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ABSTRACT Soil surface texture classification is a critical aspect of agriculture and soil science that affects
various soil properties, such as water-holding capacity and soil nutrient retention. However, existing methods
for soil texture classification rely on soil images taken under controlled conditions, which are not scalable
for high spatiotemporal mapping of soil texture and fail to reflect real-world challenges and variations. To
overcome these limitations, we propose a novel, scalable, and high spatial resolution soil surface texture
classification process that employs image processing, texture-enhancing filters, and Convolutional Neural
Network (CNN) to classify soil images captured under Uncontrolled Field Conditions (UFC). The proposed
process involves a series of steps for improving soil image analysis. Initially, image segmentation is utilized to
eliminate non-soil pixels and prepare the images for further processing. Next, the segmented output is divided
into smaller tiles to isolate relevant soil pixels. Then, high-frequency filtering is introduced to enhance the
texture of the images. Our research has shown that the Gabor filter is more effective than Local Binary
Patterns (LBP) for this purpose. By creating four distinct Gabor filters, we can enhance specific, hidden
patterns within the soil images. Finally, the split and enhanced images are used to train CNN classifiers
for optimal analysis. We evaluate the performance of the proposed framework using different metrics and
compare it to existing state-of-the-art soil texture classification frameworks. Our proposed soil texture
classification process improves performance. We employed various CNN architectures in our proposed
process for comparison purposes. Inception v3 produces the highest accuracy of 85.621%, an increase
of 12% compared to other frameworks. With applications in precision agriculture, soil management, and
environmental monitoring, the proposed novel methodology has the potential to offer a dependable and
sustainable tool for classifying soil surface texture using low-cost ground imagery acquired under UFC.

INDEX TERMS Soil texture classification, image processing, convolutional neural network, uncontrolled
field conditions, Gabor filter, texture enhancement.

I. INTRODUCTION further sub-classifications based on the percentage mix of
The soil particle size defines its texture. Soil textures are sand, loam, and clay [1]. The texture of the soil surface has
broadly categorized into sandy, loamy, and clayey, with a significant impact on various properties such as the pat-
terns of vegetation, water holding capacity [2], permeability,

The associate editor coordinating the review of this manuscript and soil nutrient retention [3], porosity, and saturated hydraulic
approving it for publication was Donato Impedovo . conductivity [4]. Soil texture also affects soil erodibility, soil
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fertility, chlorophyll levels, and plant growth [5], [6]. Clayey
soils usually have high organic matter content, water retention
capacity, and low permeability [7]. In contrast, sandy soils
have the lowest organic matter and water retention capacity,
while loamy soils lie between clayey and sandy textures [8].
Given the importance of soil texture characteristics, they are
used in precision agriculture for site-specific management
of soil and nutrients. Soil texture plays a crucial role in
identifying Homogenized Management Zones (HMZs) for
Variable Rate Application (VRA) of seeds and nutrients [9],
achieving consistent crop growth, rationalizing farm inputs,
and reducing environmental costs [10]. The identification of
HMZs requires high-resolution mapping of soil texture.

Soil texture classification methods can be categorized into
three main categories: 1) sedimentation analysis, 2) spec-
troscopy, and 3) image-based methods. Traditionally, soil
texture is determined using lab-based sedimentation analysis
methods. These methods require studying soil particle size.
Bouyoucos (hydrometer) and pipette methods are common
sedimentation analysis methods used to measure soil tex-
ture [11]. These methods involve soil sampling, processing,
treatment, sieving, and drying [12]. The Bouyoucos method
measures the size of soil particles by measuring the initial
and final density of the soil in an aqueous solution [13].
The pipette method uses the weight of the soil sample to
determine the soil texture [14]. Kettler et al. combine sieving
and sedimentation to measure soil texture while utilizing
pipette and Bouyoucos techniques [15]. Mwendwa et al.
work on the Bouyoucos method and show that soils must
be pre-treated with hydrogen peroxide and calgon to achieve
higher accuracies [16]. These methods are time-consuming,
labour-intensive, and not scalable for application in real field
conditions [17]. Also, these methods are unfriendly to the
environment due to the corrosive oxidizing agent used [18].
Moreover, lab-based texture mapping has low spatiotemporal
resolution and does not facilitate VRA [19].

Spectroscopy is widely used for soil texture classification.
Near-infrared spectroscopy is a commonly used method for
soil texture analysis. This measures the energy absorption of
different soil textures. Jaconi et al. use near-infrared soil spec-
troscopy and memory-based learning to predict soil texture
[20]. Coblinski et al. expand on this by studying the perfor-
mance of different spectral regions with the cubist regression
algorithm for predicting soil texture [21]. Wartini et al. show
that spectroscopy combined with deep learning outperforms
other spectroscopy methods when sufficient data is utilized
[22]. Though soil spectroscopy combined with deep learning
produces promising results, it requires soil sample collection
and preparation in lab settings. It is time-consuming and
costly, resulting in fewer soil samples not representative of
the whole field.

The recent advancements in machine learning, data stor-
age, computer vision and image processing have led to studies
investigating the potency of images to classify soil properties
like Organic Matter (OM) and texture [23], [24]. This method

VOLUME 11, 2023

has the advantage of being non-invasive, fast, affordable
and reliable. Several image analysis methods are useful in
producing reliable results for soil texture classification [25].
These can be categorized into three main groups. 1) Statistical
methods based on describing image features using histogram,
auto-correlation and co-occurrence matrices [26]. Sun-Ok
et al. classify soil samples up to a depth of 50cm using RGB
and grayscale images converted to histograms [27]. Naveed
et al. apply a Gray-Level Co-occurrence Matrix (GLCM) to
classify different types of crops. The GLCM extracts features
from the grayscale images, which are then applied to Support
Vector Machines (SVM), random forest, naive Bayes and
neural networks for classification [28]. Annamalai applies
GLCM on grayscale images to enhance image features and
pixel information. Statistical features like contrast, correla-
tion and homogeneity are then calculated from the GLCM
and applied to K-nearest neighbour for classification [29].
Although the GLCM is very useful for classification, it has
a drawback of high matrix dimensionality [30]. The statis-
tical method of image analysis, such as the histogram and
GLCM, are used to enhance important features and infor-
mation in image pixels, which are vital for classification.
2) Structural methods assume image texture data appear in a
spatial form. Examples include area, moments, eccentricity,
elongation [31] and Local Binary Patterns (LBP) [32]. Ervin
et al. use a moment invariant method and deep learning for
image classification. Fusing the image moment and deep
learning increases the accuracy and sensitivity of the clas-
sification process [33]. Image moment is a scalar quantity
used to capture image features based on the spatial distri-
bution of the pixels. Uddin et al. use LBP and the mean,
median, and most frequent pixels for classification. The best
features are selected, and then machine learning algorithms
are used to classify textures into sand, silt and clay [34].
3) Transform-based methods rely on transforming images to
enhance texture data. Examples include Fourier transform
[35] and Wavelets (Gabor) [36]. Gabor filters and histogram
equalization are also used with SVM to classify texture [37].
Huang et al. use a Gabor filter to create a feature vector for
classification using neural networks [38]. Francesco et al.
discover that the smoothing property of the Gabor filter
aids in its ability to transform images and enhance texture
features [38]. The studies discussed above have used Gabor
filters for classification due to their texture-enhancing nature.
They are particularly useful in classifying images taken in
UFC because of the trans-formative property of the filter.
Other filters have been used for soil texture classification.
Shenbagavalli et al. use the Prewitt edge filter and gray level
thresholding to extract features from images for soil texture
classification [39].

Various machine learning techniques effectively identify
objects [40], detect patterns, and classify features [41]. In a
study by Pedro et al., they developed a digital image process-
ing workflow where RGB images are transformed into HSV.
They utilized successive projections algorithm and trained
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a soil texture classifier using multivariate linear regression,
partial least-squares regression, and Least-Squares Support
Vector Machine Regression (LSSVMR). Among these meth-
ods, LSSVMR achieved the highest accuracy of 90% [23].
Meanwhile, Wu et al. employed classification trees, Arti-
ficial Neural Networks (ANN), and SVM with polynomial
and Gaussian radius basis functions to classify texture. They
found that SVM with a polynomial basis function produced
the best results with an accuracy rate of 94% [42].

Deep learning methods have produced impressive results
for soil texture analysis. Guidang uses web images of soil
samples to classify textures such as clay, sand and silt using
the Inception v3 architecture with feature mining and trans-
fer learning [43]. 2D microscopic images are acquired, and
individual soil particles are captured from original parti-
cle images. The image is transformed, resized and fed into
CNN models for classification. VGG-16, Inception v3 and
ResNet-152 classify micro-particles into six sand particle
types. Higher accuracies are observed in soil samples that are
irregularly shaped and round with more distinct features [44].
In another study, dark chambers are also used to avoid light
reflection, and LED strips are run through for even illumina-
tion to take other images. These images are processed further
and used to classify sand and silt with random forest and CNN
architectures [45]. Chandan et al. classify seven different soil
types. Features like colour moments, intensity, hue, and sat-
uration are extracted. Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) are used to select
the best features. SVM and ANN are then used to classify
the texture, and SVM gives better results [46]. Utpal et al.
extract features and properties from images useful for texture
classification, which include HSV histogram, colour auto
correlogram, colour moments and Gabor wavelets. These
features are also used to train SVM and achieved an accuracy
of 91.37% for soil texture classification [47].

The above methods tackle image processing and classi-
fication only using soil data collected under controlled lab
conditions. The data is sieved, dried and treated for accurate
results. To capture images of soil under controlled condi-
tions, soil samples must be collected and pre-treated, but
this process can be expensive and difficult to scale, lead-
ing to limited soil sampling. This creates a challenge for
large farms like those in the Canadian Prairies, where the
limited data gathered in a lab may not accurately repre-
sent broader field conditions. To solve this issue, our study
explores the possibility of using low-cost ground images
acquired through farming machinery equipped with imag-
ing devices for soil texture classification. This approach
can potentially overcome the limitations of lab-based soil
sampling and produce higher-resolution soil texture maps.
Under UFC, varying environmental conditions lead to blur,
noise and illumination variation. The presence of vegetation,
crop residue, debris, soil cover, and shadows in the soil also
contributes to the poor quality of soil images and, in turn, poor
results [48].
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This research paper delves into the challenges of classify-
ing soil texture in images captured under UFC. To address
this problem, we propose a unique method that involves
several steps to extract and process the necessary information.
Firstly, we employ deep learning-based semantic segmen-
tation to identify bare soil patches in the image, excluding
vegetation, crop residue, and shadows [49]. This process
generates random patches of soil pixels and zero-valued back-
ground pixels. Next, we isolate the soil pixels by dividing
the image into smaller tiles. In the third step, we compare
two texture-enhancing techniques, namely LBP and Gabor
filters, and find that the latter performs better. Therefore,
we design and combine multiple Gabor filters to enhance the
texture information and increase data robustness. To maxi-
mize the information extracted, we use four different Gabor
filters, each enhancing four distinct texture patterns. These
filters exaggerate specific hidden textures and patterns in the
soil tiles, facilitating texture classification. Finally, we com-
bine the soil and Gabor filter images and feed them into a
CNN architecture with seven channels. This architecture is
designed to use fewer trainable parameters while maintaining
high accuracy. We evaluated this methodology on three fields
and obtained an accuracy of 80.862%. To our knowledge, this
paper presents the following novel contributions in soil tex-
ture classification using Gabor filters and a CNN architecture.

« Developing soil texture classification/mapping frame-
work using low-cost RGB images acquired under UFC.

« Using multiple Gabor filters for enhancing different tex-
tures in soil images for soil surface classification.

o Comparing the performance of Gabor filters and LBP on
UFC image data.

o 12% improvement in accuracy when Inception v3 is used
in our proposed process with respect to other soil texture
classification frameworks.

The rest of the paper is organized as follows: Section II
details methodology, Section III presents results and
Section IV concludes the work and gives future research
recommendations.

Il. METHODOLOGY

This study proposes a scalable and sustainable method to
classify soil texture using high-resolution ground-level field
images taken under UFC. The basic challenge of images
taken in UFC is unwanted features that disrupt soil texture
information. Four steps are used in this study to classify
these types of images. The first step is to extract soil pixels
from high-resolution ground field images taken under UFC.
Semantic segmentation is used to tackle this problem. This
method removes vegetation, soil cover, shadows and crop
residue. The predicted mask from the semantic segmentation
step eliminates unwanted pixels from the image. This pro-
duces images of size 1440 x 1080 that contain soil pixels
and background zero pixels. The combination of soil and zero
pixels creates random patterns in the image that disturb the
image texture data. The second step splits this image of size
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FIGURE 1. Flowchart of soil texture classification from images taken under uncontrolled field conditions.

1440 x 1080 into smaller tiles of 32 x 32 pixels. This is done
to isolate soil pixels from O pixels values and eliminate the
random patterns in the image. The resulting 32 x 32 image
contains 1024 pixels. After splitting, images containing more
than 24 zero-pixel values are eliminated. The third step is to
enhance soil texture information from the split soil images
using image analysis methods. In this study, we use two dif-
ferent methods and compare them to select the best. LBP and
Gabor filters are compared, and the Gabor filters are selected
based on their higher performance. This texture enhancement
produces a new image with the same dimension, 32 x 32.
Finally, the soil and texture-enhanced images are concate-
nated and fed into the CNN architecture. Figure 1 is the
flowchart describing the proposed methodology.

A. DATA ACQUISITION

The research study is conducted in the Canadian Prairies. The
images were acquired in 2021 and 2022 by Croptimistic Tech-
nology Inc. using a Samsung SM-G973W camera mounted
on ground moving farm machinery from three fields. Each
image is of dimension 1440 x 1080. To validate our proposed
methodology, soil samples are collected from corresponding
fields of study and soil texture is classified in a lab. Table 1
summarizes the number of images acquired from each field
and ground truth data samples used in this study. Figure 2
shows the image data points for Field-1 and its sampled
points. Images of the soil surrounding each sampled point
location are collected for ground truth data. These images
are used to train and validate the soil texture model. To
find the surrounding images of the sampled points, we use
the K-nearest neighbour algorithm selecting the five nearest
neighbours for each data point.

TABLE 1. RGB image obtained from a camera mounted on ground
moving farm machinery and soil sample points for each field.

Fields  Number of images  Soil sampled points
Field-1 3237 15
Field-2 3318 15
Field-3 1177 12

B. DATA CLASSIFICATION
Three different fields are utilized in this study. These fields
are merged and divided into 3 different classes to create a
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single texture classification model. Table 2 shows all 3 classes
and their respective textures. Class 0 is made of Clay and
Silty Clay Loam. Class 1 is made of Loam and Clay Loam.
Class 2 contains Sand, Sandy Loam, Loamy Sand and Sandy
Clay Loam. Figure 3 shows the texture triangle and the
3 different classes trained. Class 0 is made of 60-100% clay.
Class 1 lies in the middle of the triangle and is a mixture
of 20-68% of sand, 55-80% clay, and 0-50% silt particles.
Class 2 is made of 42-100% sand particles. Class 0 (60-100%
Clay) has a total of 75 images, Class 1(Loam) has 75 images,
and Class 2(42-100% Sand) has 60 images.

TABLE 2. Three texture classes.

Class 0 (60-100% Clay) Class 1(Loam) Class 2 (42-100% Sand)

Clay Loam Sand
Silty Clay Loam Clay Loam Loamy Sand
Sandy Clay Loam

C. SOIL PIXEL SEPARATION

Once the images are sorted into their respective classes, the
initial step in image processing involves semantic segmenta-
tion. Soil images captured under UFC often have elements
such as vegetation, shadows, and crop residue, which make
it challenging to classify the soil image texture accurately. To
overcome this difficulty, semantic segmentation is employed,
which involves eliminating all non-soil pixels. This technique
helps isolate soil information and prepares the data for proper
soil texture classification.

1) Data Labelling: Firstly, bare soil pixels are labelled.
The soil pixels with shadows, vegetation, soil cover and
crop residue are excluded and labelled as background,
while the remaining soil pixels are labelled as soil class.
The labelled data is augmented to increase the dataset
and create image variation for changing field condi-
tions. The data is augmented using rotation, blurring,
scaling, cropping, and horizontal and vertical flipping.

2) Semantic Segmentation Model: CNN is a deep learning
algorithm for visual imagery. It is used to carry out clas-
sification, segmentation and object detection. Semantic
segmentation is used in this study for binary classifica-
tion between soil pixels and background. A semantic
segmentation model is made up of an encoder and a
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FIGURE 2. Image points and 15 soil sampled points for Field-1.

decoder. The encoder is used for deep feature extrac-
tion. The decoder is used to up-sample the results of
the encoder back to the original image dimension. This
results in the segmentation map. ResNet-50 [41], UNet
[51], PSPNet [52], SegNet [49], [53] and DeepLab v3
[54], [55] are used to carry out semantic segmentation.
Their accuracies are compared, and the best model is
chosen.

The encoder block selected for this study is the ResNet-50
architecture. ResNet-50 is a CNN architecture with 50 layers.
It is formed by stacking residual blocks together. It addresses
the vanishing gradient problem of deep networks by using
skip connections to preserve information across the layers.
This preserves information learned earlier in the model. This
network uses 3 x 3 convolutions, 7 x 7,3 x 3 and 1 x 1 kernels
with a stride of 2.

The ResNet-UNet architecture uses the ResNet-50 as the
encoder and feature extractor. The UNet is a U-shaped model
with the encoder on the left side and the decoder on the
right. The decoder uses 2 x 2 transpose convolutions, 3 x 3
convolutions and ReLu activation functions. The transpose
convolution is used to increase precise localization. Fea-
tures from the encoder are concatenated with corresponding
decoder features to preserve information. PSPNet is also
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divided into encoder and decoder but uses dilated convolu-
tions and pyramid parsing to capture the entire context of an
image. The pyramid poolings are of dimensions 1 x 1,2 x 2,
3x3 and 6 x 6. The decoder comprises convolution layers and
an 8x bi-linear up-sampling layer. This up-sampling layer
helps produce a segmentation output with equal dimensions
to the input. The SegNet architecture uses the ResNet-50
encoder. The decoder is designed to produce sparse feature
maps of high resolution. It does this by storing pooling indices
from its corresponding encoder blocks. DeepLab v3 uses
Atrous Separable Convolution that combines Point-wise and
Depth-wise convolutions. Point-wise convolution uses a filter
size of 1 x 1 to change the image dimensions. Depth-wise
convolution uses a filter a x b on all the input channels [56].

D. IMAGE SPLITTING

Following the soil segmentation process, the resulting image
may have numerous 0-pixel values that create irregular pat-
terns in field images. These patterns have a significant impact
on image texture information. To address this challenge, the
images are divided into smaller tiles of 32 x 32 pixel values.
Through experimentation, this tile size has been selected
to capture maximum soil information and eliminate 0-pixel
values from the image. The split images contain 1024 pixels,
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FIGURE 3. Texture Triangle [50] shows the 3 classes.

and any images containing zero pixel values greater than
24 pixels are discarded. After the split, Class 0 (60-100%
Clay) had 2295 images, Class 1 (Loam) had 2315 images,
and Class 2 (42-100% Sand) had 2298 images. A bar chart
in Figure 4 illustrates the number of images for each class
utilized for training, testing, and validation.

E. SOIL TEXTURE ENHANCEMENT

In this step, we carry out image analysis for texture enhance-
ment and two different methods are used. The processing
time, properties and resulting accuracy are compared, and the
best texture-enhancing method is selected. The first method
uses Gabor filters, and the second uses LBP to define texture
information.

1) Method I: The Gabor filters are defined using a
sinusoidal signal modulated by a Gaussian wave. It
performs the function of a bandpass filter that permits
only frequencies of a certain band to pass through.
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(1) expresses the wave modulation.

gx, ¥ X, 0,v%,0,¥)

x2/+y2y2
B G

exp (i (271’% + 1//)) (1

x' =xcosfh +ysinf&y = —xsinf +ycosh (2)

A (Lambda): wavelength of sinusoidal factor

0 (Theta): orientation of normal to parallel stripes

y (Gamma): aspect ratio

Y : Phase offset of

o: Sigma To design each filter, the values of the above
parameters were tuned and selected. Each variable is
designed to highlight different texture patterns of the
image. Table 3 shows the various values selected for
each Gabor filter parameter.
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3 Texture Classes
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FIGURE 4. Bar chat showing the number of training images for each class.

TABLE 3. Gabor filter parameters.

Parameters Filter 1  Filter2 Filter 3  Filter 4
kernel size 15 15 25 40
sigma (o) 5 4 4 5

phase offset 0.8 0.8 0.8 0.8
lambda(\) % % % g

aspect ratio (7y) 0.9 0.9 0.9 0.9
orientation or theta (6) % 5 5 %

2) Method II: Local Binary Patterns are tools for texture
descriptors and capturing local spatial pattern infor-
mation. It proposes that texture can be described by
an image’s contrasting gray-level and local spatial pat-
terns. First, the soil image is converted to grayscale, and
the number of points, p and size of interest r are defined
to determine the neighbourhood of interest. It selects a
pixel and thresholds its surrounding pixels based on this
pixel. Only pixel values less than the reference pixel
are used to calculate the LBP value. The LBP for each
point is calculated and stored in a 2D array. Figure 5
illustrates this on a fixed 3 x 3 pixel, and (3) expresses
the calculation of LBP for a 3 x 3 image.

For each reference centre pixel (x.,y.) sampling p
number of pixels in a radius r, the LBP is calculated

with the (3).
p—1
LBPp, = > s(gp—g)2"
p=0
I, z>0
s(z) = 3
(@) 0. 2<0 3

gp and g, are gray level points in neighbouring p and
reference center pixel ¢

F. TEXTURE CLASSIFICATION MODEL
Four CNN classification models are employed to conduct soil
texture classification for comparison purposes.
1) A simple CNN model has been developed for soil
texture architecture, aimed at efficiently extracting
texture information from an image array of seven
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channels, including three RGB channels and four chan-
nels from each Gabor filter. Figure 6 displays the
model’s architecture, which underwent several network
combinations to choose the best structure for the train-
ing data. The network of five layers, including 2D Conv
layers, Dropout, Batch Normalization, Max Pooling,
and a skip connection. The kernel size of 3 x 3 in a
2D convolution layer is used to detect the most impor-
tant features for classification. Dropout enhances the
network’s robustness by randomly dropping out nodes.
Batch normalization is used to manage the variance
and mean of each layer. Max pooling selects the most
prominent features in a feature map, producing a high
level of information and reduced spatial dimensions.
Skip connections are used to preserve the features
learned earlier, with the output of one layer fed into
the input of a subsequent layer. The output of the
skip connection used in layer two is concatenated with
the input of layer five to achieve feature re-usability.
The hyper-parameters chosen for training are shown in
Table 4.

2) ResNet 50 [41] for classification and segmentation
tasks is discussed in the methodology section. ResNet
is a standalone architecture that uses residual connec-
tions to propagate information from previous layers.
When used for classification, it utilizes a softmax layer
to determine the image’s class probability distribution.

3) Inception v3 [57] is also employed in this study, com-
bining convolutional filters of different sizes in each
layer to learn diverse patterns at varying spatial res-
olutions. The network also uses auxiliary classifiers
and regularization techniques to address the vanishing
gradient problem.

4) EfficientNet [58] focuses on depth, width, and reso-
lution scaling while minimizing computational costs
and memory requirements. It achieves this by using a
compound scaling factor to uniformly scale the width,
depth, and resolution of the network. Width scaling
increases the number of channels in conv layers, depth
scaling increases the number of layers, and resolu-
tion scaling balances finer details and computational
resources.

TABLE 4. Hyper-parameters for the training of CNN texture model.

Values

Adam(B7 : 0.9, 82 : 0.99,¢: le — 7)
0.001 (decay step of 0.96)

Hyper-parameters

Optimization Algorithm
Learning Rate

Max Pooling 2 x 2, Stride 2

Hidden layers 4

Dropout rate 0.3
Batch Size 64

IIl. RESULTS
The proposed method above is tested on three fields. Image
processing and soil texture classification models are trained
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and tested using a CNN classifier. The results are outlined in
the following subsections:

A. MODEL EVALUATION METRICS FOR SEMANTIC
SEGMENTATION

To test the models’ performance, Intersection Over Union
(I0U), mean IOU (mIOU), frequency-weighted IOU
(fwlOU) and Dice Loss (DL) are used. DL measures the
overlap between 2 sets of images. The two sets are pre-
dicted segments and the labelled ground truth segment. The
dice coefficient is given by (III-A), where the numerator
is twice the intersection of the predicted and ground truth
sets. Dice loss is particularly effective because it considers
information both globally and locally. The numerator takes
local information into account, which is twice the intersecting
pixels between predicted and ground truth sets while the
denominator takes global information into account, which
is the sum of total pixels for predicted and ground truth
sets.

23V pigi

DL=—FF"—""—
N N
P

“
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IOU calculates the degree of overlap between two image
sets, the predicted and ground truth sets. It is the ratio of
intersection to the union. The following equation gives the
expression for IOU.

Areaof Overlap  piNg;

I0U = - = 5)
Area of Union piJgi
p is the predicted class and g is the ground truth label.
TP
IOU = —————— (6)
TP 4+ FP + FN

TP is the true positive, FP is the false positive and FN is the
false negative. The individual IOUs are computed for the soil
class and everything else, including vegetation, crop residue
and shadows. To compute semantic segmentation’s overall
performance mean of IOUs is also estimated as provided by
the following equation:

10U; + 10U
2

where i and j represent the 2 classes of segmentation. To
address the class imbalance in evaluating model performance,

mIOU = @)
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fwlOU is computed where weight is assigned to each class
based on its data frequency.

fwlOU = w; x IOU; + w; x 10U (8)

where w; and w; are the weights for each class.

B. SEMANTIC SEGMENTATION RESULTS

The field images are labelled using Segments.ai. Then
labelled images are pre-processed and augmented to increase
the dataset for better generalization. The original image
dimension of 1440 x 1080 is split into tiles of 736 x 544.
The dataset is randomly split into 70:15:15 ratio for training,
testing and evaluation. UNet, SegNet, PSPNet and DeepLab
v3 architectures are used for semantic segmentation with
ResNet-50 as an encoder block. All models are trained for
80 epochs. Figure 7 compares the training and validation loss
of all 4 models. It is observed that the loss of UNet and SegNet
reduces consistently.

The IOU, mIOU, fwIOU and accuracy of all trained models
are shown in Table 5. UNet has the best IOU, mIOU and
fwlOU. SegNet has the best loss and accuracy. DeepLab
has shown the lowest performance, with PSPNet performing
slightly better. Based on these results, UNet is selected for
semantic segmentation of soil and background pixels. This
model produces predicted masks containing 2-pixel values.
The pixels for soil are kept at one, and the pixels for the
background are kept at zero. This zero and one mask is
combined with all original images to remove all unwanted
background pixels and retain just soil pixels. Figure 8a con-
tains soil images before segmentation and Figure 8b after
semantic segmentation.

C. TEXTURE ENHANCING

In this study, the accuracy of LBP and Gabor filters is
compared. Gabor filtering combines various aspects such
as wavelengths, aspect ratios, orientation, phase, and sigma
values, and four specific filters are designed to enhance soil
image texture. To demonstrate the effectiveness of Gabor
filters, snippets of eight texture images are presented in
Figure 9 and Figure 10 after applying Gabor Filter-1 and
Gabor Filter-3. Interestingly, the same images are used for
both figures. Figure 9a shows a snippet of Loamy (70-100%
sand) texture images after Filter-1 is applied, and Figure 10a
shows the same texture images after Filter-3 is applied. Sim-
ilarly, Figure 9b displays a snippet of Sandy Loam (<70%
sand) texture images after Filter-1 is applied, and Figure 9b
presents the same texture images after applying Filter-3. It
is worth noting that Filter-1 and Filter-3, although applied
on the same image loam and sand images, highlight dis-
tinct texture patterns. Moreover, we observe that the texture
patterns of loamy soils differ significantly from those of
sandy soils. Overall, the texture-enhancing properties of the
different Gabor filters make them highly valuable for this
study. Table 6 compares the accuracy of the CNN model
when the soil images are used alone and with the combi-
nation of LBP and Gabor filtering. It is observed that the
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CNN model trained on soil segment images alone produces
an accuracy of 79.022%, and the CNN model trained on
soil images and LBP enhancing methods produces an accu-
racy of 83.782%. However, the model using our proposed
enhancing framework with Gabor filters produces the highest
accuracy of 85.621%, so we select the Gabor filters as our
texture-enhancing method. We also use Shannon’s entropy to
measure the effectiveness of Gabor filters and LBP in enhanc-
ing image texture. Shannon’s entropy [59]is a valuable tool
in image processing because it can determine the complexity,
noise level, and amount of information in an image.

H(X) = =) (P(x)logy(P(x))) &)

where H(X) is Shannon’s Entropy

P(x) is the probability of pixel x occurring and

> is used to sum over all possible pixel values.

A higher entropy score indicates an image is more com-
plex, noisy, and unpredictable. We applied Shannon’s entropy
to two original images and analyzed the results. In Figure 11,
we calculated the entropy of the raw image, Gabor-filtered
image, and LBP image. In Figure 11a, the entropy of the
original image was 9.3506, while the entropy after applying
LBP was 6.4814, and after applying Gabor Filter-1, it was
4.5822. Similarly, in Figure 11b, the entropy of the original
image was 9.4989, while the entropy after applying LBP was
6.2859, and after applying Gabor Filter-1, it was 5.0546.

D. MODEL EVALUATION METRICS FOR TEXTURE
CLASSIFICATION

To evaluate the models’ performance for texture classifi-
cation, we use Accuracy, F1 score, Precision and Recall.
Accuracy provides a general assessment of the performance
of a model by calculating the ratio of predictions to the total
number of predictions. It provides us with information on how
close the predictions are to the true ground truth data.

Accuracy = TP + TN (10)
Y= TP+ TN+ FP 1+ EN

where TP is the true positive, TN is the true negative, FP is the
false positive and FN is the false negative. Precision measures
the number of positive predictions predicted positively and
compares this with all the positive predictions for that class.
It particularly helps us avoid false positives.

TP
TP + FP
Recall measures the number of positive predictions that are
accurately predicted. It particularly helps us avoid false neg-

atives. It’s also known as the sensitivity of the true positive
rate.

Precision =

(In

. TP
Precision = ——— (12)
TP 4+ FN

The F1 score combines precision and recall to provide a
balanced metric to evaluate the model’s performance.

2 x (Precision x Recall)
Flscore = — (13)
Precision + Recall
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FIGURE 7. Training and validation loss of deep learning models for semantic segmentation.

TABLE 5. Semantic segmentation result on test data for soil pixel separation.

Models Accuracy DL IOU Background IOU Soil pixel mIOU fwlOU
SegNet_ResNet 50 0.9297 0.0445 0.91089 0.71244 0.81166 0.86956
UNet_ResNet 50 0.9252 0.0459 0.91197 0.72075 0.0.81636  0.86991
PSPNet_ResNet 50 0.9072 0.0727 0.89736 0.67709 0.78723 0.83160
DeepLab v3+ 0.9055 0.1018 0.86627 0.65107 0.75867 0.82807

(b)
FIGURE 8. (a) is the original image and (b) is the predicted image of the semantic segmentation model.
E. TEXTURE CLASSIFICATION RESULTS testing, respectively. The texture classifier operates using
For our training process, we utilize 70% of the processed split and Gabor-filtered images for classification. We train

ground truth data, while 15% is allocated for validation and all 4 CNN models for 100 epochs and compare their training
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-

i

(a) Loamy Sand after Gabor Filter-1

B

(b) Sandy Loam after Gabor Filter-1

FIGURE 9. Comparing the output of Gabor texture enhancing filter 1 for Loamy Sand and Sandy Loam soils.

(a) Loamy Sand after Gabor Filter-4

J

(b) Sandy Loam after Gabor Filter-4

FIGURE 10. Comparing the output of Gabor texture enhancing Filter-4 for Loamy Sand and Sandy Loam soils.

TABLE 6. Accuracy when LBP and Gabor filters are implemented.

Model Input Accuracy
Image + Gabor 0.85621
Image + LBP 0.83782
Image 0.79022

and validation accuracy in Figure 12. Our texture classifier
achieves the highest accuracy of 85.621% on the test dataset.
We process the remaining data similarly to the ground truth
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data to obtain predictions. Each split tile from the 32 x 32 tiles
extracted from the 1440 x 1080 image is named with a unique
identifier, including the original image name, for identifica-
tion purposes. We collate the predictions of all tiles for each
image and select the final prediction based on the maximum
predicted class of all split image tiles. This process enables us
to predict soil surface texture for the entire field using RGB
images, with higher spatial resolution than texture mapping
based on limited soil sampling. You can see the distribution
of soil and image sample points on the map in Figure 2.
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(b) Original image 2, LBP image and Gabor filtered image

FIGURE 11. Original Image, LBP image and Gabor filtered images 1 and 2 used to calculate Shannon’s

entropy.
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20 40 60
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100

FIGURE 12. Training and validation accuracy of CNN Classification model.

We also take several steps to compare our model with the
existing state-of-the-art models and methods for soil texture
classification. We utilize these methods and apply them to
our data taken under UFC. The first method we compared
our results with is the LS-SVMR [23] method. This produced
an accuracy of 90% when used to carry out soil texture
classification on images taken under controlled conditions.
The same method is replicated on our image data taken under
UFC, producing an accuracy of 72.769%. The second method
we studied and compared is the SVM-poly [42] method. This
produces an accuracy of 94% for soil texture classification.

VOLUME 11, 2023

The same method is applied to our data taken under UFC and
produces an accuracy of 58.085%. The classification results
for this study are analyzed in Table 7. The third section shows
the results for the LS-SVMR [23] method and SVM-poly
[42] method when applied to our dataset. The second section
compares the accuracy of four CNN state-of-the-art methods
applied to our data without the texture-enhancing framework.
The first section compares the results of these methods with
our proposed framework. We observe that the accuracy, fl
score, precision and recall of the CNN models combined with
our texture-enhancing framework are improved. Inception v3,
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TABLE 7. Texture Classification Results.

Model Accuracy F1Score Precision  Recall

Other LS-SVMR [23] 0.72769 0.51179 0.51761 0.50609
Frameworks SVM-Poly [42] 0.58085 0.57975 0.57888 0.58063
Without Texture Inception v3 0.79022 0.79603 0.80170  0.79044
Enhancing EfficientNet 0.79833 0.78394 0.79362  0.77452
Framework ResNet 50 0.78766 0.79500 0.80395 0.78625
Simple CNN 0.52349 0.59464 0.70778 0.51268

With Texture EfficientNet 0.84226 0.85063 0.85189  0.84936
Enhancing ResNet 50 0.83275 0.82835 0.83328 0.82347
Framework Simple CNN 0.80106 0.76845 0.78916  0.74881
Inception v3 0.85621 0.85642 0.85745 0.85538

combined with our framework, produced the highest accuracy
of 85.621%.

High

Texture

(b)
FIGURE 13. (a) is the EC of Field 1 (b) is the predicted texture.

The soil surface texture map for the fields is created using
the result of the predicted class. Figure 13b displays the
predicted texture class for Field 1, while Figure 14b shows
the predicted texture class for Field 3. To further validate
and compare our results, we use soil Electric conductivity
(EC) maps provided by Croptimistic Technology Inc. Soil EC
measures the soil’s ability to conduct current [60] and pro-
vides descriptive texture information about the field. Smaller
clay particles conduct better than larger sand particles [61],
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Tex;ure
(b)

FIGURE 14. (a) is the EC of Field 2 (b) is the predicted texture.

resulting in high EC for clay soils (20-800mS/m), medium
EC for silt (8-80mS/m), and low EC for sand (1-10mS/m)
[62]. However, it should be noted that EC maps provide
average soil texture up to a depth of 1 meter, while generated
soil texture maps provide soil surface texture. As a result,
we compare generated soil texture maps and EC maps to
identify similarities. Figure 13a and Figure 14a display the
EC maps for Field 1 and Field 3, respectively.
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FIGURE 15. (a) is the EC of Field 3 (b) is the predicted texture.

In Field 1, we observe that the North East region has low
EC soils with low moisture and salt content. This corresponds
to the northeast region of the texture map, which has coarser
particles represented by class 2 (Sandy soils). The mid-south
region of Field 1 contains high EC soils with higher water
and soil content, corresponding to the higher concentration
of finer soil particles predicted as class 0 (Clayey soil) in
the mid-south region of the texture map (Figure 13b). Loam
soils transition from sand to clayey soils, with mid-EC values.
Similar patterns are observed in Figure 14 and Figure 15.
However, there may be differences between EC and predicted
texture maps since EC provides insight into average soil
texture up to a depth of 1m, whereas predicted soil texture
using RGB images maps soil surface texture. Soil texture can
change with depth. Overall, our predicted texture map and EC
map exhibit general similarities, highlighting the validity of
our developed methodology. We observe some streakiness in
the generated texture maps shown in Figure 13b, Figure 14b,
and Figure 15b. This is due to changing ambient lighting
conditions during RGB image acquisition. Further research
is needed to correct images for changing ambient conditions
during image acquisition.

IV. CONCLUSION

In this study, we proposed a method for accurately classifying
soil texture in images captured under UFC. Due to the com-
plexity of the images, we utilize various image processing
techniques to eliminate unwanted information. Our approach
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involves semantic segmentation, where we compare different
methods and determine UNET-ResNet-50 as the most effec-
tive. The output of the semantic segmentation is then split
into smaller tiles, and texture-enhancing filters are applied to
selected tiles using Gabor filters for increased accuracy. We
design four Gabor filters highlighting various soil patterns
in each image, increasing data robustness. The images are
then fed into a CNN texture classifier, which significantly
improves the accuracy of the state-of-the-art architecture,
Inception v3, from 79.022% to 85.621%, a 7.696% increase.
We also generate texture maps for validation, which we
compare to EC maps that provide soil information up to 1m
depth. Our soil texture maps closely resemble the distribution
pattern in EC maps, although further research is necessary for
images captured under changing ambient lighting conditions.
It is important to note that EC maps cannot be considered
ground truth for soil texture as they provide soil information
up to 1m depth, whereas generated soil texture maps only
provide surface soil texture.
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