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ABSTRACT This paper proposes a new observer-based model-free adaptive sliding mode predictive
control method (MFASPC) for discrete-time nonlinear systems. This scheme first equates the discrete-
time nonlinear system to a linear form using a data-driven compact form dynamic linearization (CFDL)
technique, establishes a data model consisting of only the pseudo partial derivatives (PPD), input data
and output data, designs adaptive observers to achieve the estimation of the unknown PPD. The controller
design part uses integral sliding mode control (SMC) to ensure the system’s robustness. In contrast, with its
constraint characteristics, the model predictive control (MPC) replaces the traditional switching control of
SMC. The closed-loop control quantities are obtained by solving a rolling optimization problem in the finite
time domain to provide dynamic optimal control action. The theoretical derivation of the Lyapunov function
is used to demonstrate the system’s stability. In order to verify the effectiveness of the proposed algorithm,
numerical simulations and Photovoltaic power generation system simulation experiments are conducted,
respectively, and the results show that the proposed control algorithm has a very reliable tracking capability
and control accuracy.

INDEX TERMS Adaptive observer, model free, sliding mode predictive control, rolling optimization,
data-driven.

I. INTRODUCTION
In recent years, adaptive control techniques for nonlinear
systems have attracted a large number of scholars and much
effort has been devoted to them [1], [2], [3]. However, most
methods require dynamical or mechanistic analysis of the
control system to obtain an accurate mathematical model
first, and there are inevitably approximation links throughout
the process [4]. In contrast, the ignored unmodeled dynamics
part may be a potential factor that makes the closed-loop
system unstable and reduces the controller performance.

Model-free adaptive control (MFAC) is a data-driven con-
trol method for discrete-time nonlinear systems to improve
modeling difficulties [5], and its most important features
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compared to other data-driven control methods are the equiv-
alent dynamic linearization process and the introduction of
virtual parameters (PPD). MFAC uses the input and output
data of the system to update the virtual parameters online
dynamically, thus establishing an equivalent data model, both
the PPD and the data model, which dependmerely on the data
and are unrelated to the structural information of the system,
thus thoroughly characterizing the nonlinear and uncertain
features of the system [6]. It has been widely used in the past
few years, such as urban traffic control, heading control, zero-
sum game control, flexible joint control, etc. [7], [8], [9], [10].

As the research progresses, to further solve the uncertainty
problem of the control system and ensure robust performance
in control, some scholars bring the SMC into the MFAC
algorithm to carry out the research, which produces the
model-free adaptive sliding mode control (MFASC) scheme.
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Among them, the sliding phase of the SMC law ensures
the excellent stability performance of the system, and the
arrival phase determines the system’s dynamic performance.
For example, [11] implemented model-free adaptive sliding
mode control for an autonomous four-wheeledmobile vehicle
parking system using vehicle body angle and steering angle
data; [12] proposed a new enhanced model-free discrete-time
adaptive terminal sliding mode control for solid oxide fuel
cell system with input constraints, aiming to regulate the
output voltage under load perturbations; [13], [14], and [15]
considers the tracking error constraint and introduces a pre-
determined model-free adaptive integral sliding mode control
based on the performance idea, which makes the tracking
error converge to a predefined neighborhood; [16] combines
MFAC with discrete-time SMC with exponential arrival law
and applies it to a multi-degree-of-freedom robot system,
where the control process only uses themeasured input torque
and output velocity of the exoskeleton; the same system, [17]
designed an adaptive sliding mode compensator to select a
non-singular terminal sliding surface to achieve fast conver-
gence and improve the tracking performance; [18] takes the
input saturation problem as the entry point, uses bounded fea-
tures to overcome the chaotic behavior and achieves model-
free adaptive slidingmode control for chaotic fractional-order
systems; [19] introduces a sliding-mode-based auxiliary con-
troller, which uses only attitude angle and attitude angular
velocity information to improve the model-free adaptive con-
trol tracking performance of the combined spacecraft; [20]
and [21] applied the model-free adaptive sliding mode con-
trol algorithm to a multi-input multi-output systems. How-
ever, most of the MFASC algorithms do not consider the
optimality problem. The arrival phase that determines the
system’s dynamic performance still needs improvement and
optimization.

MPC is typically characterized by rolling optimization in
the predictive time domain, allowing improved dynamic per-
formance in the arrival phase and explicit and active handling
of input and state constraints. Considering this advantage, the
combination with the SMC that solves for the optimal slid-
ing mode state at each sampling moment makes the sliding
mode predictive control method both robust and optimal. [22]
designed an integral digital terminal sliding mode predictive
control scheme dedicated to precision motion control and
experimentally confirmed good tracking accuracy; [23] pro-
posed a continuous control set sliding mode predictive veloc-
ity control method to develop a discrete-time integral sliding
mode predictive observer to achieve the prediction of the
reference velocity and feedforward to a predefined fast ter-
minal sliding-mode-based cost function to achieve one-step
prediction of the reference velocity. [24] investigates discrete-
time underdriven sliding manifolds and sliding mode predic-
tion equations, and simulations verify more stable and faster
tension control. Reference [25] develops robust sliding-mode
nonlinear predictive controllers by cascading and smooth
sliding-mode controllers to integrate human intent tracking

and safety assurance objectives into the optimization problem
with robust desired speed tracking. Using quasi-sliding mode
bandwidth and good constraint handling capability, [26] is
used for accurate motion control with cross-coupled lag
nonlinearity. The above studies show that the sliding mode
predictive control can provide optimal control actions for the
more accurate performance of nonlinear systems. However,
the above sliding mode predictive controllers are built based
on a piezoelectric-driven motion system, surface-mounted
permanent-magnet synchronous motor, space-tethered satel-
lite system, brain-controlled robots, and parallel microposi-
tioning piezo stage, all of which have precise mathematical
models and system parameters.When faced with systems that
do not or cannot have precise information, [27] improves the
robustness of the predictive control system based on an ultra-
local model without using parameters and uncertain vari-
ables, but the modeling process is relatively computationally
complex; [28] combines discrete-time terminal sliding mode
predictive control with MFAC method, which simplifies the
modeling process, but the signal oscillation phenomenon in
the sliding mode switching phase is serious; [29] investigated
the tracking problem of multi-intelligent body systems in
network systems, combining three methods of MFAC, pro-
portional SMC, and MPC. However, the predictive control
structure of this algorithm is not used to optimize control law
but for compensate time delays.

Based on the above analysis, this paper proposes an
observer-based model-free adaptive sliding mode predictive
control method for discrete-time nonlinear systems, which
uses an adaptive observer to design a pseudo partial derivative
estimation algorithm and establish a tight-format equivalent
data model. Compared with other studies, the method pro-
posed in this paper is based on constraints and optimized
performance, attenuating the jitter phenomenon in the arrival
phase and reducing the steady-state error in the sliding mode
phase. The stability analysis of the system is carried out by
the Lyapunov method instead of the compression mapping
principle commonly used in model-free adaptive control the-
ory. The main contributions include: 1) the switching control
in traditional sliding mode control is replaced by rolling opti-
mal control for each sampling period, which avoids frequent
oscillations of the output signal near the slidingmode surface,
optimizes the control trajectory, and improves the accuracy
of the control. 2) the input and input incremental constraint
problems are incorporated into the cost function design to
exploit the constraint handling capability of the model pre-
dictive control, which is described in the literature [28] is
not considered; 3) the proposed discrete integral sliding mode
predictive control relies only on the system input and output
and the corresponding incremental data, not on specific struc-
tures and parameters, and has flexible portability.

The remaining parts of the paper are organized as fol-
lows. Section II proposes an observer-based PPD estimation
algorithm and compact form data model of a discrete-time
nonlinear system. The design procedure of the MFASPC
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algorithm-based data model and corresponding stability anal-
ysis are detailed in Section III. In Section IV, Simulation
results are shown for the proposed schemes. Section V sum-
marizes this paper.

II. PROBLEM FORMULATION
A. SYSTEM DESCRIPTION
Consider the SISO discrete-time nonlinear system as follows:

y(k + 1) = f (y(k), y(k − 1), · · · , y(k − wy),

u(k), u(k − 1), · · · , u(k − wu)) (1)

where y(k) and u(k) are the output and input of the system
at the moment of sampling time k , respectively, f (·) is the
unknown nonlinear function, and wy and wu are the unknown
orders of the output and input of the system, respectively.

For the systems(1), the following two assumptions should
be given first.
Assumption 1: The unknown nonlinear function f (·) is

derivable and continuous at any time concerning control
input.
Assumption 2: The nonlinear systems satisfy Lipschitz

condition. Namely, there is a constant ξφ such that 1y
(k + 1) ≤ ξφ1u(k). where 1y(k + 1) = y(k + 1) − y(k)
indicates output increments,1u(k) = u(k)− u(k − 1) means
input increment.
Remark 1: Assumption 1 is general for controller design.

Assumption 2 can be said to be an embodiment of the law of
conservation of energy. The amount of control input and input
increment determine the amount of output and output incre-
ment. If the input change rate of 1u(k) for two consecutive
work points is too large, the stability of system will quickly
deteriorate. This assumption will also make the theoretical
analysis more suitable for practical applications, such as the
three-tank [5] and temperature control system [13].

According to the dynamic linearization principle based on
PPD, the compact form data model of the system (1) when
the input increment 1u(k) ̸= 0 can be expressed as:

1y(k + 1) = φ(k)1u(k) (2)

where φ(k) is called the PPD, which represents the ‘‘virtual
input increment gain’’ at the moment k.
Remark 2: φ(k) is not a parameter with a definite value.

However, it consists of the median of the partial derivatives
of the unknown nonlinear function f (·) concerning the control
input at a point on the interval at k moments together with a
nonlinear residual term with complex dynamic properties. Its
size depends only on the nonlinear system’s output increment
and input increment and is bounded for any moment, and
there exists |φ(k)| ≤ ξφ .

B. PPD ESTIMATION ALGORITHM BASED ON ADAPTIVE
OBSERVER
The compact form data model constantly requires input and
output data from the current and historical moments to update
and identify φ(k) of the current moment, which necessitates

the design of an adaptive algorithm to estimate φ(k), intro-
ducing the observer structure.

ŷs(k + 1) = ŷs(k) + φ̂(k)1u(k) + Kses(k) (3)

where ŷs(k) refers to the system output estimation value
at k moment, φ̂(k) describes the system PPD estimation
value at k moments, es(k) = y(k) − ŷs(k) is the output
estimation error, and Ks is the output estimation error gain
satisfying 0 < Ks < 1. Therefore, the dynamic of output esti-
mation error es(k + 1) can be written as:

es(k + 1) = 1u(k)φ̄(k) + (1 − Ks)es(k) (4)

where φ̄(k) = φ(k) − φ̂(k) represents the PPD estimation
error. According to the structure of the observer (3), the
following algorithm can be used for the estimation of the
PPD:

φ̂(k + 1) = φ̂(k) +
21u(k)

|1u(k)|2 + χ
(es(k + 1) − (1

− Ks)es(k)) (5)

where χ denotes the penalty factor and χ > 0. es(k+1) is the
output estimation error at future moments, which cannot be
used as known data in (5), and the two-step delayed uncertain
parameter estimation algorithm is used to estimate, using the
output estimation error values at the moment k and previous
moments, the following:

ês(k + 1) = 2es(k) − es(k − 1) (6)

Substituting (5) yields the observer-based PPD estimation
algorithm as:

φ̂(k + 1) = φ̂(k) +
21u(k)

|1u(k)|2 + χ
((1 + Ks)es(k)

− es(k − 1))

φ̂(k) = φ̂(1), if |φ̂(k)| ≤ ςor|1u(k − 1)| ≤ ς (7)

where ς is a remarkably minor positive constant, the non-
negative constant φ̂(1) is the initial value for φ̂(k). The pur-
pose of resetting φ̂(k) is to stop it from falling into a local min-
imum, which helps to improve the control. Meanwhile, the
dynamic characteristics of the system output are expressed as
follows:

y(k + 1) = ŷs(k) + φ̂(k)1u(k) + (2 + Ks)es(k)

− es(k − 1) (8)

The control objective of this paper is to propose a data-
driven model-free adaptive sliding mode predictive control
method based on sliding mode predictive control, using
the PPD estimated by the adaptive observer and the output
dynamic characteristics to achieve accurate tracking control
of the system for known signal trajectories.
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III. CONTROLLER DESIGN AND STABILITY ANALYSIS
In this section, an observer-based model-free adaptive sliding
mode predictive controller is proposed to predict the sliding
mode function in the finite time domain by invoking the
rolling optimization function of MPC. The optimal output
control replaces the traditional switching control, which is
jointly equilibrium control, to commonly compose a new
control input, making the sliding mode converge to the equi-
librium state quickly and smoothly.

A. INTEGRAL SLIDING MODE CONTROL
Select the sliding surface with the integral term:

s(k) = e∗(k) + λ

k∑
i=1

Te∗(i) (9)

where λ > 0 is the integral term coefficient, T is the sampling
time interval, and e∗(k) is the tracking error, which is the
result of the difference between the given desired output ỹ(k)
and the actual output y(k), expressed as e∗(k) = ỹ(k) − y(k),
thus the dynamic characteristics of the sliding mode surface
can be deduced as:

s(k + 1) = e∗(k + 1) + λ

k+1∑
i=1

Te∗(i) (10)

1ueq(k) =
φ̂(k)

φ̂2(k) + σ
(ỹ(k + 1) − ŷs(k) − (2

+ Ks)es(k) + es(k − 1) −
e∗(k)
1 + λT

) (11)

where 1ueq(k) stands for equivalent control law and σ > 0.
The switching control acts on the arrival phase and con-

sists of the output 1up(k) of the predictive controller, i.e.,
1usw(k) = 1up(k), so that the total control action is
expressed as: The equivalent control acts on the sliding phase
of the SMC, and according to the relation 1s(k + 1) =

s(k + 1) − s(k) = 0 satisfied on the sliding mode surface,
it is possible to find the corresponding equivalent control.

1u(k) = 1ueq(k) +1up(k) (12)

where1u(k) is the sliding mode predictive controller output.
Substituting (11), (12) into (10), the sliding mode surface

state dynamics can be expressed as:

s(k + 1) = (1 + λT )(ỹ(k + 1) − ŷs(k) − (2 + Ks)es(k)

+ es(k − 1) −1up(k)φ̂(k) −
φ̂2(k)

φ̂2(k) + σ

× (ỹ(k + 1) − ŷs(k) − (2 + Ks)es(k)

+ es(k − 1) −
e∗(k)
1 + λT

)) + s(k) − e∗(k)

= s(k) − (1 + λT )φ̂(k)1up(k) +
(1 + λT )

φ̂2(k) + σ

× σ j(k) (13)

where j(k) denotes the error disturbance term, it is defined as:

j(k) = ỹ(k + 1) −
ỹ(k)

1 + λT
−
λT ŷs(k)
1 + λT

− (2 + Ks

−
1

1 + λT
)es(k) + es(k − 1)

B. SLIDING MODE PREDICTIVE CONTROL
Here, the idea of predictive control is introduced to predict
the future sliding surface state, and (13) is regarded as the
first step prediction of the sliding surface, then the future Nth
step prediction of the sliding surface state is:

s(k + N ) = s(k) − (1 + λT )(φ̂(k)1up(k) + φ̂(k + 1)

×1up(k + 1) + . . .+ φ̂(k + N − 1)

×1up(k + N − 1)) + (1 + λT )

× (
σ j(k)

φ̂2(k) + σ
+

σ j(k + 1)

φ̂2(k + 1) + σ
+ . . .

+
σ j(k + N − 1)

φ̂2(k + N − 1) + σ
) (14)

From (13) and (14), define the predictive control function:

sa(k) = 3s(k) −21ua(k − 1) + ϒJ (k − 1) (15)

where the vector expressions of sa(k) and1ua(k−1) take the
form:

sa(k) =
[
s(k + 1) s(k + 2) · · · s(k + N )

]T
1ua(k − 1) =


1up(k)

1up(k + 1)
...

1up(k + N − 1)


J (k − 1) =

[
j(k) j(k + 1) · · · j(k + N − 1)

]T
where Λ, 2, and ϒ are defined as coefficients of each com-
ponent s(k),1ua(k−1), and J (k−1) of the predictive control
function sa(k).
3 denotes the N-dimensional column vector with all ele-

ments are 1, 2 is a lower triangular matrix consisting of
PPD estimates at each moment, which directly reflects the
causality of the system in time, i.e., the input at the last
moment has no effect on the output of the sliding mode state
at the former moment, and the sliding mode state at the past
moment depends only on the control input at the last moment
and is independent of the control input at the future moment,
in the following format:

2 = (1 + λT )


φ̂(k) 0 . . . 0
φ̂(k) φ̂(k + 1) . . . 0
...

...
. . .

...

φ̂(k) φ̂(k + 1) . . . φ̂(k + N − 1)
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Similarly, ϒ has the lower triangular matrix format:

ϒ =



σ (1 + λT )

φ̂2(k) + σ
0 . . . 0

σ (1 + λT )

φ̂2(k) + σ

σ (1 + λT )

φ̂2(k + 1) + σ
. . . 0

...
...

. . .
...

σ (1 + λT )

φ̂2(k) + σ

σ (1 + λT )

φ̂2(k + 1) + σ
. . .

σ (1 + λT )

φ̂2(k + N − 1) + σ


Assuming that the prediction time domain and the control

time domain are the same, define a cost function for the
minimization operation using sa(k) and ua(k − 1) from the
prediction function (15):

F =sa(k)T sa(k) +1ua(k − 1)TRu1ua(k − 1)

s.t. 1umin ≤ 1up(k) ≤ 1umax
umin ≤ up(k) ≤ umax (16)

where Ru is the diagonal matrix to constrain the control
action1ua(k − 1), and umax , umin,1umax , and1umin denote
the upper and lower bounds of the control action and its
incremental change, respectively. The MFASPC problem can
be formulated as an optimization problem in which the input
signal is determined in N steps to make s(k) converge to the
sliding surface by considering the control constraints.

Expressing the constraints in vector form, we have:

0ua(k − 2) + 011ua(k − 1) ≤ uamax
−(0ua(k − 2) + 011ua(k − 1)) ≤ −uamin

1ua(k − 1) ≤ 1uamax
−1ua(k − 1) ≤ −1uamin

where uamax , u
a
min, 1u

a
max and 1u

a
min are column vectors with

all elements of umax , uamin, 1umax and 1uamin, respectively.
The coefficient 0 denotes the N-dimensional column vector
with all elements are 1, and the coefficients 01 denote the
lower triangular matrix consisting of unit matrices. It can be
expressed as follows:

51ua(k − 1) ≤ � (17)

where the coefficients of 1ua(k − 1) are:

5 =


01

−01
I

−I

 � =


−0ua(k − 1) + uamax
0ua(k − 1) − uamin

1umax
−1uamin


The predictive control aims to find the optimal control

vector 1up(k) under certain constraints.

min
1upc(k|k),...,1upc(k+N−1|k)

F(k) =

N∑
m=1

s(k + m|k)2

+ µ

N∑
m=1

1u2pc(k + m− 1|k) (18)

For minimizing the objective function with constraints, the
Lagrangian expression is set as:

minF =sa(k)T sa(k) +1ua(k − 1)TRu
×1ua(k − 1) + µT (51ua(k − 1) −�) (19)

where µ is the Lagrangian multiplier, it is observed that
subject to the constraint (17), (18) has the same result as the
cost function.

Since the future disturbance value J(k-1) and the PPD
matrix 2 are unknown, j(k) and φ̂(k) are always chosen to
estimate the unknown part after k moment:

Ĵ (k − 1) =
[
j(k) j(k) · · · j(k)

]T
2̂(k) = (1 + λT )


φ̂(k) 0 . . . 0
φ̂(k) φ̂(k) . . . 0
...

...
. . .

...

φ̂(k) φ̂(k) . . . φ̂(k)


For obtaining the extreme value solution in the prediction

time domain, from the first derivative of the cost function (16)
for the vectors 1up(k), then the optimal control problems in
the prediction range are:

1u∗
p(k) = − (0T12̂

T 2̂01 + Ru)−1(5Tµ∗
+ 0T1

× (−2̂)T (s(k) + ϒ Ĵ (k − 1)) (20)

where µ∗ is the optimal value of the Lagrange multiplier,
which can be given by the partial derivative of (16) relative to
the vector µ.

Choose the first element of 1u∗
p(k).

1up(k) = − δ(0T12̂
T 2̂01 + Ru)−1(5Tµ∗

+ 0T1(−2̂)T (s(k) + ϒ Ĵ (k − 1)) (21)

where δ = [1, 0, . . . , 0].
Thus, combining (11), (12), (21), the total control action

can be stated as:

u(k) = u(k − 1) +
φ̂(k)

φ̂2(k) + σ
(ỹ(k + 1) − ŷs(k)

− (2 + Ks)es(k) + es(k − 1) −
e∗(k)
1 + λT

)

− δ(0T12̂
T 2̂01 + Ru)−1(5Tµ∗

+ 0T1

× (−2̂)T (s(k) + ϒ Ĵ (k − 1)) (22)

Remark 3: Sliding mode predictive control is based on
the rolling optimization of the data model and the state of
the sliding mode surface function, solving the optimization
problem in the finite time domain at each sampling moment
k. The first element of the solution acts on the control system,
making it possible to correct various distortion and error
problems effectively and timely in the actual control process.
Remark 4: The control scheme (22) contains input-based

feedforward, observation error-based feedforward compen-
sation, and sliding mode state-based feedback compensation
with explicit and active handling of control and control incre-
ment constraints.
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C. STABILITY ANALYSIS
Theorem: The nonlinear system (1) is controlled by the
MFASPC scheme (22), and the tracking error converges to the

bounded region by limk→∞ |e∗(k)| ≤
ζ1+

√
ζ 2+4ζ0ζ2

2ζ0λT
, where

ζ0 is given as ζ0 ≤
φ̂2(k)(φ̂2(k)+σ )
(φ̂2(k)+σ )2

, ζ1 is defined as:

ζ1 =
2σ 3(1 + λT )

(φ̂2(k) + σ )3
j(k) (23)

ζ2 is denoted as:

ζ2 = (
σ 2(1 + λT )

(φ̂2(k) + σ )2
j(k))2 (24)

Proof: The MFASPC designed above is based on the
data model. The PPD estimates are an essential part of
the data model, so analyzing the boundedness of the PPD
estimates is imperative. By subtracting (5) from φ(k − 1),
the dynamic properties of the PPD estimation error can be
obtained:

φ̄(k + 1) = (1 −
21u2(k)

1u2(k) + χ
)φ̄(k) (25)

Consider the Lyapunov function:

V1(k) = αse2s (k) + βφ φ̄
2(k) (26)

where αs > 0,βφ . Substituting in (4)(25) to (26), we get:

1V1(k + 1) = αs((1 − Ks)2 − 1)e2s (k) + 2αs(1 − Ks)

×1u(k)φ̄(k)es(k) − (
4βφχ

(1u2(k) + χ )2

− αs)1u2(k)φ̄2(k)

≤ (αs((1 − Ks)2 − 1) + α2s )e
2
s (k)

− (
4βφχ

(1u2(k) + χ )2
− αs − (1 − Ks)2)

×1u2(k)φ̄2(k) (27)

where αs((1−Ks)2 − 1) < 0. If the appropriate αs, βφ , χ are
chosen such that:

αs((1 − Ks)2 − 1) + α2s < 0
4βφχ

(1u2(k) + χ )2
− αs − (1 − Ks)2 > 0

Then 1V1(k + 1) ≤ 0, when k → ∞, 1V1(k) → 0. This
means that limk→∞ es(k) = 0 and φ̄(k) is bounded. Since
φ(k) is bounded, so φ̂(k) is bounded.

By defining the Lyapunov function as V2(k) = s2(k), the
variation of the Lyapunov function of the discrete system can
be obtained as

1V2(k + 1) = s2(k + 1) − s2(k) (28)

For simplicity, assuming no control action and constraint
penalty, i.e., µ∗

= Ru = 0, the arrival condition of the sliding

die surface can be derived as:

s(k + 1) + s(k) =
σ 2(1 + λT )

(φ̂2(k) + σ )2
j(k) +

φ̂2(k) + 2σ

φ̂2(k) + σ
s(k)

s(k + 1) − s(k) =
σ 2(1 + λT )

(φ̂2(k) + σ )2
j(k) −

φ̂2(k)

φ̂2(k) + σ
s(k)

(29)

Combining (29) and (28), we get:

1V (k + 1) = −
φ̂2(k)(φ̂2(k) + σ )

(φ̂2(k) + σ )2
s2(k) +

2σ 3(1 + λT )

(φ̂2(k) + σ )3

j(k)s(k) + (
σ 2(1 + λT )

(φ̂2(k) + σ )2
j(k))2

≤ − ζ0s2(k) + ζ1s(k) + ζ2 (30)

when s(k) > (ζ1 +

√
ζ 21 + 4ζ0ζ2)/(2ζ0), there is1V (k) < 0,

so the sliding mode function s(k) is bounded, that is, there

exists ξs = (ζ1(k) +

√
ζ 21 (k) + 4ζ0ζ1(k))/(2ζ0), such that:

lim
k→∞

|s(k)| ≤ ξs (31)

According to the definition of integral sliding surface (9),
the relationship between the sliding surface and the tracking
error can be obtained:

e∗(k + 1) =
e∗(k)
1 + λT

+
s(k + 1) − s(k)

1 + λT
Taking absolute values on both sides has:

|e∗(k + 1)| ≤ |
e∗(k)
1 + λT

| + |
s(k + 1)
1 + λT

| + |
s(k)

1 + λT
|

≤ |
e∗(1)

(1 + λT )k
| + |

2ξs(1 −
1

(1+λT )k )

λT

Since λ > 0,T > 0, then 0 < 1
1+λT < 1, we can get:

lim
k→∞

e∗(k) =
2ξs
λT

(32)

Together with (17), the following result can be introduced:

lim
k→∞

|e∗(k)| ≤

ζ1(k) +

√
ζ 21 (k) + 4ζ0(k)ζ2(k)

ζ0(k)λT
(33)

The general idea of the above control scheme is shown in
Fig.1. As shown in Fig.1, the execution of the algorithm is
divided into five phases: Initialization, Follow up the work
point, Equivalent dynamic linearization, Controller design,
and Control execution. As indicated by the red arrow, when
the fifth step is finished, it is necessary to determine whether
the work point is finished, and it will continue with phases
two to five until the work point. If not, stages two through
five will continue until the end of the work point.

The control block diagram is shown in Fig.2. It can be
seen that the whole control scheme consists of two parts,
the CFDL stage, and the sliding mode predictive controller
stage, respectively. The first stage requires the estimation of
PPD and data model using the designed observer. The second
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FIGURE 1. Implementation process of the proposed algorithm.

FIGURE 2. Control block diagram of the proposed algorithm.

stage is based on the data model established in the previous
stage. The model predictive control takes the sliding mode
state as input, optimizes the sliding mode state, and combines
the equivalent control to form the total control input of the
discrete-time nonlinear system.

IV. SIMULATION
In this section, we will conduct two simulation experiments,
including numerical simulation in a general sense and PV
system simulation. It is worth mentioning that althoughmath-
ematical models are listed in both experiments, they are only
used to generate output and input data, and the controller
design does not rely on the listed models.

A. NUMERICAL SIMULATION
The following nonlinear systems exist:

y(k + 1) = sin(y(k)) + u(k)(5 + cos(y(k)u(k))); (34)

The tracking track is set to:

ỹ(k)

= 1 + 0.2(sin(2kπ/50) + sin(2kπ/150) + sin(2kπ/200))

(35)

The working point is set to [0,1000], and the parameters
of the proposed controller are set as u(1) = u(2) = 0,

FIGURE 3. Output performance under different control scheme.

y(1) = y(2) = 0, Ks = 0.8, σ = 0.02, χ = 80, λ = 1.8,
T = 0.02, ψ̂(1) = 13, ς = 0.0001, Ny = Nu = 12,
Ru = 0.01. For comparison with the conventional MFAC
and CFDL-DITSMC [28] respectively, the parameters of the
conventional MFAC are set as:µ = 0.5, η = 0.3, ρ =

0.6, η = 0.3; the parameters of CFDL-DITSMC are set as
:µ = 0.5, η = 0.3, λs = 0.0002, µ = 0.5, λ1 = 0.3,
λ2 = 025, α = 5/7, ω = 0.01, δ = 3. The simulation
results are shown in Figs.3-6, representing, in turn, the output,
input, PPD estimation, and error performance of the system
(34) under three different control schemes. Among them,
the error performance of Fig.6 is the absolute value of the
error, which reflects the magnitude of the offset produced
between the zero errors. In the simulation, the red dashed
line characterizes the performance of the proposed scheme.
In contrast, the dark blue dashed line and the light blue solid
line indicate the control performance curves under CFDL-
DITSMC and MFAC methods. It can be seen that the sys-
tem can achieve the tracking task of the desired trajectory
with the controller MFAC, CFDL-DITSMC, and MFASPC.
Nevertheless, they differ slightly in specific tracking details,
with MFAC having the most intense transient performance,
larger overshoot, larger steady-state error, and large PPD vari-
ation. The control effect of CFDL-DITSMC is significantly
stronger than the former, as reflected in the output signal,
input signal, PPD, and tracking error, but is accompanied by
a more pronounced signal oscillation phenomenon, which is
related to the switching control term in the traditional sliding
mode control, while the MFASPC proposed in this paper
shows a better tracking effect, with smaller overshoot and
tracking error, good tracking speed and control accuracy.
Select evaluation indicators MeanSquaredError(MSE)

and Root Mean Squared Error(RMSE), where MSE =

1
N

∑N
k=1 e

∗(k)2 and RMSE =

√
1
N

∑N
k=1 e

∗(k)2, N = 1000,
and calculate the MSE and RMSE under the three controllers
in the above simulation experiments. As shown in Table 1,
it is clear that the proposed MFASPC method has supe-
rior tracking performance compared to MFA-DITSMC and
MFAC.
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FIGURE 4. Input performance under different control scheme.

FIGURE 5. PPD estimation under different control scheme.

FIGURE 6. Error performance under different control scheme.

TABLE 1. Comparison between three controller.

Remark 5: The signal oscillation phenomenon is common
in sliding mode control applications. In order to suppress the
influence of disturbances, a coefficient more significant than
the bounded disturbance will be selected as the switching

FIGURE 7. Output performance under disturbance.

term in the switching function; that is, based on the worst
perturbation given by the estimated value, the flexibility is
poor, especially in discrete-time nonlinear systems oscillation
phenomenon is more apparent. The proposedmethod uses the
rolling optimization principle to select the first control input
of the control sequence generated by each sampling point
instead of the original switching control to ensure accurate
tracking along the tracking trajectory.

If interference input is added, the new input becomes:

u′(k) = u(k) + 0.01sin(2kπ/20) (36)

Again using the above three controllers with constant
parameters, the corresponding output performance, input
performance, incremental input performance, and error per-
formance are shown in Figs.7-10. It is observed that the
performance of the controllers is all affected when there are
external disturbance inputs, among which theMFACwith the
light blue solid line has the most significant impact, and the
CFDL-DITSMC with dark blue dashed line has some ability
to suppress the interference. However, the phenomenon of
signal oscillation still exists, which is reflected in both output,
input, input increment, and error performance. The MFASPC
(solid red line) proposed in this paper predicts the optimal
control for the next step in advance and uses it for the arrival
stage control with some compensation for disturbances, mak-
ing it better than the previous two controllers in terms of
tracking effect.

B. PHOTOVOLTAIC POWER GENERATION SYSTEM
Photovoltaic power generation system is a commonly used
device for converting solar energy into electrical energy,
which achieves energy conversion through the photo-
voltaic effect and improves the penetration of clean energy.
Photovoltaic modules or photovoltaic arrays composed of
photovoltaic cells meet the demand for different power. How-
ever, the output characteristics (power-voltage characteris-
tics, current-voltage characteristics) are susceptible to the
influence of external temperature, light intensity, and other
factors and have strong nonlinearity. Using the PV cell model
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FIGURE 8. Input performance under disturbance.

FIGURE 9. Input increment under disturbance.

FIGURE 10. Error performance under disturbance.

from the literature [30].

I = Ipv − Id [exp(
U + (ns/np)IRs

nsW
) − 1] −

U + (ns/np)IRs
(ns/np)Rp

Ipv = np(Isc_STC + ki1T )
S

SSTC
Id = np

Isc_STC + ki1T

exp( ns(Uoc_STC+kv1T )
nsUT

) − 1]

(37)

FIGURE 11. PV output characteristic curve.

where I and U are the PV cell output current and voltage,
Ipv and Id represent the photogenerated current, and parallel
diode current,Rp,Rs, np and ns denote the resistance values of
the parallel and series resistors and the corresponding num-
bers, respectively. Let the temperature and light amplitude
under standard test conditions be defined as T = 25◦C ,S =

1000W/m2, then parameters with suffix STC such as SSTC
denote standard light 1000W/m2. At the same time, Isc_STC ,
Uoc_STC refer to the short-circuit current and open-circuit
voltage under standard conditions, W =

aKT
q , are defined

by electron charge q, Boltzmann constant K, temperature T,
and diode ideality factor a, ki,kv are the current temperature
coefficient and voltage temperature coefficient. The specific
parameter values are the same as in the literature [30].

Usually, under the same light and temperature conditions,
the output power will peak with the voltage increase, which
we call the maximum power point. Once the external con-
ditions change, the maximum power point will also change,
exhibiting a robust non-linear characteristic. Take three dif-
ferent irradiances and temperatures, for example, the standard
condition S = 1000W/m2,T = 25◦C and the non-standard
condition I S = 800W/m2,T = 15◦C , the non-standard con-
dition II S = 600W/m2,T = 20◦C , their output character-
istics are shown in Fig.11, where the dashed line indicates
the standard condition, and the solid red line and solid blue
line characterize the non-standard conditions I and II, respec-
tively. The upper half represents the power versus voltage
curve, and the lower half represents the current versus voltage
curve. It is clear that each condition has one and only one
maximum power point and is different from each other. Solar
power will be fully utilized if the PV array always operates at
the maximum power point. However, the continuous temper-
ature or light amplitude changes make tracking the maximum
power point very difficult. In order to make the PV array
always work at the maximum power point, this paper uses
the input and output data generated by the PV cell model(37),
adjusts the on/off of the insulated gate bipolar transistor by
changing the duty cycle of the input signal of the boost
chopper circuit, and uses the sum of the instantaneous rates of
change of conductance and conductivity as the output signal
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FIGURE 12. Output power under different control scheme.

FIGURE 13. Voltage characteristics under different control scheme.

to construct an observer-based data-driven model-free sliding
mode predictive controller to realize the maximum power
point is tracked in real-time. The parameters of the proposed
control scheme are set asKs = 0.8, T = 1e−6, ψ̂(1) = 0.02,
σ = 0.02, χ = 80, λ = 1.8, ς = 0.0001, Ny = Nu = 12,
Ru = 0.01. To verify the validity of the proposed, the tradi-
tional maximum power point tracking method of perturbation
observation (P&O) [31] and conductivity increment method
(INC) [32] are introduced for comparative analysis.

The output power, voltage, and current characteristic
curves are shown in Figs.12-14 using three maximum power
point trackingmethods under the same external light and tem-
perature variation conditions. In Fig.12, when the external
environment is under the non-standard condition I, the pro-
posed method represented by the solid red line can track the
maximum power point quickly, accompanied by the minor
power loss, and the INC method represented by the light blue
solid line is slightly better than the P&O method represented
by the dark blue dotted line in terms of tracking speed, but the
INC method has more oscillations near the maximum power
point, and The accuracy is poor. When the external envi-
ronment changes to non-standard condition II, the maximum
power point changes according to the output characteristics of
the PV cell. All three methods can track the maximum power
point, but the proposed method completes the tracking task

FIGURE 14. Current characteristics under different control scheme.

first and avoids unnecessary power waste. At the same time,
P&O and INC affect the tracking speed and accuracy because
they have to compare the sampled data constantly. The same
tracking advantage is reflected in Fig.13 and Fig.14.

V. CONCLUSION
This paper proposes a data-drivenmodel-free adaptive sliding
mode predictive control strategy for discrete-time nonlinear
systems based on the adaptive observer. This approach relies
on adaptive observers to estimate PPD and output, then builds
a compact form data model related only to the input and
output data. Based on this, rolling optimization is integrated
throughout the design of the discrete integral sliding-mode
controller to form a novel data-driven sliding-mode predictive
controller, which is theoretically verified to be consistently
stable in the Lyapunov sense, and the superior tracking con-
trol capability is verified through numerical simulations and
PV system simulations.

Compared with existing studies, the proposed method is
simple, flexible, dynamically updated, and has few design
parameters, which is a novel exploration in the framework
of observer-based model-free adaptive control theory. In the
future, we will carry out research in terms of how to reduce
the computational burden.
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