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Abstract—Hybrid electric vehicles (HEVs) rely on energy man-
agement strategies (EMSs) to achieve optimal fuel economy. How-
ever, both model- and learning-based EMSs have their respective
limitations which negatively affect their performances in online ap-
plications. This article presents a computationally efficient adaptive
dynamic programming (ADP) approach that can not only rapidly
calculate optimal control actions but also iteratively update the
approximated value function (AVF) according to the actual fuel and
electricity consumption with limited computation resources. Ex-
ploiting the AVF, the engine on/off switch and torque split problems
are solved by one-step lookahead approximation and Pontryagin’s
minimum principle (PMP), respectively. To raise the training speed
and reduce the memory space, the tabular value function (VF) is
approximated by carefully selected piecewise polynomials via the
parametric approximation. The advantages of the proposed EMS
are threefold and verified by processor-in-the-loop (PIL) Monte
Carlo simulations. First, the fuel efficiency of the proposed EMS is
higher than that of an adaptive PMP and close to the theoretical
optimum. Second, the new method can adapt to the changed driving
conditions after a small number of learning iterations and thus has
higher fuel efficiency than a non-adaptive dynamic programming
(DP) controller. Third, the computation efficiencies of the proposed
AVF and a tabular VF are compared. The concise data structure
of the AVF enables faster convergence and saves at least 70% of
onboard memory space without obviously increasing the average
CPU utilization.

Index Terms—Hybrid electric vehicle, Energy management
strategy, Adaptive dynamic programming, Approximated value
function.

I. INTRODUCTION

THE urgent demand to reduce energy consumption and
exhaust emission dramatically expedites vehicular elec-

trification in contemporary society [1], [2]. Among various
new-energy vehicles, the hybrid electric vehicle (HEV), charac-
terized by an extra onboard electric energy storage (EES), e.g., a
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battery pack or a supercapacitor (SC), along with the traditional
fuel tank on its powertrain, has shown fascinating advantages
over its counterparts. Thanks to the electric motor (EM), the
internal combustion engine (ICE) can either operate within its
high-efficiency range or be switched off to save fuel. Hence,
the HEV can achieve better fuel economy than the conventional
fuel-powered vehicle and has less concern about range anxiety
than the pure electric vehicle [3]. However, the dual onboard
energy sources add an extra degree of freedom to the powertrain
and thus require an appropriate energy management strategy
(EMS) to flexibly assign torque demands to the fuel and elec-
tric paths for minimal fuel consumption without violating any
system requirement [4], [5].

The published EMSs over past decades can be broadly
classified into three groups, namely rule-based, optimization-
based, and learning-based strategies [6], [7]. Rule-based EMSs,
including thermostat (on/off) [8], power follower [9], state
machine [10] and fuzzy logic strategy [11], have merits
in component variability and system robustness. However,
since predefined rules are extracted from heuristic infer-
ence and/or human expertise rather than rigorous optimiza-
tion, these EMSs can hardly ensure close-to-optimal per-
formances or even that all system constraints can be well
satisfied.

Based on predefined optimization objectives and system con-
straints, optimization-based strategies search for optimal or
suboptimal solutions by different approaches. Depending on
the reliance on future driving information, they can be fur-
ther divided into global and real-time optimization EMSs. The
former subgroup, containing deterministic dynamic program-
ming (DDP) [12], [13], genetic algorithm (GA) [14], simu-
lated annealing (SA) [15], and particle swarm optimization
(PSO) [16], usually cannot be directly applied to online appli-
cations due to the dependency on complete driving informa-
tion as well as the enormous computation intensity. Benefiting
from the rapid solving process, the latter subgroup, includ-
ing Pontryagin’s minimum principle (PMP) [17], equivalent
consumption minimization strategy (ECMS) [18], and model
predictive control (MPC) [19], can be utilized in online appli-
cations and has obtained favorable results. The performances
of optimization-based EMSs, however, are not robust if ve-
hicle models significantly deviate from real powertrain fea-
tures or the predicted information fails to reflect actual driving
scenarios.
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To improve the robustness, a slew of learning-based EMSs
have been studied recently, such as supervised learning [20],
unsupervised learning [21], reinforcement learning (RL) [22],
deep reinforcement learning (DRL) [23], and so forth. At each
time step, they select a set of control actions and then up-
date control strategies according to the real-time feedback and
the accumulated historical information. Therefore, after ade-
quate training in simulation and actual driving environment, they
can achieve a competitive performance very close to the opti-
mum. Nevertheless, current learning-based EMSs still have sev-
eral bottlenecks. For instance, the basic Q-learning method [24]
represents Q functions as high-dimensional tables, which in-
cur truncation errors to the control performance and require a
large amount of onboard memory space. Approximating the Q
table by a deep neural network (DNN), the deep Q-network
(DQN)-based EMS [25] can effectively overcome the “curse of
dimensionality” but can only output actions with discrete values.
The deep deterministic policy gradient (DDPG) method [26]
enables control actions in continuous spaces, but relies on four
independent neural networks (NNs) and one replay buffer of
large size to store historical experience. Such a complicated ar-
chitecture brings in massive storage occupation and burdensome
computation intensity in online applications. Moreover, almost
all learning-based EMSs suffer low convergences rates, and their
performances are highly dependent on the training database.

Among all aforementioned EMSs, DDP is regarded as the
most effective method to realize the global optimum and has
been extensively investigated. Since DDP is an offline method,
a lot of online dynamic programming (DP) methods have been
investigated in recent years [27]. Instead of requiring a precise
driving cycle in advance, stochastic DP (SDP) [28] adopts a
statistical model to predict future driving information and gen-
erates a stationary optimal control policy. The time-invariant
and state feedback properties enable SDP to run rapidly online.
However, its multi-dimensional control map is usually memory
intensive and limits its prevalence. Adaptive DP (ADP)1 [30]
is another alternative, in which the explicit value function (VF)
and state transitions are approximated by NNs. ADP can attain
a comparable performance as DDP and significantly save the
onboard memory, whereas the extra computation overhead for
updating NNs is nontrivial in online applications.

In addition to the torque split between the fuel and electric
paths, the ICE on/off switch is crucial for fuel economy, es-
pecially for parallel HEVs, whose wheel speeds are directly
coupled with ICE spinning speeds. Due to the binary prop-
erty, optimizing the ICE on/off switch together with the torque
split simultaneously is time-consuming in online control. Con-
sequently, the majority of research works ignore this binary
variable or use heuristic rules to calculate it with ease [31]. The
PMP method is utilized to regulate the real-time ICE status but
cannot avoid rapid switches [32]. The DDP method is able to
solve the optimal ICE switch problem with a receding horizon,
but the computation load is too large [33].

1Adaptive DP is sometimes also called approximate DP since they both
employ adaptive critic designs [29].

In summary, the complex nonlinearity and non-convexity of
the HEV powertrain impose enormous challenges on the devel-
opment of advanced online EMSs. To the best of our knowledge,
the majority of current research concentrates on whether the
numeric results attained by a newly developed EMS are better
than those by the benchmark methods, while little attention
has been paid to how much computation resource an EMS
will occupy and whether it can be implemented as a real-time
controller on vehicular onboard processors.

To address these challenges, this article presents a computa-
tionally efficient adaptive dynamic programming (ADP)-based
EMS for a parallel HEV to improve its fuel economy. The pro-
posed online EMS contains three interactive modules, namely
powertrain mode selection, torque split control, and adaptive
learning algorithm. With the aid of VF, the total equivalent fuel
consumption in the remaining driving can be forecasted, and the
optimal ICE on/off switch determined. If the ICE is switched on,
PMP is employed to calculate the torque allocations on ICE and
EM. For a close-to-optimal solution with efficient execution in
real-time, the Hamiltonian is formulated as a constraint quadratic
programming problem, and the costate of PMP is derived from
the VF. To avoid the “curse of dimensionality”, the tabular
VF of explicit values is replaced by the approximated value
function (AVF) of piecewise polynomials. The AVF parameters
are initialized by the optimal VF obtained from offline DDP and
then iteratively updated during online usage to overcome the
deviation between the model and reality.

Processor-in-the-loop (PIL) simulations based on a low-cost
microprocessor have been performed on two different driving
routes to verify the following three primary advantages of
the proposed ADP method. First, the ADP method achieves
a close-to-optimal fuel efficiency, more than 97% of that by
offline DDP and at least 5% better than that of an adaptive PMP
(APMP). There is no frequent ICE on/off switch during driving,
and the final state of charge (SOC) of the SC is close to its
initial value. Second, this method can quickly improve itself
by adapting to real driving conditions through online learning.
The adaptation addresses both model errors and the deviation
between prior knowledge and real driving conditions. Thus, it
achieves higher fuel efficiency than a non-adaptive DP method.
Third, this method adopts a much more compact data structure
to represent the AVF than the DDP method directly using tabular
VF. Hence, it enjoys a higher learning speed and saves at least
70% of onboard flash memory.

The main contributions that distinguish this article from pre-
vious studies are summarized below.

1) Owing to the nonlinear and discrete dynamics of HEV
powertrains, existing ADP-based EMSs approximate the
VF by complex NNs to ensure the numeric accuracy,
whereas NNs require long learning time and large memory
spaces. Our method approximates the VF by piecewise
third-order polynomials to reduce the complexity. The
VF segmentation is determined by the optimal profile of
powertrain mode obtained from offline DDP. To ensure
optimality and accelerate the convergence speed, the pa-
rameters of piecewise polynomials are initialized by the
optimal VF from offline DDP.
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Fig. 1. Parallel HEV powertrain architecture.

2) Online decisions on ICE switch and ICE torque are often
calculated by mixed integer optimization or DDP for a
limited time horizon in the literature and are thus time-
consuming. Our approach constrains the ICE to operate at
the peak efficiency point when evaluating its on/off switch
command. Then, the ICE on/off switch control becomes
a binary problem and can be rapidly solved by one-step
lookahead with the AVF.

3) Unlike previous PMP methods that calculate the costate
by either heuristic rules or partial derivative equations, the
optimal costate in this article is estimated through the AVF
for a close-to-optimal solution. In addition, by simplifying
the ICE and EM models, the Hamiltonian is reformulated
as a convex constraint quadratic programming problem
that can be rapidly solved.

4) Only numeric results are discussed in the majority of
previous EMS studies, and a small number of researchers
merely exhibited the EMS execution time in simulations.
This article systematically investigates the computation
efficiency of the proposed EMS through PIL simulations,
which measure both numerical results and the time and
space complexities of the proposed EMS, including max-
imum/average CPU utilization and RAM/flash memory
consumption.

The rest of this article is organized as follows: Section II
establishes a control-oriented dynamical model of a parallel
HEV and its powertrain; Section III converts the HEV energy
management problem into a constrained-optimal control prob-
lem (OCP); Section IV elaborates the framework of ADP-based
EMS; Section V illustrates and discusses the PIL simulation
results; and lastly, Section VI draws the main conclusion and
raises the future work.

II. DYNAMICAL MODEL OF HEV AND POWERTRAIN

The HEV under investigation is a lightweight prototype and
has a parallel powertrain depicted in Fig. 1. It consists of
two independent propelling components: a petrol-driven ICE
and a brushless direct current (BLDC) motor powered by an
SC. During driving, the powertrain has two working modes,

TABLE I
ESSENTIAL PARAMETERS OF THE HEV

namely the electric mode when the ICE is off and the clutch is
disengaged, and the hybrid mode when the ICE is on and the
clutch is engaged. Essential parameters of this HEV are listed
in Table I. Since the optimization objective is the accumulated
energy consumption on a driving route, the quasi-static modeling
method is employed to analyze the dynamical characteristics of
each powertrain component. The fast dynamics, such as clutch
engage/disengage and ICE on/off switch, are neglected.

A. HEV Longitudinal Model

Suppose that the total driving time tf for a driving route is
uniformly divided into N steps with interval ts= tf/N . At the
kth step, k∈{0, 1, . . ., N−1}, the HEV longitudinal dynamics
can be described by,

ak=
1

δM

[
Tt,k

r
−1
2
Afcdv

2
k−Mg (cr cosαk+sinαk)

]
,

(1)

vk+1= vk + akts, (2)

where a, v, Tt, and α denote the HEV acceleration, speed,
net tractive torque on the driving wheel, and road slope angle,
respectively. They are assumed fixed within one step ts.

In the hybrid mode, Tt is supplied by both the ICE torque Tce

and the EM torque Tem, expressed by,

Tt,k = Rp

(
Tce,kRceηd + Tem,kRemη

sign(Tem,k)
d

)
. (3)

In the electric mode, (3) still holds with Tce,k equal to 0.

B. ICE Model

The transient fuel consumption by ICE during one step ts
contains two parts, one is the actual fuel consumption mce for
generating driving torque Tce, and another is the equivalent one
msw for powertrain mode switch by switching ICE on/off and
dis/engaging clutch. The first part, mce, is derived as,

mce,k = ṁce,kts, (4)
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Fig. 2. Actuator efficiency maps.

ṁce,k =
Pce,k

Qf
=

Tce,kωce,k

ηce(Tce,k, ωce,k) ·Qf
, (5)

ωce,k = vk
RpRce

r
, (6)

where ṁce is the transient fuel consumption rate in grams per
second (g/s), Pce is the power consumption by ICE, Qf is the
lower heating value of gasoline,ωce is the spinning speed of ICE
crankshaft after the clutch is engaged, and ηce denotes the ICE
net efficiency which is modeled as a 2D map with Tce and ωce

as inputs, shown in Fig. 2(a).
The general approach to obtain ηce is to perform interpolation

with Tce and ωce in the 2D map of meshgrid format. However,
this method will result in excessive computation and memory
overheads in real-time optimization. Thus, it is unsuitable for
developing computationally efficient EMSs. A common solution
is to approximate Pce of a given ωce as a second-order function
of Tce [34],

Pce,k = p2(ωce,k)T
2
ce,k + p1(ωce,k)Tce,k + p0(ωce,k), (7)

where p2, p1, p0 are fitting coefficients of a specific ωce. The
approximation results of several different ωce are plotted in
Fig. 3(a), and the normalized root mean square error (NRMSE)
between approximated efficiency values and real ones in the 2D
map is 2.68%.

For better fuel economy, the ICE is expected to operate in the
high-efficiency region. In this article, a narrow band of width
ΔT , around the peak efficiency line that is depicted by the red
curve in Fig. 2(a), is selected as the admissible ICE operating
range. Hence, the upper and lower bounds for Tce at a given ωce

are defined as,

Tmin
ce,k = T ◦ce(ωce,k)−ΔT/2, (8)

Tmax
ce,k = T ◦ce(ωce,k) + ΔT/2, (9)

Fig. 3. Power consumption approximation.

where the superscripts min and max refer to the upper and lower
bounds, T ◦ce denotes the ICE torque with peak efficiency.

The value of msw can be either m� if the powertrain mode
is switched at the current step or 0 if it does not occur. Since
the actual energy consumption for one mode switch varies a
lot under different operation conditions [35], for simplifica-
tion, m� is set as the average equivalent fuel consumption of
a large number of mode switches under different conditions.
The fast dynamics of ICE switch and clutch dis/engagement
are neglected in this quasi-static model since they have
negligible impact on the analysis of energy consumption. As-
sume that one switch can be fully carried out within one step
ts. If the current ICE on/off status is represented by a binary
variable sce∈{0, 1} (“1” means on concerning the hybrid mode
and “0” means off concerning the electric mode) and the ICE
on/off command by another binary variable uce∈{0, 1}, then
msw can be calculated by the followings,

msw,k =

{
0; sce,k = uce,k

m�; sce,k �= uce,k

, (10)

sce,k+1 = uce,k, (11)

sce,k = 0 ⇒ Tce,k = 0, (12)

sce,k = 1 ⇒ Tce,k ∈
[
Tmin
ce,k, T

max
ce,k

]
. (13)

C. EM and SC Models

The EM can work in either the actuator mode when Tem is
positive or the generator mode whenTem is negative. Its transient
electric power consumption Pem is calculated by,

Pem,k =
Tem,kωem,k

ηem (Tem,k, ωem,k)
sign(Tem,k)

, (14)

ωem,k = vk
RpRem

r
, (15)
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where ωem is the spinning speed of the EM rotor, and ηem is
the EM net efficiency dependent on Tem and ωem, shown by
Fig. 2(b).

An SC is selected as the onboard EES mainly due to its longer
life cycles and higher specific power than a battery pack [36].
The net power across the SC Psc is the combination of Pem

and Paux, i.e, the power to support other onboard auxiliary
devices. For simplification, Paux and the SC efficiency ηsc are
both treated as constants of their average values. Consequently,
the SC dynamics can be expressed by (16)–(19),

Psc,k =
Pem,k+Paux

η
sign(Pem,k+Paux)
sc

, (16)

V̇sc,k = − Psc,k

C · Vsc,k
, (17)

Vsc,k+1 = Vsc,k + V̇sc,kts, (18)

SOCk =
C

Qsc
Vsc,k. (19)

Thanks to the linear relationship between Vsc and SOC, Vsc is
employed to indicate the SOC level hereafter. Similar to the ICE
model, to improve the computation efficiency for calculating
Psc, Psc is also approximated as a second-order function of
Tem,

Psc,k = q2(ωem,k)T
2
em,k + q1(ωem,k)Tem,k + q0(ωem,k),

(20)
where q2, q1, and q0 are fitting coefficients associated to ωem.
The approximation results are plotted in Fig. 3(b), with the
NRMSE of 4.88%.

III. OPTIMAL CONTROL PROBLEM STATEMENT

The EMS objective for this parallel HEV is to optimally
regulate the powertrain mode and allocate torque demands to
the ICE and the EM so that the total fuel consumption over
a specified driving route can be minimized. Additionally, the
final SC voltage is expected to be no less than its initial value;
otherwise, the net electricity consumption over the whole driving
route will be converted into an equivalent fuel consumption for
recharging the SC afterward.

For evaluating EMS performances, standard driving cycles
that define time sequences of HEV speed, acceleration, and
road grade are typically used, e.g., Japan 10-15, New European
Driving Cycle (NEDC), Artemis Urban, and so forth [37].
However, all speed profiles in these cycles cannot properly
match road characteristics of the driving routes selected in this
article. The characteristics of a real driving route, including
explicit information on geometry, altitude, and driving distance,
significantly impact the HEV fuel economy.

The essential task of an optimal EMS is to find the optimal
speed trajectory for a specific HEV on a given route with
knowledge of the length-altitude profile to minimize the overall
fuel consumption under the constraints of safe speed, maximum
driving time, and actuator limits. This problem has been solved
by offline DDP with a distance-based state update model, in
which the HEV speed and accumulated driving time are set as

state variables, and the ICE and EM torques are two indepen-
dent control variables [38]. The optimized solutions contain a
distance-based speed trajectory, which is then converted into a
time-based one for online usage.

If the HEV can strictly follow the given speed profile, the
net tractive torque at each step can be calculated by (1), and
thereby the EM and ICE torques at that step must satisfy (3), (12),
and (13). Consequently, this energy minimization problem is
formulated as an optimal control problem (OCP) and expressed
below.

J(x0) =

N−1∑
k=0

[mce(xk,uk) +msw(xk,uk)] +mrc(xN ),

(21)
subject to (1)–(3), (10)–(13), (16)–(18) and the following,

mrc(xN ) =
C · (V 2

sc,0−V 2
sc,N

)
2ηrcQf

, (21a)

xk = [Vsc,k, sce,k]
T , (21b)

uk = [Tce,k, uce,k]
T , (21c)

x0 = [Vsc,0, 0]
T , (21d)

V min
sc ≤ Vsc,k ≤ V max

sc , (21e)

V min
sc,N ≤ Vsc,N ≤ V max

sc , (21f)

sce,N = 0, (21g)

Tmin
em (vk) ≤ Tem(k) ≤ Tmax

em (vk), (21h)

where mrc is the equivalent fuel consumption to recharge SC if
the final value of SC voltage Vsc,N is less than its initial value
Vsc,0; V min

sc,N is much higher than V min
sc and used as the lower

bound for Vsc,N to ensure the SC charge sustain. Note that sce
must be 0 at both the start and the end to prevent the ICE from low
operating efficiency at low-speed driving, and Tmin

em and Tmax
em are

variables determined by v due to the rigid connection between
the driving wheels and the EM rotor.

IV. ADP-BASED EMS DESIGN

The formulated OCP (21) is a mixed-integer nonlinear pro-
gram (MINLP) problem because it contains both continuous
and discrete variables in the state and control vectors. This
type of OCPs are generally difficult to be solved by existing
optimization solvers because of the huge exploration spaces
caused by control decisions at many time steps. A general
solution to these OCPs is DDP, which is applicable for complex
nonlinear and non-convex OCPs [39]. However, due to the “curse
of dimensionality”, DDP can hardly be directly implemented
online. Moreover, its solution is non-causal because it relies on
an accurate powertrain model and complete prior knowledge.

The key reason for the huge complexity of DDP is the explicit
representation of VFs as high-dimensional data arrays. To reduce
the space complexity without losing too much accuracy, explicit
VFs are usually approximated by DNNs, which are trained
through simulations and/or experimental data. Close-to-optimal
control decisions are derived from the trained DNN models of
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Fig. 4. ADP-based EMS framework.

AVFs. The training and control processes using DNNs are often
realized by ADP and DRL. Having less complexity and better
adaptivity than DDP, these DNN-based EMSs are widely applied
for online HEV energy management in recent years [22].

Nevertheless, DNN-based EMSs require lengthy training time
to obtain accurate DNN parameters for estimating optimal state
values before they can produce near-optimal control decisions.
When the OCP is complex and the DNN is large, the training
process becomes very tedious. In light of this, a computationally
efficient ADP-based EMS combining the strengths of DDP and
DRL is designed in this article. The reasons why this EMS is
named ADP are twofold. First and foremost, the AVF serves as
the foundation to calculate optimal control actions for the ICE
on/off switch and torque split. Second, the AVF is initialized by
optimized solutions of offline DDP for a fast convergence and a
robust performance.

Illustrated by Fig. 4, the complete ADP-based EMS frame-
work consists of offline and online parts. The offline part,
shown by the yellow block, performs DDP and parametric
approximation in sequence. The tabular VF is first generated
by DDP through solving the OCP (21). Before being sent to
the online part, it is approximated by piecewise polynomials
with the method elaborated in Subsection IV-A. The online
part, shown by the blue block, exploits the ADP approach to
calculate optimal control actions and then refines the AVF based
on real-time state feedback and fuel consumption. Since the
complex OCP (21) is computationally intractable in real-time,
it is decoupled into two sub-problems and solved by two control
modules sequentially. According to (11)-(13), Tce depends on
sce. Thus, the powertrain mode selection module determines the
optimal powertrain mode by one-step lookahead with the aid
of AVF and generates the correspondingly optimal ICE on/off
command u∗ce, using the strategy in (29). If the powertrain works
in the hybrid mode, the torque split control module employs
the value-based PMP algorithm to calculate optimal torque
demands on ICE and EM, T ∗ce and T ∗em. For a close-to-optimal

solution with rapid calculation, the Hamiltonian is simplified
to a constrained-quadratic programming problem in (33) and
the PMP costate is derived from the AVF by (32). During
online control, AVF parameters are iteratively updated by the
adaptive learning algorithm elaborated in Subsection IV-D ac-
cording to the real fuel and electricity consumption. Moreover,
to reduce the response time of control actions, the learning algo-
rithm is executed after all optimal control actions are determined
and sent to the actuator control, shown by the magenta block,
for subsequent operations.

A. Parametric Approximation of VFs

To solve the OCP (21) by DDP, all continuous variables,
including the state variable Vsc, the control action Tce, and the
free variable driving time t, have to be discretized. To mitigate
the performance degradation by truncation errors, relatively high
resolutions are preferred in the offline calculation. In this case,
the resolutions of Vsc, Tce and t are 0.1V, 0.05Nm and 0.5 s,
respectively. The formulated problem is solved by a generic
DP MATLAB function [40] and a tabular VF of three inputs
Y (Vsc, sce, t) is derived. Since sce is a binary variable, this 3D
look-up table is separated into two 2D ones with different sce
values, expressed as Yon(Vsc, t) and Yoff (Vsc, t).

Because of dense grids, the tabular Y (·) contains tens of thou-
sands of elements that will consume intractable memory space
on onboard processors. To decrease the memory demand, the
parametric approximation is adopted to convert tabular VFs into
parametric functions. Among various basis function sets, such as
polynomials, wavelets, radial basis functions, NNs, and so forth,
DNN is the primary candidate to approximate the (state-action)
VF in learning-based EMS, because it is sufficiently expressive
to represent complicated problems with multiple inputs/outputs
and/or non-convex properties [41]. However, the drawbacks of
employing DNNs are evident as well. To guarantee the approx-
imation accuracy, a DNN usually possesses a sophisticated ar-
chitecture and contains at least hundreds of activation functions
distributed over several hidden layers. As a consequence, it will
consume considerable onboard computation resources.

To save the computation resource without compromising the
numeric precision, a concise parametric approximation method
should be designed to approximate tabular VFs. Since the power-
train mode imposes a significant impact on VF evolutions, one
intuitive approach is to separate the entire Yon(·) and Yoff (·)
into several time-dependent sections according to the optimal
trajectory of powertrain mode s◦ce(t) from DDP. Hence, the
entire driving period t∈ [0, tf ] can be divided into a number
of time intervals with the constant powertrain mode. Suppose
the number of intervals of hybrid mode in one route is Nh,
and thereby that of electric mode is Ne = Nh + 1 because the
HEV must use the electric mode at the start and the end of
one route. Therefore, Yon(·) and Yoff (·) are both separated into
Nmd=Nh+Ne sections. Furthermore, denote the boundary of
each two adjacent sections by t◦1, t

◦
2, . . . , t

◦
Nmd−1 in sequence.

For convenience, 0 and tf are used to label the start of the first
section t◦0 and the end of the last section t◦Nmd

, respectively. For
any section with index n∈ [1, Nmd] and t∈ [t◦n−1, t◦n), Yon,n(·)
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TABLE II
AVERAGE NRMSE BY PIECEWISE POLYNOMIALS OF DIFFERENT ORDERS ON

SEVERAL TESTING ROUTES

and Yoff,n(·) are approximated as third order polynomials of
Vsc and t and expressed as,

Ỹon,n = wn
1V

3
sc+wn

2V
2
sc ·t+wn

3 Vsc ·t2+wn
4 t

3 + wn
5V

2
sc

+wn
6Vsc ·t+wn

7 t
2+wn

8Vsc+wn
9 t+wn

10, (22)

Ỹoff,n= wn
11V

3
sc+wn

12V
2
sc ·t+wn

13Vsc ·t2+wn
14t

3 + wn
15V

2
sc

+wn
16Vsc ·t+wn

17t
2+wn

18Vsc+wn
19t+wn

20, (23)

where wwwn=[wn
1 , w

n
2 , . . . , w

n
20] is the coefficient vector for the

nth section and obtained by surface fitting. All wwwn compose
a coefficient matrix WWW =[www1;www2; · · · ;wwwNmd ] of dimension
Nmd×20.

Hence, at the kth step, the value of a state Y (xk, tk) can
be approximated by a section of the piecewise cubic function
Ỹ (x, t|WWW ) with only 10 coefficients,

Y (xk, tk) ≈ Ỹ (xk, tk|WWW )

=

{
Ỹon,n (Vsc,k, tk|wwwn) ; sce,k=1

Ỹoff,n (Vsc,k, tk|wwwn) ; sce,k=0
, (24)

where

tk = k · ts ∈
[
t◦n−1, t

◦
n

)
. (25)

The NRMSE for this method is less than 2% on several differ-
ent driving routes, and relevant details concerning specific routes
adopted in this article are presented in Section V. Polynomials of
different orders have been tested. The results in Table II indicate
that polynomials of lower orders have larger NRMSE, while
those of higher orders cannot obviously decrease the NRMSE
but greatly increase computation loads.

B. Powertrain Mode Selection

With the aid of Y (·), the global OCP (21) can be converted
into a local one to solve real-time optimal control actions u∗k
based on xk. Following the Bellman equation [42], the total fuel
consumption to be minimized in the remaining route is described
as a one-step lookahead approximation,

Ỹ (xk,tk)=mce(xk,uk)+msw(xk,uk)+Ỹ (xk+1,tk+1), (26)

u∗k = argmin
uk

Ỹ (xk, tk), (27)

subject to the same constraints in OCP (21), where mce(·) and
msw(·) together constitute the instant cost, and Ỹ (xk+1, tk+1)
represents the approximated cost-to-go.

Although the OCP (27) is simplified to a large extent, it is still
an MINLP problem, and therefore solving it in real-time is still
computationally consuming for low-cost onboard processors.
Considering constraints (8), (9) and (13) that Tce can only vary

within a small range when sce equals to 1, we simplify the OCP
(27) by assuming,

T ∗ce,k = sce,k · T ◦ce(ωce,k). (28)

Thus, Tce is no longer an independent control variable but
determined by sce, and the only control variable left is uce, i.e.,
u=uce. Then, the OCP (27) becomes a binary optimization
problem and u∗ce can be rapidly determined by (29),

u∗ce,k=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1; Ỹ (xk, tk)
∣∣∣
uce,k=1

< Ỹ (xk, tk)
∣∣∣
uce,k=0

0; Ỹ (xk, tk)
∣∣∣
uce,k=1

> Ỹ (xk, tk)
∣∣∣
uce,k=0

sce,k; Ỹ (xk, tk)
∣∣∣
uce,k=1

= Ỹ (xk, tk)
∣∣∣
uce,k=0

. (29)

Note that the assumption (29) is only valid for solving u∗ce. The
explicit values ofT ∗ce andT ∗em will be calculated in the following
torque split control based on a known s∗ce.

C. Torque Split Control

The torque split control is responsible for splitting Tt into
Tce and Tem for optimal fuel economy. Its solution is directly
dependent on the transient powertrain mode, indicated by the
value of sce. If the powertrain works in the electric mode,
i.e., sce=0, then Tce must be 0, and Tt is solely satisfied by
Tem; otherwise, if it works in the hybrid mode, i.e., sce=1,
Tce is nonzero, and there are theoretically infinite admissible
combinations of Tce and Tem that can satisfy Tt. To efficiently
pick out the optimal pair ofT ∗ce andT ∗em, this torque split problem
is solved by PMP. For this purpose, the HamiltonianH is defined
as,

Hk = ṁce,k + λkV̇sc,k =
Pce,k

Qf
− λk

Psc,k

C ·Vsc,k
, (30)

T ∗ce,k = argmin
Tce,k

Hk, (31)

where λ is the costate of Vsc and is a scalar.
The optimal value of Tce highly relies on the trajectory of

optimal costate λ∗ [43], [38]. General methods to obtain this
trajectory must require full knowledge of future driving and
usually perform tedious searches and complex computations,
which are impractical for real-time applications with low-cost
microprocessors. Some APMP-based EMSs [44], [45] use the
deviation between the real and reference SOCs to calculate
suboptimal λ but cannot guarantee robust performances once
the driving conditions changed. Given the essential equivalence
between PMP and DP, λ∗ in PMP is equivalent to the derivative
of the optimal VF in DDP with respect to the state variable.
Consequently, λ∗ can be rapidly estimated by (32),

λ∗k ≈
∂Ỹon,n(Vsc,k, tk|wwwn)

∂Vsc,k
. (32)

Since the OCP (31) is a nonlinear programming problem, T ∗ce
has to be generally solved by a nonlinear programming solver.
Our solution is to simplifyH for higher computation efficiency.
Owing to the nonlinear item Temη

sign(Tem)
d in (3), Tem cannot

be easily substituted by a function of Tce. To tackle this issue, a
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reasonable assumption is introduced that Tem is positive when
T ◦ce(ωce)Rceηd is less than Tt; otherwise, Tem is negative. As a
result, H is transformed into a constrained-quadratic program-
ming problem and illustrated by,

Hk=

{
a1T

2
ce,k+b1Tce,k+c1; T ◦ce(ωce,k)<

Tt,k

RceRpηd

a2T
2
ce,k+b2Tce,k+c2; T ◦ce(ωce,k)≥ Tt,k

RceRpηd

, (33)

where

a1 =
p2
Qf
−λ∗k

q2R
2
ce

CR2
emVsc,k

, (33a)

b1 =
p1
Qf

+λ∗k
Rce

CVsc,k

(
2q2Tt,k

R2
emRpηd

+
q1

Rem

)
, (33b)

a2 =
p2
Qf
−λ∗k

q2R
2
ceη

4
d

CR2
emVsc,k

, (33c)

b2 =
p1
Qf

+λ∗k
Rce

CVsc,k

(
2q2Tt,kη

3
d

R2
emRp

+
q1η

2
d

Rem

)
. (33d)

The coefficients p2, p1, q2 and q1 are determined by ωce and
ωem. a1, b1, a2 and b2 are intermediate variables, and c1 and c2
are two constants independent of Tce.

Since H is converted into a convex quadratic programming
problem expressed by (33), T ∗ce can be solved efficiently, and
T ∗em solved by (3) thereafter.

D. Adaptive Learning Algorithm

The accuracy of Ỹon(·) and Ỹoff (·) from DDP solutions
highly relies on the accuracy of the HEV powertrain model and
driving information. However, inevitable model errors and un-
measured disturbances during driving degrade the effectiveness
of Ỹon(·) and Ỹoff (·). They will seriously worsen the HEV fuel
economy and even destruct vehicular drivability.

To overcome this issue, an adaptive learning algorithm is
designed and introduced into the online EMS framework to
iteratively update the coefficient matrix WWW according to the
feedback information from online implementation. In this way,
the iteratively improved AVFs will approach the optima suitable
to the actual vehicle dynamics and road conditions, and then sup-
port the control modules to generate real-time close-to-optimal
control actions.

More specially, temporal difference (TD) learning [46] is
applied to update WWW in this article. At time step tk+1, the HEV
transits from xk to xk+1 based on u∗k, and outputs running cost
mce,k and msw,k. According to (26), the estimated TD target
Ỹ ◦(·) at a state xk is expressed as,

Ỹ ◦(xk, tk|WWW ) = mce (xk,u
∗
k) +msw (xk,u

∗
k)

+ Ỹ (xk+1, tk+1|WWW ) , (34)

where u∗ can be obtained from the control modules elaborated
in Subsections IV-B and IV-C.

Since Ỹ ◦(·) gives an unbiased estimation for Ỹ (·) through
bootstrapping, the TD error between Ỹ ◦(·) and Ỹ (·) can be
expressed as,

e (xk, tk|WWW ) = Ỹ ◦ (xk, tk|WWW )− Ỹ (xk, tk|WWW ) . (35)

Fig. 5. Information interaction between EMS and HEV.

Afterward, we define the loss function based on an individual
sample as,

lk =
1

2
e2 (xk, tk|WWW ) . (36)

To efficiently eliminate the TD error and ensure the training
robustness with limited onboard computation resources, batch
gradient descent (BGD) [47] is employed to update WWW with a
batch K of maximum size N̄ samples sk={lk,xk} approx-
imated by the same coefficient vector wwwn. As described in
Subsection IV-A, according to the optimal trajectory s◦ce(t)
by DDP, the entire VFs Yon(·) and Yoff (·) are divided into
Nmd time-dependent sections with each one approximated by
an individual coefficient vector wwwn, n∈ [1, Nmd]. During each
sampling step tk, if the batch is not full, i.e., |K|<N̄ , and the
new sample sk is approximated based on the same wwwn to those
stored in K, the learning algorithm will not perform any update
onwwwn but only append sk intoK; otherwise,wwwn will be updated
immediately based on existing samples stored in K, and then K
will be reset to empty before a new sample sk is appended into
it. The coefficient update follows the rule of gradient descent.
Since the parametric approximation is realized by piecewise
polynomials, the gradient of the loss function Δk∈R20 of one
sample sk is calculated by,

Δk =
∂lk
∂wwwn

. (37)

Note that at each step tk, Ỹ (·) is expressed by either Ỹon,n(·)
or Ỹoff,n(·) depending on the value of sce,k. Thus, only half of
the entries inΔk are non-zero. Consequently, the corresponding
coefficient vector wwwn can be updated by accounting for all the
samples in K and expressed as,

wwwn ← wwwn − β
∑
k∈K

ΔΔΔk, (38)

where β denotes the learning rate in the update process.
The running process of this adaptive learning algorithm in one

episode is summarized by Algorithm 1 with the information in-
teraction with the control module and vehicular system depicted
in Fig. 5. In Algorithm 1, two variables, n and n′, are used to
identify the variation of time sections referring towwwn. When the
driving time tk reaches a new time section, n′ is updated in Line
4, which triggers the condition to update wwwn and clear K. After
that, the updated index n′ is assigned to n in Line 8, enabling
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Algorithm 1: Adaptive learning in one episode.

K to accumulate new samples from the new section referring to
wwwn′ .

V. PIL SIMULATION RESULTS

To manifest the superiority of the proposed ADP using
piecewise polynomial AVF in terms of fuel economy and
computation efficiency, three types of comparative studies
have been performed through PIL simulations based on a
portable microprocessor with limited computation resources.
First, the proposed method is compared with the optimal DDP
and an APMP controller to verify the optimality of the equiv-
alent fuel efficiency. Second, this method is compared with a
non-adaptive DP to highlight the significance of the adaptivity
in the actual driving environment, especially when the driving
conditions become aggravated. Third, this method using polyno-
mial AVF is compared with a similar ADP method using explicit
tabular VF to demonstrate the advantages of learning efficiency
and memory utilization.

A. Driving Routes

Two different driving routes are selected to test the real-time
performance of the ADP-based EMS, and the geographic in-
formation and corresponding speed profiles are elaborated by
Figs. 6 and 7, respectively. As briefly explained at the beginning
of Section III, the optimal speed profile is computed by the
distance-based DDP method elaborated in [38]. The first route,
named SEM16, is a short route of roughly 2240m and relatively
gentle because its slope angle is mostly within ±0.02 rad. Cor-
respondingly, its speed profile has small variations around the
average speed and its acceleration profile has small variations
around zero during the majority of the route except the starting
and stopping phases, as illustrated by Fig. 6(b). By contrast, the
second route is a section of public road in Stockholm and thereby
named STHLM. This route is 5200m long and contains many

Fig. 6. Driving information on route SEM16.

Fig. 7. Driving information on route STHLM.

steep uphills and downhills. Hence, both its speed and acceler-
ation profiles vary much more dramatically and frequently, as
illustrated in Fig. 7(b).

It is worth noting that there are two slope angle profiles
exhibited for each route. The real slope angle profiles for the
two driving routes are depicted by the red plots in Figs. 6(a)
and 7(a). The blue plots represent the low-fidelity estimations
of slope angles. To verify the effectiveness and optimality of
the proposed EMS, real profiles are utilized by the offline DDP
to find the theoretical optimum as a reference. By contrast,
low-fidelity estimations are utilized to design online EMSs,
including generating optimal speed profiles and initializing VFs,
while real profiles are adopted in the simulation environment
to test the adaptive learning ability of the ADP-based EMS.
Furthermore, the fuel efficiency attained by the proposed EMS
is compared with the optimum by DDP based on real profiles.

B. PIL Simulation Test Bench

To verify the online control performance and computation
efficiency of the proposed EMS, a test bench is established
to perform PIL simulations in which the designed EMS is
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Fig. 8. PIL simulation platform.

converted into C code and executed by a real processor, as shown
in Fig. 8. To demonstrate the advantages of the proposed EMS
in terms of computation efficiency, a portable microprocessor
STM32L476RGT62 (Arm Cortex-M4 MCU 80MHz with up to
1Mbyte flash memory and 128Kbyte of SRAM) is selected to
run the EMS in real-time. The complete system model, including
the HEV dynamics, actuator control and digital sensors, is built
up in MATLAB/Simulink3. At each step, the microprocessor
receives real-time state and cost feedback, including v, Vsc, mce

and msw, from the system model, and then sends out optimized
control actions, containing u∗ce, T ∗ce and T ∗em. The real-time
information interaction between the EMS and the system model
is realized by serial communication.

For a balance between the computation load and the control
performance, the sampling periods for the powertrain mode
selection and the adaptive learning algorithm are 1 s, and that
for the torque split control is 0.1 s. Besides, Vsc,0 is set as 48V ,
a value close to but lower than the upper bound. Hence, the SC
can be either discharged or recharged at the start of the route,
even if there is a sharp uphill or downhill.

To investigate the robustness and adaptivity of the proposed
EMS in complex working environments, the training process
is performed based on Monte Carlo simulations, in which var-
ious types of actuator disturbances, sensor noises as well as
system uncertainties are imposed on the HEV model. Detailed
information about Monte Carlo simulation is presented in [38].
Correspondingly, all results presented and summarized in the
following subsections are from PIL Monte Carlo simulations.
Moreover, our investigation finds that in addition to the road
slope angle, the rolling resistance and air drag coefficients play
important roles in HEV fuel consumption. On account of this,
to further investigate the adaptivity of the proposed EMS under
sudden variations of driving conditions, relevant EMSs will be
tested under more aggravated driving scenarios, where both
coefficients increase by 10%, but designed EMSs do not know
this fact.

C. Benchmark EMSs

To manifest the superiority of the proposed ADP method on
both control performance and computation efficiency, several
benchmark EMSs are developed and tested for comparison.

The first one is the optimal DDP, which can only run offline
on a backward quasi-static HEV model with complete prior

2https://www.st.com/en/microcontrollers-microprocessors/
stm32l476rg.html

3https://se.mathworks.com/products/simulink.html

knowledge, illustrated by the red plots in Figs. 6(a) and 7(a), and
give rise to an optimal solution for a specific scenario. Hence,
we only use its final result to evaluate the optimality of other
EMSs.

The second one is an APMP, where the costate is calculated by
a PID controller to regulate the error between the reference SOC
and the real-time SOC [44], and the ICE on/off commands are
determined by a thermostat controller [9]. The relevant formulas
are given below.

uce,k=

⎧⎪⎪⎨
⎪⎪⎩
1; Vsc,k≤V1 or T

max
em,k<

Tt,k

Remηd

0; Vsc,k≥V2 or T
min
em,k>

(Tt,k−Tmin
ce,k)ηd

Rem

sce,k; otherwise

,

(39)

λk = λ0 + kpΔVsc,k + ki

k∑
i=0

ΔVsc,i

+ kd (ΔVsc,k −ΔVsc,k−1) , (40)

ΔVsc,k = V ◦sc,k − Vsc,k, (41)

where V1 and V2 (V
min
sc <V1<V2<V max

sc ) are prescribed lower
and upper thresholds that divide the admissible range of Vsc

into 3 sections; λ0 reflects an initial guess to λ∗; kp, ki and
kd are proportional, integral and derivative gains of the PID
control, respectively; ΔVsc is the deviation between the current
SC voltage and the optimal one V ◦sc from offline DDP.

Illustrated by (39), the ICE should be switched on when Vsc

is lower than V1 or the EM cannot solely satisfy the torque
demand on the powertrain; on the contrary, the ICE should be
off when Vsc is higher than V2 or the EM cannot recuperate the
surplus torque on the powertrain if the ICE keeps on working;
otherwise, the ICE prefers to maintain its current on/off status.
All tunable parameters, including V1, V2, λ, kp, ki and kd are
carefully selected after a long-time calibration for a possibly
satisfactory performance.

The third one adopts exactly the same control method as
the proposed EMS but has no adaptive learning mechanism.
It is hence named NADP-based EMS. It is used to assess the
effectiveness of the adaptive learning algorithm as well as its
computation resource consumption in online applications.

The last one is an ADP-based EMS without performing the
parametric approximation, and thereby is named ADP-NPA. The
principle of this EMS is very similar to the proposed one, and
the essential difference is that real-time state values are acquired
by interpolation on tabular VFs. For this reason, its learning
algorithm totally differs from that of the proposed ADP-based
EMS. Testing results of this EMS aim to evaluate the significance
of the adopted parametric approximation method for ADP-based
EMS. Denote the value of state xk by Y (xk, tk). The TD target
Y ◦(·) is expressed as,

Y ◦(xk, tk) = mce (xk,u
∗
k) +msw (xk,u

∗
k)

+ Y (xk+1(xk,u
∗
k), tk+1) . (42)
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Fig. 9. VFs on driving route SEM16.

Then, the corresponding state value can be updated by the value
iteration algorithm,

Y (xk, tk)← (1−β)·Y (xk, tk) + β ·Y ◦(xk, tk). (43)

Note that the state variable Vsc is continuous, while Y (·) is a
discrete representation of the VF. As a result, any state value
not at the meshgrid of lookup tables is obtained by linear
interpolation, and only the nearest meshgrid point to the sample
will be updated by (43).

D. Results on Driving Route SEM16

All testing results on SEM16 by the proposed ADP-based
EMS and comparison methods are illustrated in Figs. 9–11,
and summarized in Table III. Figs. 9(a) and 9(b) show tabular
VFs initialized by offline DDP, which are utilized by ADP-NPA.
After the parametric approximation, the resulting AVFs, shown
in Figs. 9(c) and 9(d), are sent to ADP and NADP for online
usage. Fitting errors on all sampling points are shown in Figs.
9(e) and 9(f), with the NRMSE of only 1.59%. Due to the
large size, all data in tabular VFs have to be converted into the
single-precision floating-point type before being loaded into the

Fig. 10. PIL simulation results on driving route SEM16.

Fig. 11. ICE operation points on driving route SEM16.

TABLE III
RESULTS COMPARISON ON DRIVING ROUTE SEM16
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microprocessor, while other variables and parameters maintain
the double-precision type.

Recall that VFs for all online DP strategies are computed
based on low-fidelity estimations of road slope profiles, illus-
trated by the blue plots in Figs. 6(a) and 7(a), and only ADP
and ADP-NPA have online learning capability among all tested
EMSs. The learning capability can improve VFs during online
control. Fig. 10(a) shows that both ADP and ADP-NPA can
improve fuel efficiencies after a few training episodes, but ADP
converges only after 3 episodes while ADP-NPA requires at
least 15 episodes. The main reason is that ADP has much
fewer training parameters than the extraordinary large table
of ADP-NPA. Table III compares PIL simulation results of
four EMSs. The results for ADP and ADP-NPA are the ones
after the training completes. The best fuel efficiency by ADP
on this route reaches 192.7 km/L, only a little bit lower than
ADP-NPA of 193.0 km/L and very close to the optimal result
of 195.4 km/L by offline DDP. Thanks to its adaptivity, the
proposed ADP is 2.5% higher than NADP and 5% higher than
APMP in equivalent fuel efficiency, respectively. One essential
reason for the slightly worse fuel efficiency over ADP-NPA is
that, exhibited by Figs. 10(c) and 11, the ICE driven by ADP
works for 148 s in total, 13 s longer than that by ADP-NPA, even
though ICE operation points by two EMSs are concentrated
in the same region and the total powertrain mode switching
numbers are identical. From the aspect of charge sustainabil-
ity, depicted by Fig. 10(b), the proposed ADP outperforms
the other three because its net electricity consumption during
driving is negative, so the terminal penalty for compensation is
avoided.

On the real-time computation efficiency, APMP consumes the
least onboard computation resources in terms of RAM occupa-
tion and CPU utilization since it uses simple heuristic methods
to determine the ICE on/off switch and calculate the costate for
PMP, and does not have the learning algorithm. Nevertheless, its
flash memory occupation is slightly larger than that of ADP and
NADP because it requires the optimal SC voltage trajectory by
offline DDP as a reference. In contrast, owing to the introduction
of adaptive learning algorithm, ADP consumes more onboard
computation resources than NADP, but the growths in flash
memory occupation, RAM occupation, and average CPU uti-
lization are very limited, only 6Kbyte, 7.7Kbyte, and 0.18%,
respectively, indicating the high efficiency of learning algorithm.
Moreover, ADP has a great advantage over ADP-NPA in terms
of flash memory occupation without evidently increasing the
computation intensity. Thanks to the parametric approximation,
ADP does not have to save huge lookup tables and thereby saves
nearly 70% of onboard flash memory space. Since the learning
algorithm for updating a set of parameters is more complex than
that for updating several individual points, the RAM occupation
and average CPU utilization by ADP are higher than those by
ADP-NPA. Additionally, due to the batch usage, the learning
algorithm in ADP performs parameter updates only when the
batch is full or the powertrain mode is switched instead of at
each sampling period. Consequently, its maximum CPU uti-
lization is evidently higher than that of ADP-NPA. A batch of
larger size can improve the robustness of the learning algorithm

Fig. 12. PIL simulation results on driving route STHLM.

TABLE IV
RESULTS COMPARISON ON DRIVING ROUTE STHLM

and slightly increase the RAM occupation, but can drastically
raise the instant computation overhead, reflected as the surge
of maximum CPU utilization. Thus, the batch size should
be carefully selected based on the computing capability of the
selected onboard processor.

E. Results on Driving Route STHLM

Testing results on STHLM, presented by Figs. 12 and 13,
and Table IV, further reveal the strengths of the proposed ADP.
First of all, approximated results on VFs on this route are very
similar to those on route SEM16, with a smaller NRMSE of only
0.75%. Illustrated by Fig. 12(a), after training of 7 episodes, the
fuel efficiency by ADP promptly converges to a steady state of
182.1 km/L, reaching more than 97% of DDP of 186.5 km/L,
roughly 2.5% higher than that by NADP and 5.9% higher than
that by APMP. In contrast, ADP-NPA achieves a slightly higher
result of 182.9 km/L after an obviously longer training process
of more than 20 episodes. As exhibited by Fig. 12(c), ADP
utilizes the ICE for 337 s totally, almost identical to NADP,
13 s longer than that by APMP and 17 s shorter than that by
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Fig. 13. ICE operation points on driving route STHLM.

ADP-NPA. However, the number of powertrain mode switches
by ADP is the least, one couple less than that by ADP-NPA
and two couples less than those by APMP and NADP, implying
more robust operation on ICE and a longer ICE lifespan. Besides,
Fig. 13 illustrates sampled ICE operation points by each EMS.
Compared to DP-based EMSs, APMP distributes more points
outside the peak efficiency region (over 30%). Although none
of these EMSs can ensure the final SC voltage equal to its
initial value, the SC voltage driven by ADP can well recover
back to 47V at last, close to its initial value and better than its
counterparts.

The consumption of onboard computation resources by each
EMS on this route present a similar tendency to that on SEM16.
The proposed ADP enjoys a larger advantage because the longer
driving time increases the size of lookup tables used by ADP-
NPA. As a result, the flash memory occupation of ADP-NPA on
this longer route STHLM increases to 611.30Kbyte, more than
twice of that on the shorter route SEM16, whereas that of ADP
increases by only 50Kbyte mainly resulting from the longer
profiles of speed reference and terrain information. Admittedly,
the size of coefficient matrix for approximating state values in
this longer route will rise as the number of necessary powertrain
switches ascends. Nonetheless, this increment has a negligible
impact on the overall memory occupation since one more mode
switch will only introduce 20 extra coefficients. As described
in Subsection V-D, due to the complex computing process of
the learning algorithm, the RAM occupation and average CPU
utilization by ADP on this route are still higher than those by
APMP, ADP-NPA, and NADP. It is noteworthy that, the real-
time computation overheads by each EMS on these two routes

Fig. 14. Training process of adaptivity test.

TABLE V
ADAPTIVITY TEST RESULTS ON BOTH DRIVING ROUTES

are similar, manifesting the consistency of all these online EMSs
when applied to different driving tasks.

F. Adaptivity Test

To verify the adaptivity of the proposed ADP-based EMS
against sudden variations during driving, an extra adaptiv-
ity test is performed in which larger rolling and aerody-
namic resistances are imposed on the HEV. As aforemen-
tioned, only ADP and ADP-NPA have the adaptive learn-
ing mechanism. Hence, Fig. 14 illustrates the training pro-
cesses of ADP and ADP-NPA on both driving routes,
and Table V compares their after-training fuel efficien-
cies with those from APMP and NADP without learning
ability.

Fig. 14 shows that fuel efficiencies of ADP and ADP-NPA suf-
fer steep slumps immediately after driving conditions suddenly
worsen. Nonetheless, ADP can readily adapt to this variation
after 4 episodes on both routes owing to its small number of
AVF parameters. By contrast, ADP-NPA requires longer training
time to fully update its tabular VFs. Note that the fuel efficiency
cannot return to the high value before the environmental change,
because the increases in tire rolling friction and aerodynamic
drag inevitably deteriorate the fuel efficiency. Numeric results
in Table V summarize the significance of adaptive learning in
practice when the system model and prior knowledge cannot
accurately reflect actual driving scenarios. Due to the lack of
a learning mechanism, the performances of APMP and NADP
seriously degrade by around 10% on both routes. By comparison,
the decreases in fuel efficiency of ADP and ADP-NPA are very
limited after sufficient training, within 4% on SEM16 and 3.5%
on STHLM, respectively.
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VI. CONCLUSION AND FUTURE WORK

To minimize the fuel consumption of a parallel HEV, this ar-
ticle proposes a computationally efficient ADP-based EMS that
combines the strengths of existing model-based and learning-
based EMSs. On the one hand, by making use of AVFs initialized
by offline DDP and approximated as piecewise cubic polynomi-
als, the OCP containing ICE on/off switch and torque split can
be rapidly solved to fulfill the real-time requirement; on the other
hand, an adaptive learning algorithm is designed to iteratively
update AVFs according to the actual energy consumption in
real-time applications. PIL simulation results on two different
driving routes figure out that the proposed ADP-based EMS
can be efficiently executed by a portable microprocessor and
generate close-to-optimal fuel efficiency, at least 5% higher
than that by an APMP. Compared with two benchmark EMSs
without the learning mechanism and parametric approximation,
the proposed EMS fully exhibits the effectiveness of adaptive
learning algorithm and its superiority in terms of both mem-
ory occupation and training speed, especially in the long-time
driving route.

All EMSs studied in this article are based on an HEV with a
fixed powertrain configuration. However, it is well known that
the compelling fuel economy relies on not only the appropriate
EMS but also the proper powertrain configuration. In view
of this, the future research orientation will favor excavating
the potentiality of efficient cooperative optimization on both
powertrain component sizing and real-time energy management.
In this context, further improved fuel economy can be antici-
pated by virtue of advanced EMSs in the premise of the most
suitable component sizes according to the variations of driving
conditions and requirements in reality.
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