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Reinforcement learning (RL) has been proven to enable the au-
tomation of tasks involving complex sequential decision-making. The
simulation to reality (sim2real) gap, however, poses a major challenge
in most engineering applications. In this work, we propose a learning
approach combining RL-based navigation and collision avoidance
scheme with low-level advanced control to bridge the sim2real gap for
unmanned aerial vehicle (UAV) applications. The proposed approach
puts the RL agent at the top of the control hierarchy to focus on
behavioral intelligence. We demonstrate the transferability of the RL
policy trained in simulation to a real UAV without randomization of
the system’s dynamic parameters. The direct transfer is enabled by: 1)
the use of deep neural networks with the modified relay feedback test
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(DNN-MRFT) to identify the parameters of the UAV; and 2) formulat-
ing a reward function to penalize excessive actor actions. Particularly,
the RL agent generates high-level velocity actions to achieve the sought
task, while the low-level controller minimizes any unwanted distur-
bances and model discrepancies. The proposed approach has been
tested and validated using computer simulations and real-world exper-
iments. The real-world experimental results demonstrated the agent’s
capability to achieve the navigation task with a 90% success rate.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are currently en-
gaged in our daily lives more than any other time in
the past. There is an absolute necessity for increased
robotic behavioral intelligence that would consequently
enable autonomy and more effective operation in populated
environments. The integration of machine learning with
robotics has revealed outstanding performance advance-
ments and demonstrated phenomenal potential in a wide
range of applications over the past decade [1]. Among
machine learning approaches, reinforcement learning (RL)
has demonstrated unprecedented capabilities in solving
decision-making problems [2], which is key to intelligently
behave in previously unexplored dynamic environments.
Remarkable progress has been registered in developing RL
algorithms for various robotic applications including, but
not limited to, manipulation [3], navigation [4], [5], track-
ing [6], path planning [7], and control [8], [9], [10], [11].

RL is a machine learning paradigm that relies on a
rewarding system to train a set of neural networks to make
sequential decisions to execute a particular task [12]. More
specifically, an RL agent first receives a set of observations
that parameterize the state of the task environment. Con-
sequently, the RL agent makes a decision on how to pro-
ceed toward achieving the goal. After executing the action,
and based on the updated environment state, an evaluation
process is conducted to analyze how well the agent has
progressed. The agent’s parameters are then updated to im-
prove its performance thereafter. The combined advantages
of RL and deep learning are foreseen to open doors for a
wide range of complex UAV tasks [13], especially those
that are very expensive to train in real environments. For
instance, training a UAV to safely navigate in dynamic en-
vironments exposes the platform as well as the environment
to danger, hence incurring additional costs. On the other
hand, classical navigation approaches may be inadequate,
specifically in the absence of precise mathematical models
of task environments [14]. RL offers a possible hassle-free,
infinite data source, where robotic platforms can be trained
for such tasks entirely in simulations, then deployed physi-
cally in real-environments. Nevertheless, the discrepancies
between simulated and real environments, platforms, and
sensors will cause the platform to behave differently in real
experiments compared to what it was trained on. This is
a very well-known problem, defined as the simulation to
reality (sim2real) gap, and has been widely investigated over

The experimental results can be found in this video: https://youtu.be/
I1BF4mhJLLs.
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the past years [15]. Two main types of sim2real gaps have
been identified in the literature; mismatch of dynamics, and
mismatch of vision sensors [16]. In this work, focus will be
devoted to the sim2real gap originating from the mismatch
of dynamics. The mismatch of vision sensors is out of the
scope of this article and may be considered in our future
work.

Transferability of trained RL agents to real-world ex-
periments could be achieved by means of various ap-
proaches [15], such as domain randomization and transfer
learning (also known as domain adaptation [17]). Domain
randomization exposes the agents to variations of the en-
vironment parameters (e.g., robot dynamics, obstacle kine-
matics, etc.) during training in simulations. When the agent
is tested in real experiments and the real observations lie
within the randomization range, it would be resilient to
such changes and hence will transfer smoothly. Differently,
transfer learning exposes the agent to simulated as well as
real-world experiences in the training stage to minimize the
gap with reality. It is possible, though, to avoid the need for
explicit sim2real transfer approaches if realistic models of
the platform and environment are used during training, as
will be demonstrated in this work.

A. Related Work

RL has thus far been used in a plethora of UAV applica-
tions. We focus our review on state-of-the-art work using RL
to solve specific high level UAV tasks. In [18], RL was em-
ployed to control a UAV during a narrow-window traversal
task. Curriculum learning was used to facilitate searching
for feasible UAV trajectories by gradually increasing the
complexity of the problem. Similarly, the work proposed
in [19] adopted RL to solve a narrow-window traversal
and object avoidance task. Both [18] and [19] developed a
domain randomization-based sim2real transfer framework
for the agent to transfer to UAVs in real-world experiments.
In a similar application where the UAV had to cross moving
gates, RL was used to generate high level commands, rep-
resenting hard-to-optimize variables, for model predictive
control [9]. In turn, model predictive control controls a
UAV while traversing a set of dynamic gates. The task of
RL in these works did not require nonconvex long-horizon
prediction, and was maneuver specific, which facilitated the
use of simpler techniques, such as Gaussian linear policies
in [9].

On the other hand, there were plenty of contributions
that focused on solving long-horizon prediction tasks but
without experimental demonstration. In [4], training an RL
agent for UAV navigation tasks was done using a sparse
reward function. To overcome the sample inefficiency prob-
lem when sparse rewards are used, it was assumed that
the agent had access to an initial policy to guide the agent
training and ensure the occurrence of successful experiences
during training to achieve convergence. The effectiveness
of the approach was demonstrated in simulations but not
in real-world experiments. The work presented in [20]
improves UAV autonomy through a deep RL-based obstacle

avoidance and power usage minimization technique, by
means of a sparse reward function. The actions generated
by the trained agent are selected from a discrete set, to
determine the UAV heading angle. A sparse reward was
used to penalize collisions and reward goal achievement.
While preserving autonomy, it is also significant to mini-
mize power usage, and hence a constant negative penalty
was imposed for every time step the agent spends in the
environment before reaching the goal. This approach was
verified in simulations but not in real-world environments.
In [21], a hybrid action-space was proposed for training an
RL agent to guide a UAV in a goal-oriented navigation task.
While training, in case the agent was not able to achieve the
ultimate goal of the task, the experience added to the buffer
is modified. The point at which the agent has arrived is
assumed to be the goal, and evaluation is done accordingly.
The approach was verified in simulations without transfer
to real-world environments. In [22], navigation of UAVs
in large scale environments was formulated as a partial
Markov decision process and addressed using deep RL.
A nonsparse reward is used to impose: 1) a penalty for
every time step spent in the environment before achieving
the goal; 2) a penalty based on the distance between the
UAV and the obstacles in the environment; 3) a reward for
getting close to the goal position; and 4) a reward for moving
toward free space in the environment. The efficiency of their
proposed approach was demonstrated through simulated
scenarios. The work targets large scale environments with
static obstacles only, which is different from our work where
the environment involves dynamics. Training an agent in
a small environment (7 m × 5 m) with a dynamic obstacle
and a static obstacle where a minimum safe distance needs to
be maintained to avoid collisions is much more challenging
than training in an environment spanning more than a half
kilometer square. Collisions in a small environment are
much more probable and hence achieving a high success
rate is very challenging. In addition, the speed of the UAV
in [22] was set to a maximum of 2 m/s which is relatively
slow, in a large-scale environment. In addition, LSTM layers
are used in the actor and critic networks, which are more
computationally complex than multilayer perceptron as in
our proposed approach. Another point worth noting is that
the work in [22] was only verified in simulations, for which
they omitted the UAV momentum and assumed that actions
take effect in no time. As will be explained later throughout
the manuscript, it is very essential to consider time delay in
measurements, computations, and control for the approach
to seamlessly transfer to reality across the simulation to
reality gap. Furthermore, in [22], the UAV is assumed to fly
at a fixed velocity and hence the agent only steers the UAV
throughout the mission. In our work, the agent is responsible
for controlling the speed to maintain flight stability and is
also required to stop the UAV at the goal position which is
an additional objective of the task that [22] does not tackle.

RL approaches for UAV navigation and obstacle avoid-
ance were also proposed in [23] and [24] with various
settings and objectives, however, only simulated experi-
ments were used for verification.

AZZAM ET AL.: LEARNING-BASED NAVIGATION AND COLLISION AVOIDANCE THROUGH REINFORCEMENT FOR UAVs 2615



Fig. 1. Goal-oriented autonomous navigation and obstacle avoidance
using RL.

Based on the above literature, it has been observed that
RL agents were rarely deployed experimentally for UAV
tasks that required long-horizon prediction. This is mainly
attributed to the sim2real gap in RL. The existing work that
addressed the sim2real gap relied on domain randomization
or the use of simple policy structures, which limit their
suitability to single short-horizon tasks. In summary, very
few research results were verified to perform well in real-
world experiments and none demonstrated a direct transfer
from simulations to reality. Rather, domain randomization,
agent fine-tuning, or action postprocessing were needed for
a successful transfer. To the best of the authors’ knowledge,
this is the first work that achieved direct sim2real transfer
in deep RL for complex UAV tasks. We demonstrate this
through a UAV goal-oriented navigation task in a dynamic
environment as illustrated in Fig. 1.

B. Article Contributions

The contributions of the article are summarized as fol-
lows.

1) Proposing a learning approach that combines
reinforcement-based navigation scheme and low-
level advanced control for UAV applications. The
RL-based navigation is for UAVs in dynamic en-
vironments as illustrated in Fig. 2. The navigation
scheme is fully autonomous, runs in real-time, and
solves a nonconvex long-horizon prediction task. It
incorporates a robust collision avoidance capability
to safely guide the UAV through a dynamic environ-
ment.

2) Demonstrating direct sim2real transfer of the pro-
posed approach without additional sim2real transfer
efforts, as opposed to the majority of the work in
the literature, for instance, [18] and [25]. This is
achieved by employing the deep neural networks
and the modified relay feedback test (DNN-MRFT)
approach proposed in [26] and [27] for identifying
the parameters of the UAV dynamic model that are
representative of a real-world system.

3) Conducting computer simulations and real world
experiments to verify the effectiveness of the

proposed navigation and collision avoidance ap-
proach. An experimental setup for goal-oriented
UAV navigation in a dynamic environment is devel-
oped. The behavior of the UAV was compared across
variants of the reward function. The proposed RL-
based navigation achieved a 90% success rate in real
world experiments. Videos of the experimental re-
sults can be found at https://youtu.be/I1BF4mhJLLs.

The RL agent was simultaneously achieving multiple
objectives; 1) navigating to the goal position; 2) avoiding
static and dynamic obstacles; and 3) controlling the speed
of the UAV around the goal position. The third objective
was mainly designed to slow the UAV down and then
stop it at the goal position, since the RL action is the
velocity set-point for a SE(3) geometric controller [28].
The effect of the reward term concerning this objective
is limited to the area around the goal, so as not to in-
fluence the agent’s decision on the speed elsewhere. To
overcome the oscillatory behavior of RL action genera-
tion [29], a reward term was devised to penalize high
frequency oscillations of the actions. Our proposed reward
formulation has contributed to the direct interface between
the RL agent and the UAV, and hence would facilitate
seamless deployment in practical applications. Compar-
isons with alternative reward formulations have shown the
significance of the proposed terms in achieving the sought
objectives.

In the literature, very few works have demonstrated the
performance of the agent across the simulation to reality
gap. In fact, even fewer works have targeted UAV navigation
in dynamic environments, such as [30], [31], and [32],
and those have only verified their proposed approaches in
computer simulations, not in real-time experiments. The
work proposed in [33] decomposes the navigation and
collision avoidance task into two subtasks; one for navi-
gation and the other for obstacle avoidance, and each is
carried out by a separate policy network. To the best of
the authors’ knowledge, this is the first work that achieves
zero-shot transfer from simulation to reality in a goal-
oriented UAV navigation task in dynamic environments.
The multiobjective task (i.e., navigation to goal, static and
dynamic obstacle avoidance, and stopping at the goal) is
carried out by a single policy network. The trained agent
generalizes across various scenarios including varying ob-
stacle speeds, rotation direction, initial position, and UAV
speeds.

The proposed approach is particularly significant in
civilian applications where a UAV has to perform a
task at a specific location in populated environments.
Tasks may include parcel delivery [34], firefighting, pick-
ing or placing objects, acquiring specific measurements,
rescue operations, or surveillance. Safely navigating to
the task location is key to the success of the mission
and can be autonomously achieved using the proposed
approach.
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Fig. 2. Overall system diagram: RL tops the control hierarchy by generating high level commands to achieve behavioral intelligence of a UAV in a
navigation task, while the low-level controller rejects disturbances and minimizes the effects of model mismatch.

C. Article Structure

The rest of this article is organized as follows. Section II
provides an overview of the tasks to be accomplished by the
proposed RL agent. Next, Section III includes a comprehen-
sive description of the RL environment, the state variables
and actions, the reward design, and the terminal conditions.
Section IV includes a description of deep deterministic
policy gradient agent. Evaluations of the proposed approach
in simulations and real-world experiments are demonstrated
in Section V. Finally, Section VI concludes this article.

II. TASK AND METHOD OVERVIEW

The UAV is missioned to: 1) safely navigate through a
dynamic environment from an initial position to a particular
goal position; 2) intelligently behave, with full autonomy, in
response to dynamics in the environment to avoid collisions
with static and dynamic obstacles; and 3) slow down upon
approaching the goal, preparing for landing at the specified
goal position.

It is also essential that the UAV flight is smooth and
exhibits no oscillatory behavior to maintain the safety of
the UAV’s surroundings. Direct transferability of the trained
policy is of paramount significance and is accorded a high
priority in our work. The described tasks will be executed

autonomously, without any human intervention. Namely,
the RL agent is required to command the UAV throughout its
mission to accomplish its tasks. The overall system diagram
is depicted in Fig. 2.

III. REINFORCEMENT LEARNING ENVIRONMENT

Learning through reinforcement is a procedure by which
an agent builds up intelligence by virtue of a vast amount
of trials and errors experienced in the task environment.
Conducting these experiences physically in real-world en-
vironments could incur substantial expenses, especially for
aerial vehicles in obstacle avoidance scenarios, since UAVs
are fragile to withstand frequent failures. In consideration
of this fact, training RL agents takes place in simulated
environments, where simulated robotic platforms undergo
as many experiences as needed for the agent to learn the
required task. In this section, the simulation environment,
simulated UAV platform, environmental state variables,
and the engineered reward design will be discussed in
detail.

A. Simulated Environment

The environment in which the RL agent will be trained
to perform the sought task is a rectangular 7 m × 5 m area.
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It includes a static obstacle, represented by a vertical pole,
positioned at the center of the room. It also includes a
dynamic obstacle, represented by a ball of diameter 50 cm
that rotates around the vertical pole, at various speeds.
Virtual walls were situated to enclose the simulated area
and hence ensure that the UAV stays inside. This promotes
better exploration during training, as the agent will only be
permitted to direct the UAV within the defined premises.

B. UAV Dynamics

The platform used to perform the simulated and real
experiments is a hexacopter UAV. However, the same
methodology is directly applicable to other planar mul-
ticopter UAV types. The UAV dynamics are considered
nonlinear, and the main nonlinearities can be summarized
by the following [35]: N1—Nonlinear drag dynamics,
N2—Nonlinear propulsion dynamics, N3—Motor satura-
tion, N4—Nonlinear kinematics due to gravity and under-
actuation.

For nonlinearity N1, a linearized drag model based on
the findings of [36] is used. The validity of this assumption
was extensively verified in experiments as demonstrated
in [26] and [37]. N2 is handled using electronic speed
controllers (ESC) that provide a linear map between the
ESC input and the produced thrust, which most off-the-shelf
ESCs provide. The motors operate in the nonsaturation
regime and hence N3 is avoided. Motors reach saturation
during aggressive maneuvers which are not needed for
the considered task. Nonlinear kinematics, i.e., N4, are
linearized using the geometric tracking controller in SE(3)
as proposed in [28]. Such linearization is only valid when
the tracking error of the attitude loops is sufficiently small
as shown in [38], which is achievable when the attitude
loops are well-tuned. Tuning the controllers was found to be
impossible if the time delay is neglected from the dynamic
model since optimal tuning results in infinite controller
gains [38]. On the other hand, accounting for time delay,
which could be actuator or measurement delay, resulted in
finite controller gains that correctly represented stability
limits of the multirotor UAV dynamics [38]. Finally, the
multirotor UAV dynamics are coupled through gyroscopic
interactions which can be safely neglected when robustly
tuned controllers are used [35], [37].

Thus, a dynamic model that describes motion along
a single lateral inertial axis would include inner loop dy-
namics (i.e., roll or pitch) cascaded by outer loop dynam-
ics (i.e., lateral motion along inertial x- or y-axes). This
is required since lateral motion is underactuated and de-
mands the platform tilt.

First, we describe the open-loop angular dynamics (roll
or pitch) by the retarded delay differential equation

ẋ1(t ) = A11x1(t )+ B1uM (t − τa)

y1(t ) = C1x1(t − τθ ) (1)

where A11 ∈ R
3×3 represents angular and first order actuator

dynamic parameters, x1 =
[
θ, θ̇ , θ̈

]T
is the state vector of

the angle, angular velocity, and angular accelerations, B1 ∈

R
3×1, uM is the differential ESC command causing pitching

(or rolling) moment, C1 is a 3× 3 identity matrix, and τa

and τθ are the actuator and the angle measurement delays,
respectively.

Since the RL agent produces reference velocity com-
mands, we study translational velocity dynamics without
the position state. The lateral velocity dynamics are given
by a first order drag model with measurement delay

ẋ2(t ) = A22x2(t )+ A21 f ([1 0 0]x1(t ))

y2(t ) = C2x2(t − τx ) (2)

where A22 is a scalar representing translational drag, x2 is the
lateral velocity, A21 ∈ R

1×1 is a constant gain, f (·) is a ge-
ometric nonlinearity that represents the lateral acceleration
dependency on the tilt angle, C2 is unity, and τx is the mea-
surement delay. Note that the lateral velocity is not directly
controllable due to under-actuation. A geometric feedback
controller as proposed in [28] provides a linearization f −1(·)
of the nonlinear dynamics f (·). A hierarchical feedback
controller is arranged with gains K1 = [Kp Kd Kdd ] for the
states in (1) and K2 = [Kv] with f −1(·) for the system in
(2). With such hierarchical control structure the feedback
dynamics become linear (see [38] for detailed derivations).
The higher level of the hierarchy is the feedback lineariza-
tion control law given by [38]

f −1(vr (t ), x2(t − τx )) = arctan
K2vr (t )− K2C2x2(t − τx )

g+ ar,z
(3)

where g = 9.81 m/s2 is the gravity acceleration constant,
ar,z is the reference acceleration produced by the altitude
controller (ar,z is not relevant to the task proposed in this
work, refer to [38] for a discussion on altitude control), and
vr is the reference velocity produced by the RL agent. The
control action uM in (1) is defined as follows:

uM (t − τa) = Kp f −1(vr (t ), x2(t − τx ))− K1C1x1(t − τθ )
(4)

and the overall closed-loop feedback dynamics become
defined by the following delay differential equation:

ẋ1(t ) = A11x1(t )+ B1Kp f −1(vr (t − τa), x2(t − τx − τa))

− B1K1C1x1(t − τθ − τa)

ẋ2(t ) = A22x2(t )+ A21 f ([1 0 0]x1(t )). (5)

The dynamic system parameters represented by A11, A21,
A22 and the overall loop delays τθ + τa, τx + τa are obtained
using the DNN-MRFT identification approach discussed in
the next section. Once A11, A21, A22 and the delay parame-
ters are known, parametric tuning of controller parameters
is performed to obtain K1 and K2 [35]. As a result, (5)
becomes fully defined and can be used to model the closed
loop UAV dynamics which is instrumental to the RL train-
ing. Due to noisy angular acceleration estimates we set the
controller gain Kdd in K1 to zero resulting in a PD controller
for the angular control loop. PD controllers for attitude
control are widely used in practice and result in satisfactory
performance. For example in [35], a 0.12 s rising time for a

2618 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 60, NO. 3 JUNE 2024



PD controlled angular loop was achieved, hence the use of
PD controllers is justified.

The system in (5) is non-Markovian since the initial con-
dition of x(s) = [x1(s), x2(s)]T for−τx − τa ≤ s ≤ 0 needs
to be defined. Note that we assumed τx > τθ as τx is usually
associated with external (e.g., GPS) or onboard (e.g., vision)
position sensors that are slower than the onboard angular
measurements provided by the inertial measurement unit.

COROLLARY 1 Due to the existence of the delays in (1) and
(2), the effect of the control input in the system output can
be observed not earlier than τx + τa after applying the input.

Since the RL agent is implemented digitally acting on
the sampled system, we choose the sampling period h to be
greater than τx + τθ to satisfy Corollary 1. Moreover, we
recently showed in [39] that the non-Markovian system in
(5) can be approximated by a Markovian one by including
the previous action in the state. The same Markovian ap-
proximation can be achieved when the previous action is
considered in the reward of the RL agent as discussed in
Section III-E.

C. Model Parameters Identification

The unknown model parameters in (1) and (2) are ob-
tained experimentally based on the DNN-MRFT identifica-
tion approach recently proposed in [27]. The DNN-MRFT
approach can be summarized as follows.

1) Select a domain of unknown system parameters (i.e.,
time constants and delays). Selection of inner dy-
namics parameters is detailed in [26], and selection
of lateral dynamics parameters is detailed in [27].

2) Discretize the time parameters’ domain with ade-
quate discretization resolution that guarantees a cer-
tain upper bound of suboptimality in performance.
We chose a 10% upper bound limit as in [26].

3) Generate simulation data with MRFT for each model
in the discretized parameters domain.

4) Train the DNN-based on MRFT simulation data to
output model parameters based on inputs.

5) Run the DNN on experimental MRFT data to output
the unknown model parameters.

Tuning controller parameters can be performed once
the model parameters are identified using the derivative
free Nelder–Mead simplex algorithm to minimize the in-
tegral of the squared error (ISE) cost functional [35]. When
DNN-MRFT identification and tuning is completed, the
parameters in (5) are fully defined and we can proceed with
RL simulations.

D. RL Environment State Variables and Actions

The state variables are the observations based on which
the agent generates actions. For our task, the agent generates
two actions: 1) X reference velocity; and 2) Y reference
velocity. These reference velocities ensure safe maneu-
ver through the environment, given the observations listed
below.

1) Displacement to goal position
(
dx

g , dy
g
)
: This obser-

vation is critical for the agent to direct the UAV to
minimize the distance to the desired goal position.

2) Distance to static obstacle
(
dx

s , dy
s
)
: By observing

the distance to the static obstacle, the agent will
generate actions to avoid colliding with the obstacle.

3) Current and previous distances to dynamic obstacle(
dx

d,t−1,d
x
d,t ,d

y
d,t−1,d

y
d,t

)
: Observations of the distance to the

dynamic obstacle at the last two time steps help the
agent deduce the obstacle’s speed and the direction
of motion to consequently predict its future state and
direct the UAV to avoid it.

4) The absolute difference between the cur-
rent and previously commanded actions(∣∣ax

t − ax
t−1

∣∣ , ∣∣ay
t − ay

t−1

∣∣): The agent should be
aware of the actions it generated in previous time
steps to avoid generating drastically different
actions in short periods of time, which might
result in undesired aggressive motions of the
physical platform. This is theoretically motivated
by Corollary 1 and the investigation in [39].

5) Attitude of the UAV given by the Euler angles (φ, θ ):
The attitude of the UAV implicitly indicates the
smoothness of its trajectory and hence is a critical
observation for the agent to generate actions that
maintain the smoothness of the flight.

6) Velocity of the UAV
(
vx, vy

)
: Toward the end of its

task, the UAV is expected to slow down preparing
to stop then land. Observing the velocity of the plat-
form facilitates gradual deceleration until the goal is
reached.

All quantities are defined in the world coordinate frame,
with its origin located at the center of the environment. The
UAV is assumed to fly at a fixed altitude, where the agent has
no direct control on its velocity in the Z-direction. Hence, all
observations were restricted to the X–Y coordinate frame.
Moreover, it is assumed that accurate estimates of the 1)
UAV position; 2) UAV velocity; 3) obstacles’ positions
are accessible, where in practical scenarios, these measure-
ments can be obtained through proprioceptive and vision
sensors onboard the UAV.

Action and state spaces are continuous, bounded by
the environmental constraints. The actions, which represent
the UAV reference velocities, are limited between −1 m/s
and+1 m/s, inclusive. This reference velocities’ range was
selected to facilitate conducting real experiments in our
lab facilities and can be further extended for large scale
environments to include higher speeds of the UAV and
the obstacle. Observations of the distances to the goal
and obstacles are always within the defined environment
boundaries. An illustration of the interaction between the
system components is shown in Fig. 2.

E. Reward Design

The reward function serves as an incentive mechanism
to incrementally stimulate the behavior that leads to achiev-
ing the ultimate goal of a particular task. More specifically,
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it trains the agent on how to achieve a particular task
by imposing penalties when the behavior is undesirable.
The learnable parameters of an RL agent are tuned in a
manner that maximizes the cumulative reward throughout
an episode of learning. The proposed reward function is
hybrid; combining sparse and continuous components. A
large positive reward of +1000 is given only if the UAV
stops within 0.3 m from the defined goal point and a large
negative penalty of −500 is imposed if the action resulted
in collision with any of the obstacles in the environment.
The sparsity of this reward makes it extremely challenging
for the agent to learn how to perform the task and requires
extensive exploration of the environment, which incurs very
high costs. Furthermore, in the event that the agent was able
to achieve the desired goal using this reward formulation,
it will learn what the goal is without any indication on how
to achieve it. This could be sufficient for tasks where the
response to actions is always the same, such as the case with
discrete state and action spaces. However, for our problem,
the updated state of the platform in response to the actions
does not merely depend on the action values, but also on
the previous state of the platform, its settling time, and on
the environment. To that end, an auxiliary reward function is
needed to indicate how the UAV navigation should progress
throughout the task.

To encourage the UAV to approach the goal, a negative
penalty proportional to the UAV’s Euclidean distance to the
goal is imposed as defined in (6). This implicitly advocates
taking the shortest path to the goal to avoid accumulating
negative penalties along the way and hence saves time and
energy

distance penalty = −dg = −
√(

dx
g

)2 + (
dy

g
)2

. (6)

Another negative penalty, proportional to the absolute dif-
ference between the current and previous actions [as indi-
cated in (7)] is inflicted on the agent to discourage com-
manding largely different actions, particularly in opposing
directions, which results in an oscillatory behavior of the
physical platform

action penalty = −α × (∣∣ax
t − ax

t−1

∣∣+ ∣∣ay
t − ay

t−1

∣∣) (7)

where α is a weighting parameter and was set to 2 in the
trained model to give higher penalty to oscillatory action
behavior and hence encourage flight smoothness. Further-
more, to gradually slow the UAV down upon approaching
the goal position, the agent is penalized if large reference
velocities are generated near the goal or when small ref-
erence velocities are generated when the UAV is away
from the goal. This particular component of the reward
is only activated if the UAV is in the vicinity of the goal
position, and is insignificant otherwise. The purpose of this
reward component is to indicate when the UAV has to start
slowing down while approaching the goal, without affecting
its speed when it is far away from the goal. In the latter case,
the UAV may need to move fast if the path toward the goal
point is clear or slow down if an obstacle is encountered.
Hence, no additional penalty is imposed by this reward

component beyond the defined distance to the goal (1.5 m).
Within 1.5 m from the goal, the velocity must decay to zero
exponentially, which is ensured by the proposed velocity
penalty formulation, shown in.the following:

velocity penalty =
{
−|w1 × dg − w2 × v|, if dg ≤ 1.5

0, otherwise
(8)

where w1 = 1[1/m], w2 = 1[s/m], and v =
√

v2
x + v2

y .

The objective of the RL agent is to maximize its re-
wards during an episode, or equivalently minimize the
penalties. Looking at the formulation of the velocity penalty,
it is minimum if both the speed and distance to the goal are
equivalent. However, when the distance to the goal is greater
than 0, the agent would be penalized for not reaching the
goal, as indicated in (6). Hence, to maximize its rewards,
the agent must reduce the speed of the UAV gradually as
it approaches the goal. This relationship has motivated the
formulation of this reward component, considering both the
UAV speed and its distance to the goal.

All the reward components are unit-less, and each one
trains the agent to acquire a particular skill, which eventually
contributes to achieving the desired behavior.

F. Terminal Conditions

Terminal conditions define when a training episode
should be terminated; either because the goal has been
achieved or the state of the agent or the environment hinder
the completion of the task. Two main terminal conditions
were defined: 1) if the UAV has reached the goal at a very
low speed allowing it to stop then land; and 2) if a collision
occurs. Leaving the defined area of the environment was not
considered a terminal condition, to increase the exploration
ability of the agent. Rather, virtual fences were placed at the
boundaries of the environment and any actions generated
by the agent to move the UAV out of the environment were
ignored. At the boundaries, the UAV still receives penalties
based on its current state. If a new action guides the UAV
back inside the environment, it continues exploring until one
of the terminal conditions is met or the maximum allowable
time for a training episode is exceeded.

IV. DEEP DETERMINISTIC POLICY GRADIENT AGENT

Deep deterministic policy gradient [40], DDPG in short,
is a deterministic, off-policy, actor-critic RL technique that
is best suited for problems with continuous state and action
spaces. UAV navigation and obstacle avoidance is an iter-
ative decision-making process that is needed to guide the
UAV through an environment to achieve a particular task.
The environment in which the UAV operates and hence the
state space is continuous. Also, UAV velocities, and hence
the action space, is continuous. Such requirements justify
the selection of DDPG for our application.

DDPG consists of four neural networks, an actor net-
work μ(s), a critic network Q(s, a), a target actor network
μ′(s), and a target critic network Q′(s, a), where s refers
to states and a refers to actions. The term deterministic
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refers to the way mapping between states and actions is
carried out, where instead of outputting the probability
distribution across the action space, the actor outputs de-
terministic actions given the observations. Target actor and
critic networks exhibit the same architecture as the actor and
critic networks, respectively, but are updated less frequently
to maintain learning stability. The DDPG agent maintains
a finite-sized replay buffer that retains the experiences
encountered by the agent during training, and is used to
provide a distribution of experiences over the course of
training to update the learnable parameters of the agent.
During training, the agent needs to explore the environment
in which it operates by attempting new actions that lead
to previously unknown states. This is achieved by means
of an Ornstein–Uhlenbeck process that adds noise to the
action generated by the agent, hence leading to a slightly
different action than the one decided by exploiting the
agent’s experience. In what follows, steps used to train a
DDPG agent will be briefly explained.

First, the four neural networks are randomly initialized;
Q

(
s, a|θQ

)
, Q′

(
s, a|θQ

)
, μ(s|θμ), and μ′ (s|θμ), where θQ

and θμ are initial weights. Action selection: Upon re-
ceiving the initial observation s1 from the environment,
the current actor network is used to estimate an action
at = μ (st |θt )+Nt , where t is equal to 1 for the initial
observation and N is an Ornstein–Uhlenbeck noise process
from which a noise value is sampled and added to the action
to encourage exploration. Reward and next state computa-
tion: The selected action is carried out in the environment,
the respective reward is acquired, and the new state to
which the action has led is observed. Experience roll-out:
Add the recently obtained experience tuple (st , at , rt , st+1)
to the replay buffer; where st is the state at t , at is the
selected action, rt is the resultant reward, and st+1 is the
new state. Then, a minibatch of experiences is randomly
sampled to update the network parameters of the agent.
Q-value update: The Bellman equation is used to compute
the updated Q-value where the Q-value of the next state in
the second term of the Bellman equation is computed using
the target actor and target critic networks. More specifically,
for each experience tuple (si, ai, ri, si+1) in the minibatch,
the Q-value, yi is updated as in the following:

yi = ri + γ Q′
(

si+1, μ
′
(

si+1

∣∣∣θμ′
) ∣∣∣θQ′

)
(9)

where γ is a discount factor in [0,1].
Critic network update: The mean squared error between

the updated Q-value and the Q-value computed using the
critic network is minimized to update the parameters of the
critic network as shown in the following:

L = 1

N

∑
i

(
yi − Q

(
si, ai|θQ

))2
(10)

where N is the number of experience tuples in the sampled
minibatch.

Actor network update: To update the policy network, the
derivative of its objective function, i.e., the expected return,
is computed with respect to the parameters of the policy

network as shown in the following:

∇QμJ (θ ) ≈ ∇aQ (s, a)∇θμμ
(
s|θμ

)
. (11)

The gradient is calculated for each entry in the minibatch,
and the mean of their sum is then used to update the actor
network. Target actor and target critic networks update:
Soft updates are then introduced to the target networks as
indicated in the following:

θμ′ ← τθμ + (1− τ )θμ′ (12)

θQ′ ← τθQ + (1− τ )θQ′ (13)

where τ is a user-defined time delay and τ << 1. The
highlighted steps are repeated every episode throughout the
training process.

In the proposed approach, the policy is approximated by
means of the actor network which consists of three hidden
layers, with 200 neurons each, activated using the rectified
linear unit (ReLU). The output layer consists of two neurons
activated using the hyperbolic tan function, which limits the
maximum magnitude of the action, i.e., reference velocity,
to 1 m/s. Similarly, the critic network consists of three
200-neuron hidden layers activated using ReLU, followed
by a single-neuron output layer. The size and activation
functions of the hidden layers for both the actor and critic
networks were selected based on our preliminary training
results. More specifically, various network structures were
tested and the proposed structure exhibited the best perfor-
mance.

V. EVALUATIONS

A. DDPG Agent Training

A simulated environment was created using the
gym [41] framework where training is carried out. A simu-
lated model of the hexacopter, as described in Section III-B,
was inserted into the environment to perform the flights. A
simulated dynamic obstacle, that moves in circles around a
static pole (another obstacle) was added to the environment.
The speed of the dynamic obstacle was bounded between
0.4 and 0.6 m/s for training and its initial position can be
anywhere around the circle. The radius of rotation was set
to 1.5 m and the direction could be clockwise or counter-
clockwise. The size of the replay buffer was set to 100 k and
the Adam optimizer [42] was used for training all networks
for about 8 k episodes.

B. Simulation Results

Simulated tests were run in the training environment
using the same simulated model of the UAV. The initial
position of the dynamic obstacle, it rotation direction, and
its speed were varied for each test. During training, the speed
of the dynamic obstacle was in the range of [0.4, 0.6] m/s.
Table I lists the success rate achieved by the agent under
various initial environment conditions, including scenarios
out of the training set. The speed of the obstacle was varied
between 0.3 and 0.7 m/s. The success rate was obtained
based on 360 tests per scenario where the initial position of
the obstacle was varied around the circle.
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TABLE I
Agent’s Success Rates in Simulations Under Various Conditions

Fig. 3. Simulated Scenario 1 Obstacle Speed = 0.5 m/s.

Fig. 4. Simulated Scenario 2 Obstacle Speed = 0.9 m/s.

Fig. 3 shows the results of a test where the dynamic
obstacle started moving in the vicinity of the UAV, at a speed
of 0.5 m/s clockwise. The agent was able to successfully
direct the UAV to avoid the dynamic and static obstacles,
then head toward the goal and stop there. The velocities of
the UAV largely match the actions generated by the agent,
as can be noticed in the left side plots of the same figure.
In another test, the speed of the obstacle was set to 0.9 m/s,
i.e., the obstacle moved faster than the training speed. Fig. 4
depicts the commanded versus actual velocities of the UAV
as well as its trajectory from its initial position to the goal
position.

The results shown in Fig. 5 demonstrate the behavioral
intelligence of the UAV when the speed of the obstacle is
set to 1 and 1.4 m/s for the same initial obstacle position
and direction of rotation, given that the maximum speed of
the UAV is 1.4 m/s. The plots show the position of the UAV
as well as the obstacle every ten time steps. It is clear that
the trained agent was able to guide the UAV through the
environment, even in cases where the obstacle was moving
close to the UAV at a high speed. It can also be noticed
that the actions generated by the agent do not exhibit any
oscillations throughout the episode and hence the resulting
trajectory is smooth. In both cases, stopping the UAV at the
goal position happens gradually as the UAV gets closer to
the goal.

Fig. 6 depicts another successful scenario where the
obstacle was moving slower than the speed range considered
for training. The results prove the ability of the agent to
generalize to various conditions of the dynamic obstacle. In

every scenario, the trajectory of the UAV differs based on
the location, speed, and direction of motion of the dynamic
obstacle.

C. Experimental Setup

The proposed RL-based navigation system was tested
in a real environment to verify its effectiveness across the
sim2real gap. More specifically, the environment was set
up in a 7 m × 5 m room, equipped with an optitrack. A
dynamic obstacle was placed in the environment where a
ball of 50 cm diameter was fixed at the tip of a horizontal rod
that rotates about a vertical pole at approximately 0.6 m/s.
The vertical pole was placed at the center of the environment
and the radius of rotation was 1.5 m. A DJI F550 hexacopter
was used to perform the flights, where the controller was run
on an onboard Raspberry Pi computer. The RL agent was
implemented using the Keras-RL library and was run on an
onboard Intel NUC computer. A motion capture system is
used to obtain the state observations. The communication
between the flight controller, the RL agent, and the motion
capture system happens through the robot operating system
(ROS). The experimental setup is shown in Fig. 7.

D. Experimental Results

The trained DDPG agent was used to perform real-time
experiments in the configuration explained in the previous
section. Several tests were run to test the match between
the performance of the agent in simulation and reality. For
each test, the dynamic obstacle may start anywhere in the
environment and may move clockwise or counterclockwise.
As explained in Section II, the task is considered accom-
plished if the UAV safely navigates the environment, avoids
obstacles, and stops at the goal position.

The image sequence in Fig. 8 depicts an obstacle avoid-
ance scenario where the UAV observed the ball moving
closer, along its path to the goal position [see Fig. 8(a)].
Consequently, the RL agent commanded the UAV to move
in the opposite direction to avoid colliding with the obstacle
[see Fig. 8(b)]. When the obstacle drifted away, velocity
actions in the direction of the goal were generated by the
RL agent [see Fig. 8(c)]. Actions were then generated for the
UAV to decelerate while approaching the goal, preparing to
stop [see Fig. 8(d)].

Fig. 9(a) shows the trajectory of the UAV, the com-
manded velocities in X and Y, and the corresponding UAV
velocities throughout the episode, for the scenario described
in Fig. 8. At t = 17, the obstacle was observed to move
closer to the UAV, while heading to the goal position in
the Y direction. In response, the agent started to generate
commands (starting at t = 18) for the UAV to move in the
opposite direction to avoid collision. Thereafter, the actions
steered the UAV back in the direction to the goal. The UAV
gradually reduced speed and stopped at the goal position,
indicated in green in the figure. The actions generated by
the agent throughout the episode exhibited no oscillatory
behavior, rather, the resultant flight was very smooth with
no abrupt motions. Furthermore, it is clear from the left
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Fig. 5. Simulated Scenarios 3 and 4. (a) Obstacle speed = 1 m/s. (b) Obstacle speed = 1.4 m/s.

Fig. 6. Simulated Scenario 5: Obstacle speed = 0.3 m/s.

Fig. 7. Experimental setup used to verify the transferability of the
proposed approach to real-world environments.

side plots in Fig. 9(a) that the real velocities of the UAV
closely match the reference velocities generated by the
agent. A simulated test under the same initial environmental
conditions for this experimental scenario was conducted
to demonstrate the correspondence between the agent’s
behavior in simulated and real environments. The simu-
lation results are shown in Fig. 9(b). The behavior of the
UAV in the vicinity of the obstacle is comparable in both
tests, where the RL agent generates actions to steer the
UAV in the opposite direction to the obstacle’s motion. The
general trend observed in the generated velocity commands

Fig. 8. UAV avoiding the dynamic obstacle in flight.

in simulations is analogous to that in the real experiment
with noticeable slight differences throughout the episode.
Such differences are anticipated, especially due to exter-
nal factors affecting the environment and hence the UAV
flight. For instance, the wind occurring due to the obsta-
cle’s motion was not modeled in the training environment
but is experienced during real experiments. The RL agent
was still able to intelligently cope with such conditions
and ultimately achieve the task successfully. Videos of
the test flights are available through the following link:
https://youtu.be/I1BF4mhJLLs.

Another scenario that demonstrates the behavioral in-
telligence of the proposed RL-agent is depicted in Fig. 10.
In this test, the obstacle was moving counterclockwise
in the lower part of the environment. The agent initially
commanded the UAV to move through the lower half of
the environment. As the episode progressed, the updated
observation of the obstacle’s motion direction and speed
(at t = 6) mandated a change in the UAV’s direction of
motion (starting at t = 7). Consequently, the agent guided
the UAV in a different maneuver through the upper half
of the environment. After passing the static obstacle, the
UAV is expected to navigate toward the goal. However, at
that instance of time (t = 15), the dynamic obstacle was
observed in the vicinity of the goal position and instead of
taking a steep turn, the agent slowly changed the reference
velocity in Y until the UAV passed the obstacle (t = 20).
Afterwards, reference velocities started to reduce in mag-
nitude, preparing the UAV to stop at the goal position.
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Fig. 9. Experimental versus simulated test 1. Left: Commanded versus actual velocities. Right: UAV trajectory. (a) Real experiment results.
(b) Simulation results.

Fig. 10. Real experiment test 2.

If the dynamic obstacle was far-off when the UAV is
close to the goal, it takes a sharper turn upon passing
the static obstacle toward the goal as shown in Fig. 11.
The figure depicts the same scenario in real-experiments
[see Fig. 11(a)] and in simulations [see Fig. 11(b)]. The
trajectories are very similar, except when the UAV tries to
stop at the goal position. It takes longer in real-experiments
than simulations, which is attributed to the external factors
that are present in the real environment but not the simulated
environment.

Fig. 12 shows the results of another real test where the
dynamic obstacle is moving clockwise, and the UAV was
directed by the RL agent to fly through the lower part of
the environment to avoid collision on its way to the goal.
The actual velocities of the UAV throughout the experiment
closely resemble the reference velocities and smoothly and
safely guide the UAV from its initial position to the goal
position.

To further demonstrate the effectiveness of the pro-
posed approach, experimental scenarios involving unseen
experiences during training are discussed next. In these
scenarios, the radius of rotation of the dynamic obstacle
was changed to verify the generalizability of the RL agent
to different environment dynamics. In addition the rotation
speed was increased in real experiments to demonstrate the
agent’s capability to intelligently behave when encountering
obstacles moving at varying speeds. Furthermore, the speed
of the UAV itself was also increased by adding a scaling
layer before the output of the actor network.

In the scenario depicted in Fig. 13, the dynamic obstacle
was rotating around a circle of 1 m radius, as opposed to
1.5 m radius in training. Consequently, slight differences

in the behavior of the UAV are anticipated. Despite that,
the UAV should be able to accomplish its task in the envi-
ronment which includes: 1) goal achievement; 2) obstacle
avoidance; and 3) stopping at the goal.

Looking closely at this scenario, the dynamic obsta-
cle was initially observed in the upper part of the en-
vironment. Hence, the agent directed the UAV to move
through the lower part of the environment. As the UAV
slightly turned to move straight to the goal position, it
was approaching the static obstacle in the middle of the
environment. The agent was trained to maintain more than
0.8 m between the obstacle and the center of the UAV,
otherwise, a collision happens. Consequently, the agent
commanded the UAV (at t = 9) to drift away to avoid the
static obstacle. As it was slowing down to head back to
the goal position, the dynamic obstacle was observed to
get closer (at t = 16) and hence the UAV moved farther
in the y-direction to avoid it. On its way back to the goal,
slight deviation was experienced, where the UAV moved
closer to the center of the environment. At t = 47, the
dynamic obstacle was moving toward the UAV position and
so, the agent directed the UAV to drive backward. Finally,
as the UAV reached the goal position, the agent gradually
reduced the generated reference velocities and the UAV
finally stopped at the desired position. In this scenario, the
agent demonstrated excellent collision avoidance capabil-
ities in unseen scenarios, which can be clearly observed
in the left side plots, that show the reference velocities
when the obstacles where encountered at t = 9, t = 16, and
t = 47.

Fig. 14 shows another scenario where the maximum
speed of the UAV was increased from 1.4 m/s2 (training
setting) to 1.7 m/s2. The obstacle was moving clockwise,
with a rotation radius of 1 m (also different from training).
The UAV was initially commanded to move forward, and
as it got closer to the static obstacle, the agent had to decide
whether to turn the UAV right or left to avoid it. The dynamic
obstacle was observed in the lower part of the environment
and hence, the agent commanded the UAV to turn left and
head toward the goal from the top part of the environment.
Since the UAV was moving at a higher speed than what
it was trained for, it went off the goal area for a few time
instances, but it was able to head back to the desired position
and gradually reduce its speed.
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Fig. 11. Experimental versus simulated test 3. Left: Commanded versus actual velocities. Right: UAV trajectory. (a) Real experiment results.
(b) Simulation results.

Fig. 12. Real experiment test 4.

Fig. 13. Real experiment test 5.

Fig. 14. Real experiment test 6.

The next example in Fig. 15 also shows a successful test
scenario, with 1 m radius of rotation, maximum UAV speed
of 1.8 m/s, and counter clockwise direction of rotation. The
velocity plots demonstrate the UAV’s capability to highly
match the commanded velocities. Since the UAV is moving
at a higher speed than the training setting, it took some
time to gradually stop at the goal position and it eventually
achieved the full task successfully.

Fig. 15. Real experiment test 7.

Fig. 16. Real experiment test 8.

Another successful scenario is shown in Fig. 16, where
the obstacle is moving counter clockwise, with 1 m radius of
rotation. The maximum speed of the UAV is 2.1 m/s. Given
the initial observation about the obstacle’s motion toward
the top half of the environment, the agent commanded the
UAV to approach the goal through the lower half. The UAV
safely navigated to the goal position and slowed down in
the desired area.

All of these scenarios demonstrated the ability of the
trained agent to intelligently behave in response to varia-
tions in the environment dynamics, that were not encoun-
tered during training.

E. Discussion

Achieving the three objectives of the navigation ap-
plication in hand was insufficient to select which trained
model to deploy in real experiments. Rather, it was crucial
to observe the behavior of the UAV in-flight to determine
the effectiveness of the model. A substantial amount of
the trained models were able to achieve a high success
rate in simulations. More specifically, such models were
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Fig. 17. UAV behavior without action penalty

Fig. 18. UAV behavior without velocity penalty

able to guide the UAV to the goal position, while avoiding
obstacles, and finally slow it down at the goal. However,
the flights exhibited undesirable behavior in response to the
given commands. For instance, Fig. 17 depicts the results
of a simulated test where the UAV was eventually able to
stop at the goal position after maneuvering through the dy-
namic environment. Nevertheless, the commands generated
by the RL-agent demonstrated an oscillatory behavior that
resulted in an unsteady flight, which is very dangerous to
experience in a real scenario. The reward function used in
this model did not have any penalties for drastic changes
in consecutive RL actions. This clearly justifies the need
for the action penalty term added in the proposed reward
function.

Another example of a flight where the UAV safely
arrived at the goal position is shown in Fig. 18. The model
deployed in this example included a penalty term for varying
consecutive actions, and hence the smooth reference veloc-
ities curves. However, no penalty was set for arriving at the
goal at high speed. A sparse reward of +1000 was given
only when the stopping criteria is met at the goal position.
In this case, the UAV crosses the goal area then tries to
come back again to stop, trying to reduce the accumulating
distance penalties over time. The agent may need to generate
more than 30–40 additional actions to try to stop the UAV,
incurring more costs in terms of time and consumed energy.
The variations in these commands may sometimes result in
unwanted aggressive maneuvers, particularly in real exper-
iments. Adding the penalty term for high velocities near
the goal position has eliminated this issue and resulted in
a much better behavior in simulations and experiments as
illustrated earlier.

1) Environment Boundaries: During training, virtual
environment boundaries, or fences, were imposed as de-
scribed in Section III-F. Instead of terminating the training
episodes when the UAV collides with the fences, the actions

Fig. 19. Convergence speed when training with and without
environment virtual fences.

are ignored and the UAV stops, or may move along the
fence until the agent generates a command to return it
back into the environment. Such training constraint has as-
sisted exploration and tremendously reduced training time,
since it allowed the agent to continue trying to navigate to
the goal. Another alternative is to terminate the training
episode upon collision with the fence and start over. In
this case, exploration will be focused on the area around
the initial UAV position and will require extended training
and more computational resources until convergence is
achieved. A third option would be to consider the area
without any boundaries and let the agent explore all its
surrounding. In all three cases the agent was able to achieve
the objectives of the task. However, as depicted in Fig. 19,
imposing virtual fences was the fastest to achieve average
reward convergence.

The virtual fences were not used for real experiments
since the main purpose of adding them was to improve
the exploration ability of the system. As illustrated in all
the presented results, the traversed trajectories mainly dom-
inate the center of the environment since flying far-off the
goal position will result in large penalties which is against
the objective of the agent. In rare cases were the UAV
crossed the boundaries, the flight was suspended for safety
reasons.

VI. CONCLUSION

In this article, we proposed an autonomous, real-time
navigation scheme based on the integration of RL with low-
level advanced control for UAV applications. The proposed
scheme addresses a nonconvex, long-horizon prediction
task in which a UAV has to smoothly navigate a dynamic
environment to reach a goal position where it has to stop.
The proposed approach was trained solely in simulations
and directly transferred to real-experiments, in view of
the simulated UAV model whose behavior in simulations
greatly matches the physical platform. The proposed system
was tested in simulations and real experiments under various
conditions, some of which were not considered during
training. The agent has demonstrated a remarkable collision
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avoidance ability, in regard to the static and dynamic obsta-
cles. The behavior of the physical platform while trying
to stop at the goal position slightly differed compared to
what was observed in simulations. However, the agent was
eventually able to direct the UAV to decelerate until the goal
was achieved. In the future, the experimental work in this
article can be extended to obtain observations from onboard
sensors instead of the optitrack. More particularly, a vision
sensor can be used to obtain the observations of the obstacles
in the environment and proprioceptive sensors can be used
to estimate the state of the UAV.
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