather condition, traffic conditions, and the type
of day, at the same time to evaluate the EV drivers’ behavior
and predict the EV load profile. Furthermore, the previous
works on optimal planning of the PLs location are not based
on the exact EVs load. Most of the previous studies considered
EVs load demand only in the residential PLs. Accordingly,
several gaps have been observed in the literature, which are
listed below.

1) Numerous studies have examined the behavioral patterns
of the EV drivers to predict the day-ahead EVs load
profile with respect to different parameters. However,
none of them has considered weather conditions, type of
day, and traffic conditions which leads to less accurate
predicted EVs load. Also, they cannot produce a real
load of each city.

2) Most of the previous works have considered only one or
two types of PLs including residential and commercial
ones. Therefore, they cannot model the total load of a
city.

3) Many of the previous studies have not determined the
optimal location for PLs by the actual data such as real
city transport data and well-predicted load profile of EVs
charging patterns. This results in the nonoptimal location
of PLs which increases operational expenses, conges-
tion, voltage deviation, and EV drivers’ dissatisfaction.

C. Research Contributions

The factors influencing the EVs charging demand are driver
behavior, location of PLs, and electricity pricing. However,
most of the reviewed literature ignored the factors related
to the social characteristics of EV drivers, and some models
have not considered the economic elements. Therefore, it is
essential to account for the charging behaviors of EV drivers
when implementing EV charging infrastructure. In this regard,
the factors which enhance the efficient usage of PL infrastruc-
tures are important to be recognized. Accordingly, this study
presents a stochastic agent-based framework for observing the
EVs charging behavior to accurately predict the electricity
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TABLE I
COMPARISON OF THE LITERATURE AND THIS STUDY

demand in all types of PLs in the presence of different EVs and
effective factors. The agents enable the proposed framework to
model micro- and macro-level parameters of all stakeholders
including EVs, PL aggregators, PL operators, and distribution
network operators, considered simultaneously as a community
to analyze their mutual impacts. Moreover, this research iden-
tifies the optimal location of PLs in the city, while ensuring
maximum utilization of the PL infrastructure. With respect to
the literature, the following major research contributions (RCs)
are highlighted in the proposed framework.

1) RC1: Proposing a novel agent-based framework to pre-
dict the EVs charging demand requires consideration
of the key effective factors including the type of day,
weather conditions, as well as traffic condition which
enables the proposed model to evaluate the driving
behavior of the EV drivers and predict the EV load
demand exactly for the city based on its own climate
and traffic data.

2) RC2: Considering various PLs including REPL, OFPL,
FOPL, SHPL, and PUPL to predict the total EVs load
and the individual EV load profile in each of them. Each
PL contains one of the charging strategies including
fast and slow. The complex interdependence between
micro- and macro-level parameters is captured in the
process of modeling queuing, PLs path finding, and
tracing algorithms for EVs. To do this, a path tracing
algorithm is used to find the nearest PL for each EV at
each point of the city.

3) RC3: Determining the optimal locations for PLs using
accurately predicted load profiles of all types of PLs,
aimed at a cost reduction for stakeholders and maximum
satisfaction for EV drivers. Also, the electricity network
of the city is mapped on its traffic map which allows
the preliminary power system analysis including an
ac power flow. Thus, the optimal locations are also
determined in a way that considers the grid operation,
identifies the excess loads, and minimizes the voltage
deviation and congestion.

D. Comparison

Considering the presented contribution in this study, Table I
provides an in-depth comparison between previous studies
and the proposed framework. As can be seen, this study has

covered the research gap in the reviewed literature such as
weather conditions, peak hours, day type, various types of
PLs, charging methods, and day-ahead market. It can be seen
that this article covers a comprehensive study or the smart
planning of urban PLs.

E. Article Structure

The rest of the article is organized as follows. Section II
presents the proposed method and describes how the path
tracing algorithm finds the nearest PL. Also, the software
that is used to implement the proposed multiagent model
is introduced. The proposed formulation of each agent and
the framework parameters are explained in Section III.
In Section IV, the data of a city is used for a series of studies
to show the validation of the proposed framework. Section V
concludes the article.

II. PROPOSED IDEA

A. Structure of the Proposed Framework

The proposed framework for decentralized power manage-
ment utilizes a multiagent system, where each stakeholder is
represented by an agent as shown in Fig. 1.

The distribution network operator (Agent 1) performs as a
wholesale day-ahead market where the electricity is generated
and sold to the PL aggregator. It includes weather/traffic data
of the city and different types of days. Agent 1 also models
roads and traffic lights to provide a real-time environment
and enhance the accuracy of the end results. PL aggregator
(Agent 2) operates as an energy service provider, purchasing
electricity from Agent 1 and supplying it to PL operators while
proposing energy prices to maximize profits. PL operators
(Agent 3) participate in this framework as energy servers to
EVs, with the ability to define the energy prices for EVs to
maximize their profit. EVs owners (Agent 4) benefit from
this framework by reaching the destination via the shortest
path while saving time and maximizing the EV efficiency.
Agent 4 also enables the modeling of EVs based on their
charging characteristics, mobility patterns including private
and commercial ones, and type. In fact, a central cloud has
been introduced to store, exchange, and process data where
each agent has an individual subcloud for its computations.
These subclouds exchange data with each other to predict
the total loads and the individual loads of each stakeholder
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Fig. 1. Agent-based structure of the proposed framework.

Fig. 2. Interaction of parameters used in the proposed framework.

to determine the optimal location of PLs. Agent 2 collects
information including the PLs locations, current total load
demand, the current number of EVs, and the total number of
PLs from Agent 3 (i.e., A3 → A2). On the other hand, weather
information (including sunny and rainy) and the type of day
(weekday or weekend) is provided by Agent 1 (i.e., A1 → S1).
The calculations of the profit of Agent 3 are implemented in
Subcloud 3. Furthermore, when an EV driver wants to find a
PL to charge the EV, a personalized trip advisor (PTA) receives
the traffic data from Agent 1 while obtaining the initial SOC,
departure time, current speed, and current location of the EV
from EV drivers. Thereafter, PTA determines the availability
of the nearest PL for the EV driver (Section II-B).

The EV charging behavior in each PL is varying
with several interdependent parameters which belong to
stakeholders, as shown in Fig. 2. Three of these parameters
are weather conditions, the type of day, and traffic conditions
(RC1). The proposed framework models the interactions of
these parameters which makes it able to consider the mutual
impact of all stakeholders. The micro-level parameters are
dedicated to an individual EV, while macro-level parameters
are dealing with a group of EVs. Modeling the mutual impact
enables the proposed model to predict accurately the charging
demand of EVs based on the behavior of EV drivers,
PL operators, and PL aggregators. The interdependence
system is captured in the process of modeling queuing,
PL path finding, and PTA for EVs.

The interactions between agents that allow modeling the
connections between macro- and micro-mobility patterns make

Fig. 3. Flowchart of the proposed framework.

the proposed framework to be a hybrid modeling system which
allows to model EVs charging demand behavior accurately.

Therefore, the proposed framework considers the interac-
tions of weather conditions, traffic conditions, the type of
day, and SOC with other parameters as shown in Fig. 3
to analyze how they affect charging demand of individual
EVs (micro-level) or total EVs (macro-level). Moreover, their
effects at the macro level can lead to a more optimal location
of PLs. Modeling micro- and macro-level parameters allows
consideration of driver’s behaviors/preferences in predicting
EVs charging demand, which leads to accurate real results.

The system parameters are the SOC, the type of vehicle
(commercial or private), type of the day (weekday or week-
end), the mode of charging (fast or slow charging), charging
location (residential, offices, public parks, shopping malls,
or restaurants), weather condition (rainy or sunny day), and
local traffic conditions to define the peak hours throughout
the day. These effective parameters allow accurate prediction
of the charging demand.

B. Flowchart of the Proposed Framework

The proposed framework contains two nonlinear optimiza-
tions, as shown in Fig. 3. The first optimization is carried
out using NETLOGO, which predicts the total load demand
(i.e., the load of the PL aggregator) and the individual load
of each PL over the next 24 h. The optimization process
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also aims to maximize the profit of all stakeholders, while
taking into account the preferences of EV drivers. The sec-
ond optimization is implemented in MATLAB to determine
the optimal location of PLs based on the predicted loads
in the first optimization while ensuring maximum utilization
of the PL infrastructure. Agent 1 requires weather data and the
characteristics of the electricity network of the selected city.
It also needs access to local traffic data to find the congestion
areas in peak hours and the driving patterns. Agent 3 requires
information about the characteristics of fast and slow charging
equipment and the type of PLs. Ultimately, Agent 4 needs the
characteristics of the types (including private and commercial)
of EVs and the EV driver’s behavior.

Agent 1 sends the weather data and the type of the day to
subcloud 1 and sends the electricity price to the PL aggregator
(RC1). PL aggregator offers a price to each PL operator in
order to maximize their benefits. Agent 2 models different
types of PLs including REPL, OFPL, FOPL, SHPL, and
PUPL (RC2), and charging strategies including fast and slow
charging for each type of PL. Afterward, each PL operator
determines the electricity price for EVs that want to be charged
by its chargers. EVs move toward their destinations. When the
SOC of an EV becomes less than SOCkn, it starts searching
the nearest PL by PTA. If the nearest PL is fully occupied by
the time EV is reached, then EV moves to the next nearest
available PL. However, if the PL is available, EV can wait in
the queue. EVs follow the queuing theory with the first come
first out (FIFO) method when waiting in the queue. Therefore,
each PL sends information about its power demand, number
of EVs, and PL location to the PL aggregator. Thus, the EVs
charging load is predicted through the parallel operation of
agents in NETLOGO and is sent to MATLAB. Agent 1 maps
the traffic map to the electricity network. Afterward, Matpower
determines the optimal location of PLs based on a minimum
price for EVs, minimum charging load, maximum EV driver’s
satisfaction, as well as the minimum strain on the power grid.
The optimal locations are selected near to main streets, and
the ac power flow performed through the planning to identify
the excess loads and avoid voltage deviation and congestion
in the grid.

The process of PTA applied in Block A of Fig. 3 is shown
in Algorithm 1. First, the location, SOC, speed, and departure
time of the EV are received from the EV owner. PTA also
receives traffic data from Agent 1. Using this information,
PTA computes the distance of EV to each PL and sorts PL
from the nearest to the farthest. Afterward, it calculates the
estimated arrival time of the EV for the nearest PL. Agent
4 uses the estimated arrival time and the initial SOC of EV,
as well as the availability status of PLs which is received from
Agent 2, and determines whether the PL is available or not.

III. PROBLEM FORMULATION

A. EVs Structure (Agent 4)

1) Mechanical and Electrical Power: The average energy
consumption of EVs can be defined by the road loads as shown
by (1) [32]. FTOT is the total force, FI is the initial force, FR is
the rolling resistance, FG is the gradient resistance, and FA is

Algorithm 1 Flowchart of PTA (Block A of Fig. 3)
1: get initial SOC, EV departure time, EV current location,

and EV current speed; ▷ from EV owner
2: get traffic data; ▷ from Agent 1
3: calculate the distance of EV to each PL;
4: sort PLs from the nearest to the farthest;
5: calculate the arrival time of EV for this PL;
6: send the arrival time; ▷ to sub-cloud 4
7: receive the availability status of the PL; ▷ from

sub-cloud 4

the aerodynamic drag

FTOT = FI + FR + FG + FA ∀tb. (1)

Initial force is given by EV mass and its acceleration during
minute t , in k type of EV

FI = mk · αt ∀tb. (2)

Rolling resistance is the force in the tires when contacting
the road. The equation for the rolling resistance is given in
(3). Where Cπ is the coefficient of rolling resistance, α is road
slope, mk is EV mass of k type EV, and g is the gravitational
acceleration

FR = Cπ · mk · g · cos α ∀tb. (3)

Gradient resistance is applied when the EV is moving
upward or downward slope

FG = mk · g · sin α ∀tb. (4)

Aerodynamic drag occurred due to the viscous resistance
present on the vehicle. This is mainly depending on the shape
of the vehicle. The formula for the aerodynamic drag force is
expressed as in (5), where ρ is the air density, Cdk is the air
drag coefficient, and Ak is the vehicle frontal area in the k
type of EV. Vt is the speed of the EV at time t

FA =
1
2
ρCdk Ak V 2

t ∀tb. (5)

The average total power or mechanical power (Pmev
t ) in Watt

could be derived from the product of vehicle speed and the
total road resistance. However, in this model, the road slope
has been ignored

Pmev
t = FTOTVt ∀tb (6)

Pmev
t = mk Vt

[
at + Cπ g cos α + g sin α

]
+

1
2
ρCdk Ak V 3

t ∀tb.

(7)

Equation (8) is utilized to convert the mechanical power to
electrical power. The auxiliary power could be considered as
common EV electrical components (auxiliary loads) such as
heating and cooling, where ηm is the motor efficiency and the
Paux is the auxiliary power

Peev
t =

Pmev
t

ηm
+ Paux ∀tb. (8)



2850 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 10, NO. 2, JUNE 2024

2) SOC of EVs: The SOC at a specific time depends on
the initial SOC and the battery capacity. According to the
Coulomb Counting method [19], the SOC could be expressed
in (9). Equation (9) could be rewritten as following (10), where
ηb is the battery efficiency and Bk is the battery capacity of
the k type of EVs

SOCt = SOCt−1 +

∫ t

0

I
Cbat,k

dt ∀tb (9)

SOCt = SOCt−1 −
Peev

t

ηb × Bk × 60
∀tb. (10)

The relationship between the initial SOC (SOCi ) and the
final SOC (SOC f ) is given as follows:

SOCi = SOC f −

∑
t

1SOCt
ev ∀tb. (11)

B. Charging Types (Agent 3)

DC charging is faster than the ac charging. Therefore,
EV charges in the simulation are dc type along with fast and
slow charging functionalities. EV can select the method of
charging according to the current SOC, remaining time, and
distance. Furthermore, the charging type could affect the EV
charging time.

C. Environmental Parameters (Agent 1)

1) Peak Hours: The peak hours change mainly due to three
factors including the PL location, the type of day, and the
weather condition. In the simulation, charging behavior in five
different PLs have been applied to observe the EV load.

2) Type of Day: The EV load profile depends on the type of
day including weekdays and weekends. For instance, a higher
number of EVs charge the batteries during weekdays at offices,
while on weekends more EVs are at public parks and shopping
malls during the daytime.

3) Weather Conditions: The EV load demand is directly
varying with the weather condition. For example, the U.K.
follows four seasons annually, and more sunny days are avail-
able during summer and rainy days in winter. The literature
explains that people tempt to go outside during sunny days
compared to rainy days [7]. In the simulation, the weather
condition has been introduced in ten levels, where level
10 represents the 100% sunny day and level 1 represents 100%
rainy day. The weather level could be changed according to
the forecast weather report. For instance, the weather level sets
to be 6, when the selected day is 60% sunny and 40% rainy.

In addition, the weather condition fluctuates with respect
to the Gaussian normal distribution between 50% and 100%
among the total number of EVs in the simulation model as
shown in (12). In other words, the model assumes that at least
half of the EVs will experience a particular weather condition,
and up to all of the EVs may experience that same condition.
This allows capturing the range of weather conditions that
the majority of the EVs are likely to experience, while still
allowing for some variability in the weather conditions across
the EVs.

4) Number of EVs: In this model, two types of EVs are
considered such as commercial and private vehicles which
have different driving behaviors. The number of EVs mainly
depends on the weather condition, type of the day, and the peak
hours. For instance, a higher number of EVs are available at
the PLs during the peak hours and it could result in queues
near the PLs because of the limited number of PLs. Therefore,
considering the number of EVs is essential when planning to
install the PLs in a specific area.

5) Charging Prices: The charging prices could massively
depend on peak hours and the type of day. For example,
higher charging prices could be expected on a busy day during
peak hours. Consequently, the charging price will affect the
charging duration of each EV and the final SOC (SOC f ) as the
EVs drivers tend to top-up only the minimum amount required
for their journey, if the charging prices are high

P(x) =
1

√
2πσ 2

e−(x−µ)2/2σ 2
∀tb. (12)

The simulation model is implemented to select the variance
and the mean from 1 to 10 on the graphical user interface
(GUI) according to the location data in the selected area.
When the weather condition is at level 10, all the vehicles
are operating, and it is decreased by 5% when the weather
condition steps down by a single level, up to level 1. In this
model, the mean value is defined as µ = 8, and variance is
applied as σ = 2.

6) Micro-Level Parameters: Category of EVs (commer-
cial/private).

The total number of EVs are divided into two categories
commercial and private. In this article, electric taxis are
regarded as commercial vehicles and personal vehicles have
been considered as private vehicles. The simulation considered
50% as private vehicles and 50% as commercial vehicles.
Moreover, the EV category could vary in the EV range, battery
capacity, and charging duration.

7) Battery Capacity and Range: The battery capacity of
the EV decides the driving range of the EV and the capacities
of the EV batteries are changed according to the EV model.
Higher battery capacities can drive long distances, which
means vehicles with a higher range.

8) Mode of Charging (Fast/Slow): The charging mode of
EVs has been categorized as fast and slow charging. In this
study, EVs choose the mode of charging according to their
preference. For instance, EVs drivers could select fast charging
to save charging time during peak hours. Consequently, the
mode of charging depends on the type of day and the weather
condition. In this study, the slow charging is considered as
6.6 kW and the fast charging (dc fast charging) has been
configured as 50 kW capacity.

Agent 3 must be provided with fast and slow charging
information and the type of PLs. For instance, rate of charging,
ac or dc types, and current and voltage information.

Proposing a novel agent-based framework to predict the EVs
charging demand requires consideration of the key effective
factors including the type of day, weather conditions, as well
as traffic conditions which influence the driving behavior of the
EV drivers impacting the EV load demand. To map the city in
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TABLE II
SYSTEM PARAMETERS

the model. The model of the city was drawn in the simulation
platform with roads, traffic lights, and parking areas to provide
a real-time environment and optimize the accuracy of the end
results.

The EV charging behavior in each location is varying with
several interdependent factors such as the percentage of sunny
or rainy conditions on a weekday or weekend at peak hours
or off-peak hours.

The above-mentioned parameters provide a complex inter-
dependence system, which is captured in the process of
modeling queuing, PL pathfinding, and tracing algorithms for
EVs. Therefore, the path tracing algorithm is used in the
proposed framework to find the nearest PL for EV at each
point of the city (different charging strategies including fast
and slow charging in each type of PL).

Agent 4 makes it possible to model EVs based on their
charging characteristics, mobility patterns, and type. The pro-
posed framework has taken two types of EVs as private and
commercial (taxi) vehicles with different behaviors to model
real existing behaviors. It is assumed that the driving behavior
of conventional vehicles is similar to the driving behavior of
EVs. Furthermore, three main types of EVs have been applied
in the framework to model characteristics of the most popular
existing EVs in real networks. In addition, Agent 4 models
the SOC of EVs.

Agent 3 models the different types of PLs including
REPL, OFPL, FOPL, SHPL, and PUPL, and different charg-
ing strategies (including fast and slow charging) while
Agent 1 considers different types of days (including weekday
and weekend), different weather conditions (including sunny
and rainy), and local traffic condition (to define peak hours).
Agent 1 also models roads and traffic lights to provide a
real-time environment and enhance the accuracy of the end
results.

IV. CASE STUDY SIMULATION

A. Characteristics of the Network Used for Assessing the
Proposed Framework

The values of EV parameters in Agent 4 are presented in
Table II.

To define the optimal location of PLs, the proposed model
maps the traffic map of the city to the IEEE-33 bus system.
Determining the optimal locations for PLs is done using
accurately predicted load profiles of all types of PLs.

The maximum number of EVs was set to 500 in the
simulation and could be changed according to the selected date
in GUI. EVs are categorized into two types such as private
and commercial where each type follows individual driving
patterns and all the EVs follow the traffic light rules in the

TABLE III
EV AND BATTERY SPECIFICATIONS

Fig. 4. Charging characteristics of EV batteries. (a) Fast charging. (b) Slow
charging.

developed model. The peak time of each location is predefined
with respect to the Newcastle city’s previous data. Level 7 of
the driver’s experience is taken and it is not changed.

The minimum SOC that EV uses to start finding the nearest
PL (SOCkn) is 20% of its battery capacity. The penetration of
private and commercial EVs is 50% each, of all 500 EVs
considered in this research. In the simulation, purple vehicles
are indicated as private and commercial vehicles represent in
orange. It is assumed that the driving behavior of conventional
vehicles is similar to the driving behavior of EVs. Furthermore,
three main types of EVs have been applied in the framework
including Volkswagen ID 3, Hyundai Ioniq 5, and Kia e-Niro.
The EV and battery specifications are shown in Table III. Also,
the respective charging characteristics of these vehicles are
shown in Fig. 4.

The data from Newcastle Upon Tyne in the U.K. is used
in this section to verify the proposed model. According to the
statistics in Newcastle, the peak time in a typical weekday of
each PL is presented in Table IV and the car park availability
in presented in Fig. 5. The proposed model runs for 24 h and
obtains the results.

B. Simulation Platform of NETLOGO

As stated in Section II-B, the first optimization of the
proposed framework is implemented in NETLOGO 5.3.1
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Fig. 5. Car park availability percentage, Newcastle [33].

TABLE IV
PEAK TIME OF DIFFERENT PLS IN A TYPICAL WEEK DAY

software [34] to predict the day-ahead EV load demand by
applying the mentioned parameters in Fig. 2 with EV drivers’
behavior.

NETLOGO is a programming language that applies to
agent-based models. In this software, it is possible to receive
instructions and operate independently for a large number of
agents at the same time (i.e., parallel processing). The blocks
of the software could be formed as turtles which are moving
blocks such as vehicles, patches that are steady blocks such
as home and offices, links, and observers [30].

The basic agent-based model used for EVs and PLs in
NETLOGO in the proposed framework has been extended
from [35].

NETLOGO allows modeling complex interactions of all
parameters shown in Fig. 2 that enables to consider the mutual
impact of all stakeholders. NETLOGO allows EVs as a single
block in the simulation platform to make decisions individually
based on their own aims that shows the microscopic interac-
tions. For example, if the SOC of the EV falls below the
minimum threshold amount, it starts searching for the nearest
PL. But their behavior is also affected by the behavior of other
EV drivers which can lead to macroscopic interactions. For
example, if PL is occupied, EV must search for another PL
or stay in the queue.

The simulation platform makes it possible to model the
city with roads, traffic lights, and parking areas in Agent 1 to
provide a real environment and increase the accuracy of the
end results. Traffic lights are defined as red and green to stop
and move the cars, respectively. The city in the simulation
is mapped with 36 similar-sized blocks with parking areas
in Agent 3 and the blocks can be changed according to
the corresponding map of the city. Each of the blocks can
be changed as REPL, OFPL, FOPL, SHPL, PUPL, carpark,
or none, as shown in Fig. 6. In the model, all the areas are
accompanied by eight charging slots except the locations such
as carpark and none. It is possible to define the number of EVs

Fig. 6. Types of PLs implemented in NETLOGO (Agent 3).

Fig. 7. Essential inputs in the simulation platform.

and change the proportion of private vehicles to commercial
ones according to the city data in Agent 4. Each type of EV
follows individual driving patterns and all of them follow the
traffic light rules. The nearest PL which is determined by PTA
activated in NETLOGO is selected by minimum distance to
the EV when it starts to search for a PL. Initially, the patch
where the EV is located is defined. Thereafter, the distance to
every available PL is determined individually by counting the
number of patches on the roads from the EV location, where
each patch (square) in the simulation platform is defined as a
kilometer in real life. Finally, all the path distances are sorted
in ascending order, where the closest PL will be selected as
the first choice.

Fig. 7 shows that the type of day could be a weekday
or weekend, and the weather level can vary from level 1 to
10. Level 7 of the driver’s experience is taken and it is not
changed. Moreover, electricity prices can be set at individual
PLs. NETLOGO makes it possible to monitor EV character-
istics. Fig. 8 shows the characteristics of EVs in PL 3.

C. Grid Mapping

The proposed model was mapped into the standard IEEE-33
bus system to enhance its practical applicability. The IEEE-33
bus system is mapped with the traffic map of Newcastle upon
Tyne.

Furthermore, it is assumed that the point of common cou-
pling (PCC) is located in Bus 1 and the maximum amount of
real power exchange is 1 MW. In fact, it is assumed that the
office PL is located at bus 28, the public park PL located at
bus 20, the shopping mall PL at bus 5, the restaurant PL is at
bus 9 and the residential PLs at buses 31 and 24, respectively.
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TABLE V
PROBABILISTIC PARAMETERS

Fig. 8. Available characteristics of EVs charging in PL 3.

Fig. 9 represents the optimal location of PLs in IEEE 33 bus
system.

To analyze the effect of the proposed model on EVs
charging demand and the optimal location of PLs, four case
studies (PLs) are considered as follows.

1) CS1: Find the total load demand and individual load
demand in all five areas when, type of the day =

weekday, type of the weather = sunny day (weather
level = 9), (average or typical sunny weekday).

2) CS2: Find the total load demand and individual load
demand in all five areas when, type of the day =

weekend, type of the weather = sunny day (weather
level = 9).

3) CS3: Find the total load demand and individual load
demand in all five areas when, type of the day =

weekday, type of the weather = rainy day (weather
level = 4).

4) CS4: Find the total load demand and individual load
demand in all five areas when, type of the day =

weekend, type of the weather = rainy day (weather
level = 4).

D. Probabilistic Parameters

Table V shows the probabilistic parameters taken in each
case study to show peak hours for PLs. µ is defined as the
mean and the variance is presented as σ .

E. Results Assessment

1) Total EV Load Demand (Agent 4, Agent 2, or Agent
3): The results verify the EV total charging demand hugely

Fig. 9. Current locations of PLs in IEEE-33 bus system coordinated with
traffic map of Newcastle upon Tyne.

depends on the weather conditions, peak hours, and the type
of day.

The total EV load demand in CS1 in the city is shown in
Fig. 10(a). According to the figure, the peak load demand
could be expected at night around 20:00–22:00 which is
around 400 kW. This is obvious because more people tempt
to stay at home and charge their EVs at night compared to the
daytime. Furthermore, the daytime peak spread from 10:00 to
16:00, where the EVs load is approximately 290 kW, as peaks
in offices, restaurants, public parks, and shopping malls during
this time. In addition, a significant rise is observed after 16:00
from around 130 to 400 kW within 2 h, because the EV
load demands in offices, shopping malls, public parks, and
restaurants are beginning to rise after 16:00 as many EVs
gather around these areas by that time. On the other hand,
EV total load is reducing rapidly after 22:00 in the nighttime
as restaurants, offices, shopping malls, and public parks are
closed at that time and many residential prefer to sleep rather
than charge their EVs. Fig. 10(b) shows the total EV load in
CS2. As per the figure, more EVs are tempted to charge the
batteries during daytime compared to nighttime, confirming
that many people in the city would prefer to go outside on
a sunny weekend. The total EV load demand accelerated
notably from 07:00 to 10:00 in the morning, from around
100 to 500 kW as the morning peaks in public parks, and
residential could be seen and the EV loads in shopping malls
and restaurants begin to increase during this time. The average
peak demand is approximately 450 kW which is distributed for
3 h after 12:00 due to the peaks of shopping malls, restaurants,
and public parks are spread over these hours. In addition,
the nighttime total EV load is around 300 kW, and another
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Fig. 10. Total EVs load demand (aggregator load profile). (a) CS1. (b) CS2. (c) CS3. (d) CS4.

peak is presented from 19:00 to 22:00. This is because the
night-time peak in residential areas occurs during these hours.
Thereafter, a significant downward trend could be seen from
22:00 to 00:00 as all the offices, shopping malls, restaurants,
and public parks are closed, and people tend to sleep at that
time. The EV total load in CS3 is shown in Fig. 10(c). With
respect to the figure, the peak EV demand is expected during
the daytime compared to the night hours. It is reasonable to
assume that more people tend to stay at home and charge.
There are EVs during rainy days rather than going outside.
For that, the peak demand is around 350 kW happening from
12:00 to 14:00 in the daytime, while the night-time peak
is about 250 kW from 20:00 to 22:00. This is because the
day-time peak and the night-time peak in residential areas
occur over these hours, and the EV load in offices, shopping
malls, restaurants, and public parks is comparatively lower
than the residential EV load. However, less EV demand could
be seen during the early morning hours, exactly after 00:00–
06:00 as shopping malls, restaurants, public parks, and office
areas are closed and people in residential are sleeping during
this time. Furthermore, an upward trend is illustrated from
07:00 to 11:00 due to the EV load increment in residential
and office areas, and a downward trend could be seen after
15:00 including fluctuations because of the EV load depletion
at offices, restaurants, and public parks. The EV total demand
in CS4 is shown in Fig. 10(d). With regards to the figure, more
EV load could be seen during the afternoon and nighttime
compared to day hours as more people temp to stay at

home or drive back home before evening, because of the
rain. Furthermore, the afternoon peak is presented from 14:00
to 17:00 (150 kW) as the EV loads in a shopping malls,
offices, and restaurants has been increased compared to the
other load values over the day, while the night-time peak
is illustrated over 19:00–21:00 (200 kW) which is hugely
dependent on the EV load in the residential area. The load
decreased after 22:00–00:00 from nearly 175 to 0 kW due
to the people’s sleep time in residences and other areas are
not open during that time. Another notable reduction could be
seen from 13:00 to 14:00 around 200–100 kW because of the
significant EV load decline of shopping malls and restaurant
areas, as many people prefer to have lunch before 13:00 in
the U.K. Nevertheless, an upward trend could be seen from
morning to 13:00 as people tend to start their works in the
morning and drive back to homes as soon as possible because
of the bad weather condition, and thereafter the EV load rise
steadily while maintaining the average of around 200 kW from
14:00 to 22:00.

According to Fig. 10, it is confirmed that the peak EV on
rainy days is slightly less than the peak EV load demand on
sunny days. Furthermore, higher demand could be seen in the
daytime during weekends as opposed to the weekdays, where
a higher number of EVs are charged at night hours.

2) Individual EV Load Demand: The individual EV demand
in CS1 is shown in Fig. 11(a). According to the figure, all five
places contain different peak hours and off-peak hours. In fact,
the EV load in residential areas has two peaks in the morning
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Fig. 11. Individual EV load profile (CS/PL operator load profile). (a) CS1. (b) CS2. (c) CS3. (d) CS4.

and nighttime, exactly from 06:00 to 08:00 in the morning
and from 20:00 to 22:00 at night. The morning peak value
is around 120 kW, and the night-time peak value is higher
than that, which is approximately 160 kW. Nevertheless, the
EV load is less than 20 kW during the daytime in residential
areas. This is because, many people drive for their day-to-day
work such as schools and offices during weekdays, and only
stay at home during early mornings and nights. However, the
EV load demand near the public parks has presented a peak
of around 115 kW from 19:00 to 21:00 and a significantly
lower number of EVs have been charged during the daytime,
which is less than 25 kW, as fewer people go for entertaining
during weekdays. On the other hand, EV load demand in office
areas includes two peaks during the morning and evening,
specifically, 09:00–11:00 (120 kW) in the morning and 17:00–
19:00 in the evening (140 kW), because office working hours
in the selected city is from 09:00 to 17:00. Furthermore, with
respect to the trend in a shopping malls, higher number of
EVs were charged from 11:00 to 14:00 and from 18:00 to
21:00 throughout the day, where the peak values are about
100 and 120 kW, respectively. A significant reduction (around
80 kW) could be seen in the shopping malls after 14:00–17:00
and increased again by 100 kW within the next 4 h. This
is because more people are tend to go to the shopping mall
during the lunch break or after work. Finally, the EV peak
loads demand in the restaurant are nearly 120 and 140 kW

at lunch time (from 11:00 to 14:00) and dinner time (from
17:00 to 19:00). Overall, a small number of EVs charged
during the early morning in all five PLs. Individual load
in CS2 in the city is shown in Fig. 11(b). With respect to
the figure, all the places have two peaks during the daytime
and the nighttime. In particular, the residential area EV load
contains two peaks around 08:00–10:00 in the morning and
20:00–22:00 the nighttime, which the peak is nearly 160 kW
in both peak times. This is because many people tend to
stay at home a few more hours in the morning since it is
a weekend. Furthermore, the EV load during off-peak time
is nearly 40 kW in the residential areas. In addition, since it
is a sunny weekend, the public parks demand contains two
peaks, approximately 160 kW and 150 kW, from 09:00 to
11:00 and from 16:00 to 18:00, respectively. Here, the trend
has decreased significantly after 18:00. However, the office’s
EV demand is comparatively less than other areas since it is
a weekend. In addition, the peak EV demand near shopping
malls is 60 kW higher than peaks on weekdays, where the
peak load is around 160 kW during daytime (from 11:00 to
15:00). A notable reduction could be seen in shopping mall EV
load after 16:00, due to most of the shops closing at 16:00 in
the city during the weekend. Ultimately, the EV load near the
restaurant includes two peaks from 11:00 to 14:00 and from
18:00 to 20:00, where the peak values are 140 kW and 150 kW,
respectively. Furthermore, a significant rise is shown in the
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restaurant area from 09:00 to 11:00 and the trend decreased
from 15:00 to 17:00. However, people do not prefer to charge
their EV batteries during early morning and late-night hours
in all five places. The individual demand in CS3 in the city is
shown in Fig. 11(c). Overall, there is a remarkable difference
between the EV load in residential areas and the other four
areas. In particular, the residential EV load has two peaks
during daytime and nighttime, such as 180 kW from 12:00 to
15:00 and 160 kW from 20:00 to 23:00, respectively, where
the average peaks values of a public parks, shopping malls,
and restaurants are less than 100 kW. Furthermore, EV load
in residential areas jumped by nearly 100 kW from 07:00
to 11:00 and decreased demand from 160 to 40 kW within
4 h after 15:00. However, the off-peak demand maintained
an average of 40 kW in the residential areas. Apart from the
residential area, only the office area has shown a peak value
which is higher than 100 kW such as around 150 kW from
08:00 to 09:00. This is obvious, as most people prefer to stay
at home or go for important work (office) and less attention
is given to the entertainment when it is raining. The EVs
charging demand in CS4 in the city is shown in Fig. 11(d).
As shown in the figure, a higher number of EVs were charged
in the residential area compared to other areas. In fact, the peak
hours in the residential area were from 20:00 to 23:00, and
the average peak value is 120 kW. A significant rise could be
seen in the residential EV load demand from 14:00 to 19:00,
where the value is charged from 20 to 140 kW Further, none
of the areas contain any peak values during the daytime. The
EV load in public parks is less than 40 kW, while the office
EV demand is fluctuating between 0 and 60 kW throughout
the day. Nevertheless, the shopping mall EV load contains two
peaks from 10:00 to 13:00 (60 kW) and from 15:00 to 17:00
(80 kW), which confirms that people prefer to stay more hours
inside the shopping malls when it is raining. In addition, fewer
EVs were charged in the restaurant area during the day, which
is less than 60 kW. Overall, it is clear that people tempt to stay
at home and do indoor shopping when it is a rainy weekend.

3) PLs Optimal Location: Fig. 12 shows the optimal
location determined by the proposed framework for PLs
(RC3). These results are obtained from the proposed algorithm
shown in Fig. 3. In the proposed method, a stochastic agent-
based framework is used using Matpower and NETLOGO for
observing the EVs charging behavior to forecast the electricity
demand in the PLs. Also, micro- and macro-level parameters
of all stakeholders including EVs, PL aggregators, PL opera-
tors, and distribution network operators are considered which
leads to finding the optimal locations of PLs in the city and
guarantee the maximum utilization of the PL infrastructure.
In this regard, Matpower software was used to determine the
optimal power flow (OPF) and identify the optimal locations,
based on a minimum price for EVs, minimum charging load,
maximum EV driver’s satisfaction, as well as the minimum
force given to the power grid for new charging stations.
To facilitate power flow calculations and visualize the network,
the proposed model mapped the traffic map of the city to the
IEEE-33 bus system and determined the optimal locations for
PLs using an accurately predicted load profile.

Fig. 12. Optimal location of PLs obtained by the proposed framework.

V. CONCLUSION

The uncontrollable EV penetration has led to tremendous
excess stress on the current local power grid. In fact, sudden
power failures (blackouts) could be expected due to the stress
on the grid during peak hours and unnecessary fluctuations.
Therefore, it is important to implement a controlled and
sustainable power system to supply the growing demand of EV.
This study evaluated a reliable day-ahead charging behavior
while considering initial and final SOC, day type, local traffic
pattern, and weather conditions on a typical day. In addi-
tion, five different places have been selected to investigate
the driving behavior of the EVs such as residential, offices,
shopping malls, restaurants, and public parks. The model was
implemented in agent-based software named NETLOGO and
the path tracing algorithm has been utilized to identify the
nearest PL to the EVs when the battery needs to recharge. The
transport data and weather data were based on Newcastle Upon
Tyne, The U.K. to evaluate real scenarios for the implemented
model. Eventually, the results confirm that EVs are more active
during sunny days compared to rainy days, as more people
prefer to stay at home during rainy days, whereas the EV
peak load on a sunny weekday is nearly 400 kW and EV
load on rainy weekday is approximately 325 kW. Therefore,
more power is expected on sunny days. Furthermore, during
weekdays, a higher number of EVs charge during nighttime,
especially in residential areas as opposed to office areas where
the peak load can be seen in the daytime. In addition, the
fluctuating demand of each area in different conditions could
result in unexpected off-peaks and peak demands in the power
grid. Therefore, the optimal locations for the PL in the city
have been presented in the model to reduce the unnecessary
impact on the electrical distribution network. Future works
will consider nontechnical concerns such as the feasibility
of constructing PL in different locations. Furthermore, the
participation of PLs in ancillary services markets to obtain
more benefits and also resolve network issues will be explored.
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