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Abstract: Deadbeat predictive current control (DPCC) has been widely applied in permanent magnet synchronous motor (PMSM) 

drives due to its fast dynamic response and good steady-state performance. However, the control accuracy of DPCC is dependent on 

the machine parameters’ accuracy. In practical applications, the machine parameters may vary with working conditions due to 

temperature, saturation, skin effect, and so on. As a result, the performance of DPCC may degrade when there are parameter 

mismatches between the actual value and the one used in the controller. To solve the problem of parameter dependence for DPCC, this 

study proposes an improved model-free predictive current control method for PMSM drives. The accurate model of the PMSM is 

replaced by a first-order ultra-local model. This model is dynamically updated by online estimation of the gain of the input voltage 

and the other parts describing the system dynamics. After obtaining this ultra-local model from the information on the measured stator 

currents and applied stator voltages in past control periods, the reference voltage value can be calculated based on the principle of 

DPCC, which is subsequently synthesized by space vector modulation (SVM). This method is compared with conventional DPCC and 

field-oriented control (FOC), and its superiority is verified by the presented experimental results.  
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1  Introduction  

A permanent magnet synchronous motor (PMSM) has 
the outstanding advantages of high efficiency and 
power density. It is a type of motor that has been 
widely applied in various fields in recent years [1]. The 
traditional high-performance PMSM control methods 
are field-oriented control (FOC) [2] and direct torque 
control (DTC) [3-4]. FOC has a wide range of speed 
regulations and good steady-state performance, but 
incorrect proportional integral (PI) gains can easily 
lead to overshoot and oscillation of the system. 
Additionally, the current loop’s bandwidth limits the 
system’s dynamic performance [5]. The DTC structure 
is simple and has a fast dynamic response. However, 
due to the large torque ripple and the variable 
switching frequency, its application is limited in 
high-performance control [6]. 

                                                        
Manuscript received April 17, 2022; revised July 31, 2022; accepted October 
25, 2022. Date of publication June 30, 2023; date of current version March 5, 
2023. 
* Corresponding Author, E-mail: yozhang@ieee.org 
Digital Object Identifier: 10.23919/CJEE.2023.000020 

In recent years, model predictive control (MPC) has 
been widely studied in variable speed drives because 
of its simple principle, quick response, and ability to 
consider nonlinear constraints of the system [7-10]. 
According to the different control objectives, MPC is 
divided into predictive torque control (PTC) [11-13] and 
predictive current control (PCC) [14-15] methods. The 
traditional finite control set MPC uses a cost function 
to uniquely determine the output voltage vector by 
predicting the current for each switching state. 
However, there are relatively high steady ripples due 
to applying one voltage vector during one control 
period. When there are parameter mismatches, the 
performance will be further degraded. Moreover, the 
computation burden is high due to evaluating each 
converter voltage vector, especially for applying 
multistep prediction or multilevel converter [16]. 

Deadbeat predictive current control (DPCC) is a 
predictive current control method that incorporates 
space vector modulation (SVM) [17-18]. This method 
obtains the reference voltage value based on the 
principle of deadbeat current control and converts the 
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voltage reference value into a switching state by using 
SVPWM. DPCC can realize fast dynamic response of 
current tracking. However, this method is sensitive to 
parameter variation. During the running process of the 
motor, the temperature of the motor increases with the 
running time, and the motor parameters become 
mismatched. This will lead to an increase in stator 
current harmonics and may even affect the stability of 
the system [19-23]. 

To address the aforementioned problems, numerous 
methods have been proposed in Refs. [24-29]. These 
methods are based on online identification. The 
scheme of online parameter identification includes 
recursive least-squares identification [24-25, 30], 
inductance estimation based on the observed 
disturbance voltage [31] or a model reference adaptive 
system [26, 32], affine projection algorithms [27-28], and 
fuzzy control algorithms [29]. However, these online 
identification methods are usually complex and require 
a high computation power. Another method is based 
on sliding mode control [33-35]. In Ref. [35], an adaptive 
integral sliding-mode predictive control is proposed 
using the self-regulation control method and the 
sliding-mode function. However, these methods 
require a large amount of calculation, and the 
performance depends on the design and adjustment of 
the controller parameters, which increases the design 
work of the controller.  

Model-free control (MFC) tackles the problem of 
parameter robustness in another way [36]. The original 
MFC method was proposed by Michel Fliess in 2009 
based on an ultra-local model. MFC depends only on 
the input and output data of the controlled system to 
set up the ultra-local model and its controller. It is a 
good solution to solve the problems of load 
disturbance and parametric variation. To date, MFC 
has been used in the current control of PMSM drive 
systems with parametric uncertainties [14]. Another 
model-free predictive current control (MFPCC) 
method is proposed in Ref. [37]. It is proposed by 
calculating the current difference, which requires 
sampling the current twice per control period. The 
stored current differences are updated online and used 
for the current prediction of MPC without using any 
machine parameters. However, measuring the stator 
current twice during one control period increases the 

hardware requirements. In addition, this method has 
the problem of stagnant current difference updating 
(SCDU), which makes the stator current distortion 
severe and affects the steady-state performance [20]. 
Moreover, this algorithm is based on single-vector 
model predictive current control (MPCC), and the 
steady-state ripples are much higher than that of 
SVM-based DPCC. In Ref. [14], the extended state 
observer (ESO) based on the ultra-local model of the 
PMSM is proposed to observe the lumped disturbance 
of the system. However, it still needs to tune one 
parameter, ω0 (bandwidth of ESO). Furthermore, the 
gain of the input voltage is assumed to be roughly 
known and requires some tuning [38]. In Ref. [39], the 
current prediction error in the past control periods is 
used to compensate for the parameter mismatches 
when predicting the future current. Although good 
steady-state performance and strong robustness are 
achieved, the method is still computationally 
intensive.  

This study proposes a modified DPCC method for 
the current control of PMSMs, which can achieve 
strong robustness against parameter mismatches with 
simple calculation. By replacing the accurate machine 
model with an ultra-local model, the current prediction 
and reference voltage calculation processes are 
simplified. However, different from Ref. [14], the gain 
of input voltage and the lumped disturbance are 
estimated online by using the information of stator 
voltages and currents in the past control periods rather 
than an ESO. The principle is very simple and 
straightforward, and the computational burden is much 
lower. The proposed DPCC is compared with 
traditional DPCC and FOC with the same sampling 
and switching frequencies, and the experimental 
results confirm the effectiveness of the proposed 
method. 

2  Model of the PMSM drive system  

The mathematical model of a surface-type PMSM 
(SPMSM) in a stationary αβ frame can be expressed 
using complex vector as follows [6] 

  
d= +
d

s
s s sR

t
ψu i   (1)  

 s s s r=L +ψ i ψ     (2) 
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where exp( j )r f eψ θ= ⋅ψ  is the rotor flux vector; su  
and si  are the stator voltage and current vectors, 
respectively; sR , sL , and fψ are the nominal 
parameters of the stator resistance, stator inductance 
and permanent magnet flux, respectively; sψ  is stator 
flux vector; and eθ  is the electric rotor angle. 

The stator current model of the motor can be 
obtained from Eq. (1) and Eq. (2) as 

 
d
d

s
s s s=

t
− −Ri u i e  (3) 

where j r= ωe ψ  is the back electromotive force (EMF). 
In the original MFC, Eq. (3) can be written as a 

first-order ultra-local model, and it is expressed as 
follows [14] 

 
d
d

s
st

α= +
i

F u      (4) 

where F is the unknown part, and α is the gain of the 
input value. 

According to Ref. [14], the control law of MFC is 
obtained as [14] 

 
dˆ /
d

ref
ref s
s pK

t
α

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

i
u F e     (5) 

where F̂ is the estimated value of F, ref
si  is the 

reference current vector, ref
su is the reference voltage 

vector, = ref
s s−e i i is the current error, and Kp is the 

proportional gain. 
The controller in Eq. (5) is called an intelligent P 

controller, and it can achieve robust tracking of the 
reference value. However, the estimation of F̂  is 
based on the differential algebra method [36], which is 
complicated. The gain α is assumed to be roughly 
known based on prior knowledge. More details 
regarding MFC can be found in Refs. [14, 36] and are 
not included here due to page limitations.     

3  Conventional DPCC 

According to Eq. (3), si  at the next control period 
can be predicted using forward Euler discretization as 

 ( )1k+ k k k ksc
s s s s s

s

T
= + R e

L
- -i i u i     (6) 

where scT  is the sampling period. 
According to Eq. (6), the current prediction is 

parameter dependent. In practical applications, due to 

the influence of temperature, saturation and other 
factors, the parameters of the motor change and affect 
the current tracking accuracy, as shown in the 
experimental results. 

To mitigate the influence of permanent magnet flux 
on the controller, the back EMF is estimated using the 
voltages and currents in the past control periods.  

According to the Eq. (6), 1ke −  is obtained as 

 ( )1 1 1 1s
s s s s s

sc

Le R
T

− − − −= − − −k k k k ku i i i     (7) 

Similarly, 2ke −  and 3ke −  can be obtained as 

 ( )2 2 2 1 2s
s s s s s

sc

L
e R

T
− − − − −= − − −k k k k ku i i i   (8) 

 ( )3 3 3 2 3s
s s s s s

sc

L
e R

T
− − − − −= − − −k k k k ku i i i     (9) 

As the sampling period is very short, the back EMF 
can be considered constant during several successive 
control periods. Hence, the back EMF can be obtained 
from the past three control periods as 

 
1 2 3

3
e e ee

− − −+ +
=

k k k
k     (10) 

By estimating the back EMF, the dependence on 
permanent magnet flux is alleviated. As a result, the 
robustness against permanent magnet flux variations is 
enhanced.  

After predicting the stator current at k+1 instant, the 
reference voltage vector to eliminate the current at k+2 
instant can be calculated as 

 ( )1 1 1k+ k+ ref k+ ks
s s s s s

sc

L
=R + +e

T
-u i i i     (11) 

where ( )j exp( j )ref ref ref
d q= + θ⋅ ⋅s ei i i , ref

di  is zero to 
achieve the maximum torque per ampere (MTPA) 
operation, and ref

qi is obtained from the outer speed 
loop using a PI controller. 

4  Proposed DPCC 

By estimating the back EMF, the parameter robustness 
of conventional DPCC is partially improved. However, 
it is still dependent on the inductance and stator 
resistance. To eliminate the parameter dependence of 
DPCC, this study proposes an improved DPCC based 
on the ultra-local model [36]. The control diagram is 
illustrated in Fig. 1.  



Chinese Journal of Electrical Engineering, Vol.9, No.2, June 2023 

 

30

 

Fig. 1  Control diagram of the proposed DPCC 

According to the ultra-local model in Eq. (4), the 
stator current at the k+1 instant can be predicted as  

 ( )1k+ k k
s s sc s= +T +αi i F u     (12) 

However, F and α are not readily known. In this study, 
they are estimated using the past stator currents and 
stator voltages.  

The current difference in the past two control periods 
can be measured, and they can also be calculated as 

 ( )1 1k k k k k
s s s sc s= =T +− −αΔ −i i i u F     (13) 

 ( )1 1 2 2 1k k k k k
s s s sc s= =T +− − − − −αΔ −i i i u F     (14) 

With a sufficiently high sampling frequency, Fk and 
Fk−1 are assumed to be approximately equal, because 
the mechanical time constant is much larger than the 
electrical time constant.  

According to Eq. (13) and Eq. (14), α can be 
obtained as 

 ( )
1

1 2

k k
s s

k k
sc s sT

−

− −
α

Δ − Δ
=

−
i i
u u

   (15) 

Substituting Eq. (15) into Eq. (13), F can be 
obtained as 

 
k

ks
s

scT
α

Δ
= −

i
F u     (16) 

After obtaining α and F from Eq. (15) and Eq. (16), 
the current difference in the next two control periods 
can be obtained as 

 ( )1 1k k k k k
s s s sc s= =T +α+ +Δ −i i i u F     (17) 

 ( )2 2 1 1 1k k k k k
s s s sc s= T +α+ + + + +Δ − =i i i u F    (18) 

Summing Eq. (17) and Eq. (18), considering that 
2ref k+

s s=i i  and 1k k +=F F , the reference voltage vector 
can be calculated as 

 1 ( ) / 2ref k k
ref k ks s sc
s s s

T
=

α
+ − −

= −
i i F

u u u    (19) 

It can be seen intuitively from Eq. (19) that the 
proposed method does not use any machine 

parameters. Both α and F are estimated and updated 
online. Hence, strong robustness against machine 
parameter variation is achieved. 

As α and F are directly calculated from Eq. (15) and 
Eq. (16) rather than estimated from an observer, there 
may be irregular spikes in them due to the 
measurement noise in the stator current. Therefore, α 
and F need to be filtered to obtain more accurate and 
stable values, which helps to improve the stability of 
system. This study selects a first-order low-pass filter 
(LPF) for simplicity. For α, its true value is 1 / sL , 
which does not change abruptly. Hence, the cut-off 
frequency can be low. In this study, the final cut-off 
frequency of the LPF for α is set to 25 Hz. The value 
of F may change dramatically in the dynamic process; 
hence, its cut-off frequency should not be too low. In 
general, the cut-off frequency of the LPF is a 
compromise between robustness and dynamic 
performance. The final cut-off frequency of the LPF 
for F is set to 1 000 Hz in this study. 

5  Experimental results 

To confirm the effectiveness of the proposed DPCC, 
experimental verification is carried out on the 
following experimental platform shown in Fig. 2. The 
main parameters of the machine are listed in Tab. 1. For 
comparison, conventional DPCC [18, 40], conventional 
FOC, and the proposed DPCC are implemented on a 
DSP TMS320F28335 SPMSM control platform. The 
sampling frequency is set to 10 kHz in this study. In the 
following figures of experimental results, the motor 
speed, reference and actual currents of the q-axis, and 
one-phase current are measured and displayed on a 
four-channel digital oscilloscope. 

 

Fig. 2  Experimental setup of two-level inverter-fed PMSM drive 
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Tab. 1  Machine and control parameters 

Parameter Value 

DC-bus voltage Udc/V 540 

Rated power PN/kW 2.2 

Rated voltage UN/V 380 

Rated frequency f/Hz 100 

Rated torque TN/(N·m) 14 

Number of pole pairs Np 4 

Stator resistance Rs/Ω 2.34  

Inductance of d-axis Ld/mH 19.36 

Inductance of q-axis Lq/mH 19.37 

Permanent magnet flux ψf/Wb 0.402 

Control period Tsc/μs 100 

Fig. 3 shows the steady-state experimental results at 
a rated speed of 100 Hz for conventional DPCC with 
accurate parameters, conventional DPCC with 
mismatched parameters at 1.5Rs and 2Rs, FOC with 
mismatched parameters at 1.5Rs and 2Rs, and the 
proposed DPCC with mismatched parameters at 1.5Rs 
and 2Rs. It is seen from Fig. 3b that, when there are 
parameter mismatches in the conventional DPCC, both 
the speed and q-axis current cannot track the reference 
value, and the current harmonics are increased. In 
contrast, the proposed DPCC method does not use the 
motor parameters in the current prediction process and 
has good steady-state performance at rated speed, as 
shown in Fig. 3d. For FOC, there is no steady-state 
current error owing to the use of the PI controller; 
therefore, the steady-state performance of FOC is not 
affected by the parameter mismatches. Similar results 
can be seen at low and medium speeds, as shown in 
Figs. 4 and 5. The results confirm that the proposed 
DPCC method has evident advantages over the 
traditional DPCC method in the case of parameter 
mismatch. 

 

 

 

 

Fig. 3  Experimental results at 100% rated speed 
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Fig. 4  Experimental results with 5% rated speed 

 
 

 

 

Fig. 5  Experimental results with 50% rated speed 

Fig. 6 illustrates the current total harmonic 
distortions (THDs) of conventional DPCC with 
accurate/inaccurate machine parameters, FOC with 
mismatched parameters, and the proposed DPCC with 
mismatched parameters at different speeds. It can be 
seen that traditional DPCC has good performance in 
all speed ranges under the condition of accurate 
parameters. However, in the case of parameter 
mismatches, it has the highest current THD, especially 
at the 5% and 50% speeds. Conventional FOC with 
mismatched parameters has a lower current THD at 
medium and high speeds, but the harmonic content 



  

 

33 

Yongchang Zhang et al.: An Improved Deadbeat Predictive Current Control of PMSM Drives Based on 

the Ultra-local Model 

increases at low speeds. The proposed DPCC with 
mismatched parameters has a current THD similar to 
that of traditional DPCC with accurate machine 
parameters. As the proposed DPCC does not use any 
machine parameters, it avoids the influence of 
parameter variations on the system and improves the 
parameter robustness. 

 

Fig. 6  Analysis of current THD for various control methods 

In addition to the steady-state performance 
comparison, the dynamic performance is tested. Fig. 7 
shows the estimated α and F during the dynamic  

 

Fig. 7  The rotor speed, q-axis current, and estimated α and F 

during the dynamic process of proposed method 

process of the proposed method. The machine starts 
from a standstill to rated speed and then quickly runs 
to reverse rated speed. From top to bottom, the curves 
indicate the rotor speed, q-axis current, estimated α, 
and real/imaginary part of F. It is observed that both α 
and F converge to the actual value quickly as soon as 
the machine starts and can still converge to the real α 
and F values in the dynamic process. Although there 
are some oscillations in the observed α during the 
dynamic process, the system is unaffected, and the 
machine runs stably. The results confirm that the 
proposed method can work effectively in both 
steady-state operation and dynamic processes without 
requiring any prior knowledge of system. 

Fig. 8 shows the dynamic responses of speed 
reversal at ±1 500 r/min for conventional DPCC with 
accurate parameters, conventional DPCC with 
mismatched parameters at 1.5Rs and 2Rs, FOC with 
mismatched parameters at 1.5Rs and 2Rs, and the 
proposed DPCC with mismatched parameters at 1.5Rs 
and 2Rs. It is seen that the proposed method presents a 
quick response similar to that of traditional DPCC 
with accurate parameters. However, there are 
significant ripples in the q-axis current during the 
dynamic process when the used machine parameters in 
conventional DPCC are inaccurate. FOC with 
inaccurate machine parameters presents a steady-state 
performance similar to that of the proposed method, 
and the q-axis current is accurately tracked due to the 
use of the PI controller. However, its dynamic 
response is inferior to that of the proposed DPCC, 
which is mainly caused by the limited bandwidth of 
the current loop. Similar results are obtained under the 
condition of rated speed with sudden load change, as 
shown in Fig. 9. When the machine parameters are 
inaccurate, the motor speed does not reach the 
reference speed in conventional DPCC. In contrast, the 
parameter mismatches do not affect both FOC and the 
proposed DPCC. Compared to FOC, there is a smaller 
speed drop in the proposed DPCC, and the q-axis 
current increases much more rapidly. The results 
confirm that the proposed DPCC has a quick response 
similar to that of conventional DPCC and is not 
affected by the machine parameter variations.  
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Fig. 8  Experimental results during the dynamic process  

with -1 500 r/min to 1 500 r/min 

 

 

Fig. 9  Experimental results during the dynamic process with a 

sudden load at 1 500 r/min and the rated load 
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6  Conclusions 

This study proposes a deadbeat predictive current 
control (DPCC) method for a PMSM drive system, 
which is an improvement over conventional DPCC. 
The two terms in the ultra-local model of the PMSM 
drive, α and F, are estimated online by using the 
stator voltage vectors and current sample values from 
the last two control periods. Hence, the proposed 
method has good robustness because it does not 
require motor parameters. The proposed DPCC 
presents a steady-state performance similar to those 
of traditional DPCC with accurate machine 
parameters. However, when there are machine 
parameter mismatches, the performance of traditional 
DPCC degrades, while the proposed method is not 
affected. Moreover, the proposed DPCC presents a 
steady-state performance and parameter robustness 
similar to those of FOC, but the proposed DPCC 
offers a better dynamic response. The experimental 
results verify that the proposed DPCC has good 
steady-state performance, strong parameter 
robustness, and quick dynamic response without 
using any machine parameters. 
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