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ABSTRACT Aiming at the drawbacks of Hunger Games Search (HGS) algorithm, such as slow convergence
speed and the tendency to fall into local optimum, a Multi-strategy fusion Improved Adaptive Hunger Games
Search (MIA-HGS) algorithm is proposed. Firstly, a good point set is employed to generate a more diverse
initial population. Secondly, the control strategy selection parameter is fixed in the original HGS algorithm;
an adaptive adjustment parameter is proposed to replace the fixed parameters, whose dynamically tuned
update strategy strengthens the global searching ability. Finally, to further jump out of the local optimum,
a mutation operation based on Logarithmic spiral opposition-based learning is performed on a population for
a certain condition. Simulation experiments are carried out for 23 benchmark functions and the UAV aerial
planning problem. The results show that MIA-HGS solves more accurately and converges more rapidly than
the original HGS algorithm on 23 benchmark functions, with MIA-HGS leading on 69.5% of the tested
functions and tying with HGS on 21.7% of the tested functions. It also showed better performance than the
other algorithms on the UAV flight planning problem.

INDEX TERMS Hunger games search, good point set, adaptive strategies, logarithmic spiral opposition-

based learning, UAV aerial planning.

I. INTRODUCTION

In solving optimization problems [1], swarm intelligent opti-
mization algorithms have now become a research hotspot for
scholars due to their simple structure and easy implementa-
tion [2], [3], [4]. In recent years, a large number of intelligent
optimization algorithms based on population foraging have
been introduced. For example, Particle Swarm Optimiza-
tion algorithm (PSO) [5], Grey Wolf Optimizer algorithm
(GWO) [6], Sparrow Search Algorithm (SSA) [7], Whale
Optimization Algorithm (WOA) [8], etc.. These optimization
algorithms have a similar structure and each has its own
advantages, and disadvantages.

The Hunger Games Search algorithm (HGS) [9] is a swarm
intelligence optimization algorithm proposed by Yang et al.
in 2021 to simulate animal hunger foraging. The algorithm
is not only a simulation of animal foraging behavior but also
takes into account the physical and psychological factors of
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the animals. The algorithm is made to fit the behavioral logic
of most animals foraging for food. It has been shown in
the original literature [6] to be significantly better than the
Particle Swarm Optimization algorithm (PSO), Differential
Evolution algorithm (DE), Whale Optimization Algorithm
(WOA) and Grey Wolf Optimizer algorithm (GWO) in terms
of optimization accuracy and optimization stability. Due to
its superior performance in finding the best solution, it has
been applied in various fields such as wireless sensor net-
works [10], friction welding [11], solar photovoltaics [12],
soil winding rate [13], cyber security [14], medical image
processing [15] and Optimal Charging/Discharging Decision
of Energy Storage [16].

Although HGS has good performance and has been used
successfully in various fields, it also suffers from the com-
mon problems of group intelligence optimization algorithms,
namely the tendency to fall into local optima and slow con-
vergence. Since HGS has been proposed for a short period
of time, only a few scholars have improved it. For example,
literature [17] used different chaotic mappings to increase
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population diversity at different times; literature [18]
proposed an improved HGS algorithm with multi-strategy
integration by exploiting the global search capability of
Multi-Strategy (MS) framework; literature [19] combined
HGS with WOA; literature [20] increased the ability of the
algorithm to jump out of the local optimum through a loga-
rithmic spiral inverse learning mechanism.

This study is dedicated to improving the shortcomings of
the traditional HGS algorithm and enhancing the overall opti-
mization capability of the algorithm. Therefore, this paper
proposes a Multi-strategy fusion Improved Adaptive Hunger
Games Search algorithm (MIA-HGS). In this paper, the orig-
inal HGS algorithm is improved at three levels. Firstly, at the
initial stage of the population, the good point set strategy [21]
is used to enhance the initial population diversity; Secondly,
the parameters are improved so that they have adaptive adjust-
ment ability, thus different search strategies are selected to
improve the search performance of the algorithm; Finally,
stagnation detection and logarithmic spiral opposition-based
learning mechanisms are introduced to increase the ability of
the algorithm to jump out of local optimum.

Il. HUNGER GAMES SEARCH ALGORITHM (HGS)

The Hunger Games search algorithm is designed to simu-
late the activity behavior of herd animals during foraging.
In nature, animals hide from natural predators, cooperate with
each other or hunt alone, creating a natural law of survival
of the fittest. In this brutal competitive relationship, animals
inevitably have to improve themselves, i.e., evolve, in order
to improve their chances of survival. The hungrier they are,
the more they crave food and thus ensure their survival.
At the same time, the stronger they are, the more likely they
are to get food. This phenomenon is called nature’s hunger
game [22].

A. APPROACH FOOD
The foraging process involves both teamwork and individual
action, with the animals foraging in the following ways:
. —
Gamey : X(t) - (1 + randn(1)),
- > = = | =
Gamey : Wy - X, + R - Wa | X, - X,

r o<l

rn>1, mn>E

— = = = > =
Gamesz : Wi - Xp — R -W2~‘Xb —X(t)),

rn>1l, rn<E

ey

where Game; simulates animals foraging alone, i.e., looking
for food near themselves; Game, and Game3 simulate group
cooperative foraging, looking for food around individuals
in the popglation that have already found food (the best
adapted); R is a random number between [—a, a] and a
is a convergence factor that decreases linearly from 2 to
0 with increasing iterations; r; and », are both random num-
bers between [0, 1] random numbers; randn(1) is a normally
distributed random number satisfying a mean of 0 and a
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standard deviation of 1; W_/)l and W_/; denote hunger weights,
which are adjusted to control foraging based on the influence
of environmental and psychological factors; X; denotes the
optimal gloga_l) position; ¢ represents the number of current
iterations; X (¢) denotes the current individual position; the
parameters [ = 0.08; E is calculated as follows:

E = sech (|F(i) — BF)) 2)

where F (i) denotes the fitness of each individual; BF is the
best fitness obtained during the current iteration; the sech() is
a hyperbolic function.

2
h(x) = —— 3
sech(x) = = e 3)
- .
R is calculated as follows:

—
R =2xaxr3—a “4)

a:2x(l—%) 5)

where r3 is a random number between [0, 1]; T represents the
maximum number of iterations.

B. HUNGER ROLE

The hunger characteristics of individuals in_ghe search were
mathematically modelled. The formula for Wj in Eq. (1) is as
follows:

— X1y, r3<l
SHungry (6)

1, r3 > 1

Wi = hungry(i) -

The formula for WZ in Eq. (1) is as follows:

—
Wa(i) = [1 — exp (— |hungry(i) — SHungry|)| x rs x 2
@)

where hungry represents the hunger level of each individual;

N is the total number of individuals; SHungry is the sum

of hunger levels of all individuals, i.e. sum (hungry); r3, ra

and rs are all random numbers between [0, 1]; hungry(i) is

calculated as follows:

. 0, F(i) = BF

hungry(i) = . . (@)
hungry(i) + H, F(i) # BF

In each iteration, the hunger of the individual closest to the

food (with the best adaptation) is 0. H is calculated as follows:

LH 1 TH < LH
TH, TH > LH
F(i) — BF
TH = — O 2% (UB—LB)  (10)
WF — BF

where rg and ry are both random numbers between [0, 1]; LH
is the lower bound of H, taken as LH = 100; WF is the worst
fit obtained during the previous iteration; UB and LB denote
the upper and lower bounds of the search space respectively.
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lll. ALGORITHM IMPROVEMENT STRATEGIES
A. GOOD POINT SET STRATEGY
In the original HGS algorithm, the initialized population
is generated randomly within the search range, which has
a large uncertainty and makes it difficult to guarantee the
diversity of the population. This will directly lead to a sig-
nificant reduction in the convergence speed of the algorithm.
In contrast, the good point set [23] solves this problem to the
fullest extent possible, and the initial population it generates
is more evenly distributed within the search range, which
greatly improves the population diversity. It has been shown
in the literature [24], [25], [26] that good point sets can
effectively improve the convergence speed of the algorithm.
Therefore, this paper adopts the good point set to enhance the
diversity of the initial population.
Good point set expressions:
(11)

Py (i) = {(p1, p2, -~
2k 1

where p stands for good point, p; = mod {2 cos ( ==
k =1,2,---, m. nindicates the number of populations, mod

() is a remainder function, which means that p; takes only the

fractional part of 2 cos (%) , § is the smallest prime number

that satisfies % > m; m represents the spatial dimension of

the population search. When initializing the population, it is
sufficient to map the set of good points to the search space:

xij = LBj + Py, (i) (UB; — LB)) (12)

sy pm) X iy, i=1,2,---.n

where UB;j, LB; denote the upper and lower search bounds
of the j dimension. In order to more intuitively demonstrate
the effect of using the good point set strategy to initialize the
population, this paper uses the random strategy and the good
point set strategy to generate 100 discrete points ina 1 x 1
2D space respectively, and the comparison effect is shown in
Fig. 1. As can be seen from Fig. 1, the randomly generated
discrete points are messy and some of them even overlap.
However, with the good point set strategy, each discrete point
was evenly distributed in space and no overlap was found,
which greatly improved the diversity of the population and
laid a good foundation for the next iterative search.

! o R % L T o F ¥ ¥
i ** * KRk oy * * x X *
08} & « ok ¥ 08 * ** ** ¥ * %

*, P X, *; P ke ¥ odox %ok Fog K
0.6 * * ok * * % o6l * ok Koy ¥ j& * i
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FIGURE 1. Comparison chart of initialized populations.

B. ADAPTIVE STRATEGY ADJUSTMENT
The parameters in the central equation of the HGS (which is
Eq. (1)) control the choice of strategy. In the original HGS,
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it is common to take [ = 0.08, such that the probability
of an animal foraging alone is only 8%, which means that
92% of the individuals in the population search around the
optimal individual from the beginning, completely discarding
their previous position. This leads to premature convergence
of the algorithm, which directly loses the diversity of the
population and increases the probability of the algorithm
falling into a local optimum. Although the original algorithm
with a parameter of 0.08 was also experimentally discussed,
the maximum value of the parameter in the experiment was
only O.1.

In this study, we will improve the parameter / and propose
an adaptive adjustment strategy: in the early stage of the algo-
rithm, we will continue to maintain the population diversity,
so that the population will search more in its own vicinity,
providing a good basis for the later search and reducing the
probability of falling into the local optimum; in the middle
stage of the algorithm, we should strengthen the cooperation
between the populations, i.e. search near the optimal individ-
uals of the population to form a fast convergence in the local
area In the middle of the algorithm, we need to strengthen the
inter-population cooperation, i.e. to search around the optimal
individuals of the population to form a fast convergence in
the local area, so that the accuracy of the algorithm can be
improved rapidly; in the later stage, the algorithm has reached
a certain accuracy, in order to further improve the accuracy
of the algorithm and to find whether there are other extreme
value points, the individual search should be mainly used to
find a better extreme value point.

In summary, five different parameter adjustment strategies
based on the normal distribution, power function, and Cauchy
distribution are constructed in this paper, and the comparison
graph is shown in Fig. 2. After experimental testing and
verification, the parameter adjustment strategy based on the
normal distribution was finally chosen, with the parameter [
changing with the number of iterations ¢, i.e.:

_ 1 (£ — )’

where 7T is the maximum number of iterations set by the
algorithm, the algorithm has been tested to find the best
results when © = 0.5, o2 = 0.45, b = 0.8 are taken.

(13)

C. LOGARITHMIC SPIRAL OPPOSITION-BASED LEARNING
In order to further enhance the ability of the algorithm to
jump out of the local optimum and, at the same time, speed
up the convergence rate of the algorithm. When the pop-
ulation optimal fitness value does not change in a certain
number of population iterations, the algorithm is judged to
have entered a stagnant state, at which point the logarith-
mic spiral opposition-based learning mechanism is intro-
duced. Although it may lead to an increase in the algorithm’s
time complexity, the conditions under which this mechanism
occurs are mostly in the middle to late stages of the algorithm,
i.e. the algorithm has largely confirmed the optimal solution.
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FIGURE 2. Comparison chart of different strategies for parameter /.

However, it may be a locally optimal solution, so appropriate
variation in the population is required to make the algorithm
jump out of the local optimum.

The logarithmic spiral opposition-based learning mech-
anism is based on opposition-based learning (OBL) [27],
incorporating logarithmic spirals.

OBL maps the current solution X to the opposite of the
feasible domain [UB, LB], i.e.. X, = UB + LB — X. This
causes the current solution X to change radically, greatly
improving the ability of the algorithm to jump out of the
local optimum. This relatively extreme approach, however,
only mutates the current solution X in a fixed direction,
and although it jumps out of the local optimum, it does not
necessarily facilitate the search of the algorithm at a later
stage. Therefore some randomness needs to be added so that
the algorithm takes into account more regions, i.e.:

Xop =13 X UB+r9 x LB — X, (14)

where rg, r9 is a random number between 0 and 1 and
is the global optimal solution. Secondly, the search area is
further extended by fusing the logarithmic helix on the basis
of Eq. (14).

Xnew = |Xp — Xop| x € x cos 27k) (15)

InEq. (15) k = 2xrj9o—1, rjo is arandom number between
0 and 1.

Finally, although logarithmic spiral OBL can produce
changes in the population, such updates do not necessarily
move in a good direction, so this paper adopts the idea
of greed, retaining only those solutions that have improved
fitness after a position change and not recording those that
move in a worse direction.

X (1) = Xnew (1) s f Knew (1)) < f (X (1)) (16)
X0, fEnew(®)>f X))

D. ALGORITHM STEPS

The steps of the Multi-strategy fusion Improved Adaptive

Hunger Games Search algorithm(MIA-HGS) are as follows:
Step 1: Setting the basic parameters of the MIA-HGS;
Step 2: Initialize the population X1, X», - - - , Xy using the

good point set strategy, Eq. (11)(12);
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Step 3: Calculate the fitness of each individual of the
population according to the fitness search function, update
and record the population optimal fitness BF and Xp;

Step 4: Calculate the strategy selection parameter / accord-
ing to Eq. (13), calculate the strategy selection parameter £
according to Eq. (2)(3), R calculate the convergence factor
according to Eq. (4)(5) Calculate the starvation weights W
and W, according to Eq. (6)-(10), and finally update the
population location according to Eq. (1);

Step 5: When the population optimal fitness BF in
Step 3 has not been updated for five or more times,
a logarithmic spiral OBL mechanism will be introduced to
update the variation for all individuals in the population, i.e.
equations (14)-(16);

Step 6. If the current number of iterations ¢ exceeds the
set maximum number of iterations then proceed to Step 7,
otherwise jump back to Step 3;

Step 7: End of MIA-HGS algorithm, output optimal adap-
tation BF and optimal position Xpes;.

The MIA-HGS algorithm flow is shown in Fig. 3.

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
In order to test the optimization-seeking performance of the
MIA-HGS algorithm, 23 benchmark test functions from the
literature [9] are selected for experimental comparison in this
paper, and the Wilcoxon sign-rank test [28] were applied
to identify the algorithms’ significant differences. These
23 benchmark test functions are used in almost all articles on
swarm intelligence optimization algorithms. The 23 bench-
mark test functions are shown in Tab. 1, where F; — F7 is
a high-dime national single-peaked function, Fg — Fj3 is a
high-dimensional multi-peaked function, 14— F>3 is a fixed-
dimensional multi-peaked function. The Wilcoxon sign-rank
test was used as a statistical significance test and when the
result was ‘4’ it indicated that MIA-HGS performed signifi-
cantly better than its competitors.

The experimental environment was an AMD Ryzen 7
5800X CPU @ 3.80 GHz, 16.00 GB of RAM, Windows 11,
and Matlab R2018a. All the algorithms selected in this paper
used the same parameter settings, i.e., the number of pop-
ulations was 30, the maximum number of iterations was
500, and the algorithms were run 30 times independently.
The average and standard deviation of these 30 independent
experiments were taken as the evaluation index of the algo-
rithm’s optimization-seeking simulation experiments.

A. COMPARISON WITH CLASSICAL

OPTIMIZATION ALGORITHMS

The MIA-HGS proposed in this paper is compared with
some classical swarm intelligence optimization algorithms.
The Hunger Games Search Algorithm (HGS), Particle Swarm
Optimization Algorithm (PSO), Grey Wolf Optimizer Algo-
rithm (GWO), Whale Optimization Algorithm (WOA), and
Sparrow Search Algorithm (SSA) are selected in this paper.
The parameters of the HGS algorithm are set as follows:
! = 0.08, LH = 100. The parameters of the SSA algorithm
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TABLE 1. 23 benchmark functions.

Type 1D Function Equation Dim Range fimin
F1 F(x)=Yx] 30 [-100,100] 0
i=1
% P2 Fz(x):z x|+ Tk 30 [-10,10] 0
a;“ i=1 v i=1
g o
2 P F(x)=Y>Q x,) 30 [100,100] 0
wn =l j=1
g F4 F,(x)=max{|x|.1<i<n} 30 [-100,100] 0O
£ a1
£ FS F(0)=2[1000x, —x))" +(x,~1)’] 30 [-3030] 0
o i=1
& "
T F6 Fy(x)=Y(x,+0.5)’ 30 [-100,100] 0
i=1
F7 F,(x) =) ix] + random[0,1] 30 [-1.28,128] 0
i=1
F8 Fy(x)=Y —x,sin(; / x,|) 30 [-500,500]  -12569.5
i=1
) Fy(x)=Y x,?—lOcos(Z;rxi)+10\ 30 [5.125.12] O
9—4 i=1
% 1 n 5 1 n
= FI0 Fo(x)==20exp(=0.2,|= D" x7) —exp(= D cos(27x,)) + 20 +e 30 [-32,32] 0
§ nig n o ‘
S
S Rl F(0)=——3 2 [Toos(*)+1 30 -600,600] 0
E L (x) 4000%: i 1;[ (\/ZT) [-600,600]
o
= n-1 n
é“ F12 Ez(x)zﬁ{losin(nyl)JrZ(y, —D’[1+10sin’(zy,,) + (¥, - D’} + X u(x,,10,100,4) 30 [-50,50] 0
n i=1 i=1
F13 F3(x) = 0.1{sin’ Bzx,) + Y (x, = 1)’[L + sin’Brx)] + (x, - 1)’[L +sin’2zx )]} + Y u(x,,5,100,4) 30 [-50,50] 0
i=1 i=1
™ 1 25 . .
< F,(x)=(—+ - - -
! Fl4 W@ =G ,Z;;zu,ﬂj)o) 2 [-65,65] 1
E z x(b> +bx,)
s FI5  F,(x)=)Y[q -1 —27 4 5,5 0.0003
8 15(%) ;[ b’ +bx, +x, 53]
é 2 4,1 2 4
E Fl6 F(x)=4x —2.1x, +§x1 +x,x, — 4x; +4x, 2 [-5,5] -1.0316
-
% 51 5 ) 1
£ F17  F,(x)=(x,—-—5+—x,-6)> +10(1-—)cosx, +10 2 [-5,5] 0.398
4 87
Fo(x) =[1+(x, + x, +1)*(19 = 14x, + 3x] —14x, + 6x,x, +3x7)]
F18 2 [-2,2] 3
[30+(2x, —3x,) (18 = 32x, +12x] +48x, —36x,x, +27x])]
4 n
F19  Fy(x) ==Y c,exp(-)_a,;(x; = p;)") 3 [0,1] 3.8628
i=1 j=1
4 n
F20  Fy(¥)==3 cexp(-2 a,(x; = p,)") 6 0] -3.32
i=1 j=1
5 -1
B0 F,()=-Y[(x—a)x-a) +c] 4 [0,10] -10.1532
i=1
7 -1
F2  Fp()=-Y[(x-a)x-a) +c ] 4 [0,10] -10.4028
i=1
10 -1
F23 Fu(0)=-Y[(x—a)x—a) +c]| 4 [0,10] -10.5363

i=1
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FIGURE 3. MIA-HGS algorithm flow chart.

are set as in the literature [7]: ST = 0.8, SD = 0.1, PD =
0.2. The rest of the algorithm data were obtained from the
literature [29]. A comparison of the algorithm data is shown
in Tab. 2.

As can be seen from Tab. 2, the MIA-HGS has a higher
search accuracy than the HGS in 69.5% of the tested functions
and is equal to the HGS in 21.7% of the tested functions.
Firstly, the high-dimensional single-peaked function F; — F
has only one extreme value point, which mainly tests the
local fast convergence ability of the algorithm. MIA-HGS is
equal to HGS only in F'y, and the rest are ahead. The above
results prove that MIA-HGS has improved the fast local con-
vergence performance compared with HGS; Secondly, there
are multiple local optima on the high-dimensional multi-peak
functions Fg — F13, which mainly test the algorithm’s global

VOLUME 11, 2023

search and ability to jump out of the local optimum. MIA-
HGS and HGS can find the global optimum every time on
F9 — F1, and there is no more room for improvement, so the
results are equal. However, MIA-HGS improves on all the
remaining test functions. The above results test demonstrates
that MIA-HGS has enhanced its ability to search globally and
jump out of local optima compared to HGS; Finally, in the
fixed dimensional multi-peak function F14 — F»3, due to its
low dimensionality and simple operation, MIA-HGS does not
play its full performance and leads HGS in Fi4 — F15 and
F19 — F»3, whereas F17 — Fg has the same finding accuracy
as HGS, but still has a very small difference in standard
deviation. Meanwhile the Wilcoxon sign-rank test showed
that MIA-HGS was significantly better than HGS on 60%
of the tested functions and only 17% of the tested functions
were inferior to HGS. In summary, it fully demonstrates that
the improved algorithm proposed in this paper is real and
effective.

Compared to these five classical swarm intelligence opti-
mization algorithms, MIA-HGS ranked first in terms of opti-
mization results on 82.6% of the tested functions; tied with
individual algorithms in terms of optimization accuracy on
8.6% of the tested functions, but with a slightly lower stan-
dard deviation; and ranked second on 4.3% of the tested
functions. By the Wilcoxon sign-rank test, MIA-HGS was
ahead of PSO, GWO and WOA across the board, although
the disadvantage was most pronounced when comparing with
SSA, which had only five cases. It can be concluded that
MIA-HGS has some advantages over the classical swarm
intelligence optimization algorithm.

B. COMPARISON WITH IMPROVED HGS ALGORITHM
As HGS was proposed in 2021, there are fewer rele-
vant improvements, and researchers have chosen differ-
ent test functions, so this paper collects and replicates
experiments as much as possible. This will be done
with the Chaotic Hunger Games Search algorithm(Chaotic-
HGS) [17], the Multi-Strategy ensemble Hunger Games
Search algorithm(MS-HGS) [17], the Logarithmic spiral
Opposition-Based Learning Hunger Games Search algorithm
(LsOBL-HGS) [20], and the Elite Opposition-Based Learn-
ing and t-Distribution Hunger Games Search algorithm
(EtHGS) [22]. The experimental data of Chaotic-HGS is
directly derived from Scenario 2, which has the best improve-
ment in the literature [17]. The experimental data for MS-
HGS were obtained directly from the literature [18], the
experimental data for LsOBL-HGS were derived by repli-
cating the literature [20] with parameter / = 0.08, and
the experimental data for EtHGS were mostly derived from
the literature [22] with the remainder is derived from the
experimental replication with parameter [ = 0.03, p = 0.8.
Tab. 3 shows the experimental results of MIA-HGS and the
four improved HGS algorithms. Among them, MIA-HGS is
ranked first on Fy — Fu, Fg — F11, F13 and F1o; the average
of the search for excellence on Fi7 — Fig and Fp; — F»3
has reached the optimum, only slightly inferior to the first

67405



IEEE Access

D. Zhang et al.: Multi-Strategy Fusion Improved Adaptive Hunger Games Search

TABLE 2. Comparison of MIA-HGS and classical optimization algorithms for finding the best.

Type b MIA-HGS HGS PSO GWO WOA SSA
AGV STD AGV STD AGV STD AGV STD AGV STD AGV STD
—:‘3 F1 0 0 0 0 0.4615 02313 1.83e-27 2.98e-27 1.24e-72 5.60e-72 1.05e-39 1.05e-39
g} F2 0 0 8.06e-155 4.41e-154 4.9349 23901  9.70e-17 1.25e-16 4.72e¢-52 1.87e-51 8.2le-24 4.28e-23
g
n F3 0 0 6.31e-197 0 50.0024  19.0070 1.81e-05 3.91e-05 4.61e+04 1.52¢+04 1.40e-32 7.69e-32
Té F4 0 0 7.36e-140 4.03e-139 4.4878 1.7191  9.89e-07 1.00e-06 41.7900  29.2463 2.67e-25 1.46e-24
.% F5 1.7176 ~ 6.5326  10.9491 12.7327 257.6737 161.4050 26.7547  0.8234  27.7930  0.4673  3.37e-05 7.09e-05
'-é F6 '« 536e-07 1.97e-05 1.93e-05 3.15¢-05 0.5019 0.2348 0.8148 0.4207 0.3641 0.2187  6.05e-07 2.85e-07
'ED F7  1.05e-04 1.06e-04 4.72¢-04 1.01e-03  0.0565 0.0563 0.0021 0.0014 0.0045 0.0050  2.84e-04 2.24e-04
F8 -12569.27 0.31655 -12567.45 3.3426 -2.71e+03 259.2516 -5.90e+03 886.0377 -1.04e+04 1.71e+03 -8326.41 2906.43
g M F9 0 0 0 0 80.3380  20.1412  2.7689 4.4496 0 0 0 0
-% g F10 8.88e-16 0 8.88e-16 0 5.2009 1.2190  1.02e-13  2.18e-14 5.15e-15 1.95e-15 3.49e-15 1.25e-14
'—g :; Fl11 0 0 0 0 0.5854 0.1884 0.0036 0.0052 0 0 0 0
-EO = F12  4.56e-07 8.86e-07 1.06e-06 1.65e-06 3.3185 1.3489 0.0424 0.0181 0.0202 0.0141  1.75e-06 3.18e-08
F13 = 2.89¢-06 4.87¢-06 1.18¢-05 2.25e-05 15.5409 15.6768  0.6691 0.2590 0.4736 0.2010  3.03e-06 8.04e-07
F14 = 1.3233 1.5829  3.2765 4.2008 2.5778 2.1297 5.2037 4.5541 2.9328 2.8852  11.0217 3.8242
% F15 3.17e-04 5.06e-05 7.97e-04 2.54e-04  0.0027 0.0061 0.0057 0.0090  7.74e-04 5.62e-04 3.29e-04 3.44e-05
151
A F16 -1.0316 1.58e-08 -1.0316 6.77e-16 -1.0316 1.44e-16 -1.0316 1.98e-08 -1.0316 5.72e-10 -1.0316 5.2le-16
;; F17 039789 2.14e-14 0.39789 0 0.39789 0 0.39789  1.28e-06 0.39789  1.75e-05 0.39789 6.54e-10
% F18 3 6.55e-13 3 3.82e-15 3 3.67e-15 3 3.48e-05 3.0001  1.43e-04 3 6.6le-15
% F19 -3.8628 23le-19 -3.8628 2.7le-15 -3.8612 0.0032 -3.8612 0.0027 -3.8303 0.1402  -3.7855 0.23587
'-g F20 -3.2544 6.00e-02 -3.2505 5.93e-02 -3.2223 0.1162 -3.2449 0.1067 -3.2324  0.1054 -3.226  0.0969
E F21 -10.1532 1.50e-05 -9.8133 12934  -8.5143 2.6176 -9.6460 1.5416 -8.2059  3.0701  -83779  2.344
a F22  -10.4029 3.99¢-05 -10.3924 5.73e-02 -6.7470 3.7889  -10.4011 9.44e-04 -8.2711 3.1344  -8.3037 2.6186
F23  -10.5364 4.30e-05 -10.1759 1372 -8.0138 3.5625  -10.5347 8.70e-04  -8.5819  3.0097  -9.8001 1.8649
Wilcoxon +/-/= ~ 14/4/5 21/0/2 21/0/2 23/0/0 10/5/8

ranked algorithm in terms of standard deviation; and ranked
second on F and F14— F15. The average ranking results (the
smaller the average ranking, the better the performance) are
MIA-HGS < EtHGS < Chaotic-HGS < LsOBL-HGS < MS-
HGS. The Wilcoxon sign-rank test experimental results also
show that MIA-HGS has the advantage over other algorithms
to find and develop the target solution space more quickly.
In summary, MIA-HGS has the most comprehensive perfor-
mance among the algorithms mentioned in this paper.

In order to more intuitively demonstrate the effect of the
MIA-HGS and the other four HGS improvement algorithms,
as well as the original HGS algorithm, in terms of finding the
best results, this paper selects two of each of the three types
from the 23 basic test functions, for a total of six test functions
for iteration curve demonstration. Since the six algorithms
converge in 50 generations, the paper will set the population
size to 30, and the number of iterations to 50, and the effect
is shown in Figure 4. From the iteration curves in Fig. 4,
we can see that the starting point adaptation of MIA-HGS
is relatively low, which fully reflects that the good point set
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strategy generates initial points with great population diver-
sity and provides a good basis for the convergence of the later
iterations of the algorithm. The starting point of MIA-HGS is
not the lowest in F1, F3 and Fg of Fig. 4, but it can catch up
in the subsequent iterations. In the convergence comparison
plot in Fig. 4, the MIA-HGS convergence curve is largely
at the below, fully reflecting its speed advantage of iterative
search.

V. MIA-HGS APPLIED TO UAV 3D PATH PLANNING

In order to verify the effectiveness of MIA-HGS when solv-
ing practical problems, MIA-HGS is applied to UAV 3D
path planning. The UAV 3D path planning problem is a
superiority-seeking constraint problem. In the course of a
mission, the UAV needs to reach a specified location from
an initial position. When planning the path, factors such as
terrain and obstacles need to be considered to avoid collisions
between the UAV and the mountain peaks while keeping the
path length as short as possible.
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TABLE 3. Comparison of MIA-HGS with the latest improved optimization algorithm for finding the best.

Type D MIA-HGS Chaotic-HGS MS-HGS LsOBL-HGS EtHGS
AGV STD AGV STD AGV STD AGV STD AGV STD
Fl1 0 0 0 0 0 0 6.53e-38  3.2le-37 0 0
= F2 0 0 0 0 2.81e-186 0 9.72e-23  522e-22  9.89E-237 0
é E F3 0 0 0 0 0 0 2.07e-05 1.13e-04 0 0
g E F4 0 0 0 0 2.00e-172 0 2.28e-16 1.11e-15  2.22E-221 0
% (%0 F5 1.7176 6.5326 9.27 11.5 25.2 9.34 5.49e-03 0.02064 25.0269 0.61717
= F6 5.36e-07 1.97e-05 3.17e-05  5.52e-05  1.68e-05 1.84e-05  7.77e-05  9.67e-05  4.64E-06  5.63E-06
F7 1.05e-04  1.06e-04  1.17e-04  1.35e-04  2.60e-03  3.20e-03  2.04e-03  2.07e-03 1.69¢-04  2.16e-04
Té . F8 -12569.27  0.31655  -12568.20 1.9506  -1.16e+04 4.89e+01 -1.25¢+04 250.0518 -12294.39  522.5634
5 2 “Ia F9 0 0 0 0 0 0 0 0 0 0
= g ;; F10 8.88e-16 0 8.88e-16 0 8.88e-16 0 8.88e-16 0 8.88E-16 0
~ Fl1 0 0 0 0 0 0 0 0 0 0
F12 4.56e-07  8.86e-07  4.13e-06  7.55e-06 = 3.86e-07  3.72¢-07  2.50e-06 ~1e-06 1.33e-02 1.05e-02
F13 2.89e-06 4.87e-06 4.81e-02 0.2633 2.72e-05  6.22e-05  2.45e-05  4.01e-05 1.70e-02 9.33e-02
F14 1.3233 1.5829 1.3235 1.7829 1.97e+00  2.98e+00 0.998 2.70e-16 2.1729 2.9739
= F15 3.17e-04  5.06e-05  3.28e-04  8.65e-05  5.40e-04  3.20e-04  5.64e-04 = 2.35e-04 4.4e-04 2.15e-04
?g Fl16 -1.0316 1.58e-08 -1.0316 2.83e-11 -1.0316 8.75e-04 -1.0316 5.68e-16 -1.031 6.39%-16
é F17 039789  2.14e-14  0.39789 1.78e-10 = 3.97e-01 0 0.39789 0 0.39789 0
] F18 3 6.55e-13 3 2.31e-08  3.05¢+00  1.11e-01 3 5.34e-15 3 0
% F19 -3.8628 2.31e-19 -3.8627 1.98¢-04 -3.86e+00  4.62e-19 -3.837 0.14113 -3.862 2.65e-15
'_g F20 -3.2544 6.00e-02 -3.217 8.89¢-02  -3.32¢+00  1.45e-03 -3.2863 0.05541 -3.298 4.83e-02
E F21 -10.1532  1.50e-05 -9.98 9.31e-01  -9.84e+00  1.69¢+00  -10.1532  2.4le-14  -10.1532  5.78e-15
. F22 -10.4029  3.99¢-05 -10.4 7.38e-16  -1.02e+01  9.70e-01 -10.4029 1.42e-13 -10.4029 1.75e-15
F23 -10.5364  4.30e-05 -10.05 1.28e-15 -1.04e+01 1.87e+00  -10.5364 1.92e-13 -10.5364  2.16e-15
Wilcoxon +/-/= ~ 15/0/8 17/5/1 11/7/5 12/8/3

A. TOPOGRAPHIC AREA MODEL
Ada The mathematical model for mountain terrain in 3D path
planning is as follows [30]:

2 (e0y) = D hiexp | - (xx 'x’) - (u) (17)
i=1 st

ySl

where n represents the total number of peaks in the 3D image;
(x;, y;) represents the central coordinates of the ith peak;
h; represents the height of the highest point of the ith peak; xy;
and yy; represent the decay coefficients of the ith peak along
the x and y axes respectively, which control the slope of the
peak.

B. PATH MODEL

In 3D spatial path planning, to avoid obstacles the UAV
flight trajectory must be a 3D spatial curve, ie. with
continuous and no abrupt changes in curvature and deflec-
tion. However, in the swarm intelligence optimization algo-
rithm, multiple sample points can only be used instead
of a curve for optimization. In order to realistically sim-
ulate the UAV trajectory, this paper uses cubic B-spline
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interpolation to smoothly connect the discrete points.
k discrete sample points are set as intermediate path
nodes, i.e. {My (x1,y1,21), -, Mg (xk, Yk, 2x)}; the start
and end points are S (xg, V5, 25) and G (xg, Vs zg) respectively,
thus forming the complete path node {S, My, .-, My, G}.
These discrete points’ coordinates (xy, x1, -« , Xk, Xg),
(}’.w)’I, s ,yk,yg), and (ZS, Z1s " Zks zg) are fitted using
cubic B-spline interpolation, resulting in a smooth 3D spatial
curve.

In the path planning process, in order to prevent collisions
between the UAV and the mountain, the 3D spatial curve of
the simulated route cannot have any crossover overlap with
the mountain, meaning that the height z of the curve at the
same horizontal and vertical coordinates is greater than the
height of the peak z, i.e.: 7 > z; (x, ).

C. EXPERIMENTAL RESULTS AND ANALYSIS

In order to verify the effectiveness of the MIA-HGS algo-
rithm in 3D spatial path planning, simulation experiments
were conducted using Matlab2018a and compared with some
classical optimization algorithm. The experimental space is
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TABLE 4. 6 mountain parameters.
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T (20,100 20 55 5
2 4025 35 8 7
3 (4550) 25 5 6
4 (6030) 38 45 55
5 (2045 20 55 6
6 (30,10) 25 3.5 4.5

80 x 80 x 40(km>) and there are 6 peaks in the space, the
specific experimental data of each peak are shown in Tab. 4.
The coordinates of the start and end points are (10, 80, 5) and
(60, 0, 5) respectively. The three-dimensional spatial topog-
raphy is shown in Fig. 5.

The initial population size of the algorithms involved in
the experiments was all set to 30, the maximum number
of iterations was 100, and the rest of the parameters were
kept consistent with the experiments above. The convergence
curves of the algorithm iterations are shown in Fig. 6, and the
results are shown in Tab. 5.

From Fig. 6 and Tab. 5, it can be seen that MIA-HGS also
has a strong optimization capability when solving 3D route
planning, and the final shortest route distance obtained by
MIA-HGS is 96.71km, which is better than the 100.93km
planned by the HGS algorithm, which shows that the HGS
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Comparison of the convergence of the 4 algorithms on 3D path
planning.

and GWO algorithms fall into a local optimum, while PSO
is close to the global optimum but converges too slowly. The
average of the MIA-HGS algorithm was found to be better
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TABLE 5. Performance comparison of ELHGS and HGS algorithms.

Algorithms Length /km__ Average time /s

MIA-HGS 96.71 0.74
HGS 100.93 0.567
PSO 98.75 0.737
GWO 102.53 0.583

than the HGS algorithm. MIA-HGS takes a similar amount of
time to HGS in the initialization and adaptive strategy phases,
but the final step is more time-consuming. The jump out of
the local optimum phase is the generation of a new population
based on the original population, which is eventually retained
on merit, and consumes similar time as the initialization
population with a time complexity of O (n). However, this
phase also occurs conditionally and is not executed every
time. Overall the overall time complexity of MIA-HGS is
increased, but as this phase allows the algorithm to find the
global optimum quickly, the extra time spent iterating is more
than worth it. The final route map generated by MIA-HGS is
shown in Fig. 7, where the route completely bypasses terrain
such as peaks and the curve is smooth and continuous. The
simulation results show that the MIA-HGS algorithm has
successfully solved the 3D path planning problem.

The fitness parameters in MIA-HGS remain key to con-
trolling whether populations choose global search or local
exploration. The introduction of variation is at an interme-
diate to late stage and variation manipulation does not affect
the choice between global search and local exploration.

*  Start point
O End ponit

Discrete sample points
MIA-HGS route

ylkm x/km

FIGURE 7. MIA-HGS planned 3D route map.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study proposes a Multi-strategy fusion Improved Adap-
tive Hunger Games Search algorithm (MIA-HGS) to address
the disadvantages of poor initial population diversity, low
solution accuracy, and the tendency to fall into local optimal-
ity of the Hunger Game Search algorithm (HGS). The algo-
rithm uses a good point set strategy to enhance the diversity
of the initial population and provide a good basis for the algo-
rithm to find an optimum; The original HGS algorithm uses a
fixed parameter to control the selection of the update strategy
during the convergence process. In this paper, the param-
eter is improved by replacing the fixed parameter with an
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adaptive adjustment parameter, which automatically adjusts
the parameter size according to the number of iterations and
selects the update strategy according to the situation, further
improving the global search ability and reducing the proba-
bility of the population falling into a local optimum; when the
population stagnates, a logarithmic spiral opposition-based
learning strategy is introduced to enable the algorithm to jump
out of the local optimum in time and accelerate the speed of
the search. Adaptive parameters in MIA-HGS are still key to
controlling the choice of global search or local exploration of
populations. The introduction of variation is at an intermedi-
ate to late stage and the variation operation does not influence
the choice between global search and local exploration. These
improvements have led to significant improvements in the
accuracy, stability, and speed of convergence of the algorithm.

Finally, through simulation experiments on 23 benchmark
test functions and comparison with five traditional opti-
mization algorithms and four improved HGS algorithms,
the experimental results show that the MIA-HGS algorithm
effectively improves the ability of the original algorithm
to search globally and jump out of local optima in high-
dimensional problems, improves the convergence accuracy
and accelerates the convergence speed. In order to verify
the ability of MIA-HGS in solving practical problems, this
paper applies MIA-HGS to UAV trajectory planning and also
achieves good application results, and accomplishes the plan-
ning objectives better. The next step will be to use the MIA-
HGS algorithm on more practical engineering problems, such
as friction welding, image segmentation, bridge design, etc.,
to verify the algorithm’s ability to solve more and more
complex practical problems.
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