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HYDRO-3D: Hybrid Object Detection and Tracking
for Cooperative Perception Using 3D LiDAR

Zonglin Meng ¥, Xin Xia

Abstract—3D-LiDAR-based cooperative perception has been
generating significant interest for its ability to tackle challenges
such as occlusion, sparse point clouds, and out-of-range issues that
can be problematic for single-vehicle perception. Despite its effec-
tiveness in overcoming various challenges, cooperative perception’s
performance can still be affected by the aforementioned issues when
Connected Automated Vehicles (CAVs) operate at the edges of their
sensing range. Our proposed approach called HYDRO-3D aims to
improve object detection performance by explicitly incorporating
historical object tracking information. Specifically, HYDRO-3D
combines object detection features from a state-of-the-art object
detection algorithm (V2X-ViT) with historical information from
the object tracking algorithm to infer objects. Afterward, a novel
spatial-temporal 3D neural network performing global and local
manipulations of object-tracking historical data is applied to gen-
erate the feature map to enhance object detection. The proposed
HYDRO-3D method is comprehensively evaluated on the state-
of-the-art V2XSet. The qualitative and quantitative experiment
results demonstrate that the HYDRO-3D can effectively utilize
the object tracking information and achieve robust object detec-
tion performance. It outperforms the SOTA V2X-ViT by 3.7% in
AP@0.7 of object detection for CAVs and can also be generalized to
single-vehicle object detection with 4.5% improvement in AP@0.7.

Index Terms—Cooperative driving automation, cooperative
perception, object detection and tracking, LiDAR.

1. INTRODUCTION

OOPERATIVE driving automation (CDA), as standard-
C ized by SAE J3216 [1], aims at combining V2X commu-
nication and automated vehicles to enable real-time cooperation
between connected vehicles, road users, and infrastructure to
improve the safety, mobility, environmental sustainability, situ-
ational awareness, and operational efficiency of traffic flow [2],
[31, [4], [5]1, [6], [71, [8], [9], [10], [11], [12], [13]. Cooperative
object detection and tracking in cooperative perception is one
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of the most critical modules in the CDA platform [14], [15],
[16], [17], [18], [19], [20]. Similar to the single vehicles per-
ception [21], [22], the task of cooperative object detection and
tracking is to detect surrounding objects by sharing the sensor
information and provide the objects’ identity (ID), speed, and
orientation information for the ego vehicle to facilitate other
modules, including prediction, planning, and control [23], [24],
[25], [26], [27], [28], [29], [30]. 3D-LiDAR is a commonly used
advanced sensor in CAVs to perceive their surrounding envi-
ronment. Given its accurate 3D information, object detection
and tracking using LiDAR point clouds have attracted substan-
tial attention with the rapid development of automated driving
and CDA technologies [31], [32], [33], [34], [35]. However,
the occlusion, sparsity of point cloud, and out-of-range issues
are still constraining the performance of LiDAR-based object
detection and tracking, which are the main challenges to reliable
cooperative perception systems [36].

Based on 3D-LiDAR, the object detection and tracking
framework can be classified into two categories: tracking-by-
detection-based and joint-detection-tracking-based. In the ob-
ject tracking-by-detection-based approach, the objects in each
LiDAR frame are first detected as bounding boxes and then given
the detection results, the object tracking associates the objects
and estimates the trajectories of each object [37], [38] across
frames. The object detection results are generally obtained from
a deep neural network [39], [40], [41]. The widely used two-
stage detector PointRCNN [42], which takes the single point
cloud frame, generates the 3D bounding boxes proposal from
segmented foreground points at the first stage and then refines the
proposals at the second stage. SECOND [43] follows the Vox-
eINET [44] method to generate the point cloud feature for each
voxel and then utilizes the sparse convolution to speed up the
inference. Then, the object association in the tracking algorithm
is usually formulated as a bipartite matching problem to track
the detected objects. With the application of 3D LiDARs, [45]
propose a 3D intersection over union (IoU) metric for object
association. [46] calculates the association between detection
results and trajectories by using the Mahalanobis distance. [47]
matches the detection results with high-confidence score tra-
jectories and then matches the remaining detection results with
low-confidence score trajectories. [48] measures the association
by considering both the motion model and the appearance cost.
The results in [49], [50] show the state-of-the-art performance
under challenge scenarios [51], [52].

Although the tracking-by-detection framework has shown
good performance when the object detection module can detect
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objects normally, this framework treats object detection and
tracking as independent tasks and the performance of object
detection purely relies on the individual LiDAR frame because
no historical information from past LiDAR frames is considered.
Then, errors from falsely-detected or miss-detected objects due
to the occlusion, sparsity of point cloud, and out-of-range issues
will be propagated to the object tracking algorithm inevitably.
One of the approaches to address the occlusion, sparsity of
point cloud, and out-of-range issues is to leverage the shared
information from other CAVs in a cooperative perception frame-
work [14]. This kind of method just extends the sensing range
through the shared information from other vehicles. However,
at the boundary of the sensing range, the cooperative percep-
tion algorithm still suffers from the out-of-range issue and
the detected objects are not stable. Another feasible way is
to exploit the historical information from the object tracking
algorithm as the correctly tracked objects’ information contains
the geometry information such as size or shape, and kinematics,
i.e. trajectories, of the corresponding objects. Intuitively, these
pieces of prior information from object tracking will benefit
object detection even for occluded or faraway objects as the
detector may acquire clues from their historical trajectories to
make proper inferences.

Compared to the tracking-by-detection framework, the joint
object detection and tracking framework attempts to use short-
term historical information to address the drawbacks without
considering the historical information in the former framework
to some extent. The joint object detection and tracking frame-
work regards the object detection and tracking problem as an
end-to-end task by using deep neural network (DNN), which
generally takes the current LIDAR frame along with its adjacent
previous frame of the point cloud as inputs to a DNN to detect
and track the objects simultaneously [53], [54], [55], [56]. In
other words, this framework replaces the kinetic model with a
branch of the neural network to predict the movement of the
vehicles [53], [54]. However, this framework usually just takes
into account short-term historical information from only one
adjacent previous frame and is still sensitive to the occlusion,
sparsity of point cloud, and out-of-range issues, such as the
failure of association due to miss detection in the prior or current
frame. Fig. 1 shows the common problems of current object
detection issues. When a tracked object moves away from the
ego vehicle, the joint object detection and tracking algorithm can
generally track the vehicle when it is close to the ego vehicle but
as the vehicle drives further away, the difficulty and uncertainty
of the object detection increase, which likely results in problems
such as the varying size of bounding boxes, miss detection, and
erroneous detection. In [57], a comprehensive survey conducted
revealed that infrastructure-based sensors can further enhance
the object detection and tracking performance and in [58],
a heterogeneous cooperative perception method using LiDAR
point cloud data is proposed to fuse the deep feature for object
detection efficiently. Involving the infrastructure-based sensors
to some extent improve the object detection and tracking perfor-
mance in that challenging scenario but still can not resolve it. In
other words, joint object detection and tracking only considers
the consecutive two frames, and failure from any frame of
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(a) Previous frame

Fig. 1. Common problems of existing object detection frameworks. The green
and red bounding boxes are the ground truth and inference results [36]. The first
row shows object detection issues caused by point cloud sparsity and out-of-
range. Even though vehicle No. 114 is detected and tracked in the previous frame,
its bounding box varies significantly. Similarly, the vehicle No. 265 suffers from
occlusion issues as can be seen it is not detected in the current frame.

these two will lead to a fault in object detection and tracking
especially when the point cloud of the surrounding vehicle is
sparse. The limitations of the existing joint object detection and
tracking algorithm motivate us to design a framework that is
able to exploit longer-term historical information from the object
tracking algorithm to assist the object detection.

To this end, we propose the HYbrid object Detection
and tRacking for cOoperative perception framework named
HYDRO-3D in this article to incorporate long-term historical in-
formation when performing object detection to further improve
its resilience against the occlusion, sparsity of point cloud, and
out-of-range issues in complex scenarios such as congested and
out-of-range scenarios. What’s more, how the historical infor-
mation from the object tracking module benefits object detection
has not been explored in both the object tracking by detection
and joint object detection and tracking frameworks. Although
the existing joint tracking and detection framework seeks to
achieve both object detection and tracking functionality in only
one network, it is difficult to investigate the implicit relationship
between object detection and tracking. To answer this question,
the HYDRO-3D is proposed to leverage the tracked cues of the
objects to enhance object detection. The model explicitly forms
aclose loop between object detection and tracking, making them
assist each other. The proposed model first extracts features from
past tracked objects through a spatial-temporal pyramidal 3D
network to assist object detection. The extracted abstract track-
ing features and detection backbone features will be later fused
to infer objects in the LiDAR point cloud. After obtaining a set
of detected objects, the model-based object tracking algorithm
associates the detected objects, which are subsequently used
to infer the objects in the next frame. During our experiments,
not only can the bounding boxes of objects be predicted more
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Fig. 2.

Hybrid object detection and tracking for cooperative perception (HY DRO-3D) framework. The HYDRO-3D consists of object detection feature extraction,

object detection and tracking feature fusion, object tracking, and object tracking trajectory network (TTNET) modules. The PointPillar backbone [59] and
intermediate feature fusion network (transformer) are used to extract the object detection features [36]. The object detection and tracking feature fusion module
fuses these features and the object tracking features to predict objects as 3D bounding boxes. The object tracking algorithm will take the 3D bounding boxes and
use a Kalman filter and a Hungarian algorithm to update and associate objects and their trajectories. The object-tracking trajectory network extracts multi-scale

object-tracking features to enhance object detection.

accurately, but the number of erroneously detected objects is
dramatically reduced. To summarize, the contributions of this
work can be listed as follows:

e We propose HYDRO-3D, a novel cooperative object de-
tection and tracking framework. In this framework, the
historical object tracking information can be leveraged to
assist the inference for object detection as shown in Fig. 2.
Taking advantage of the objects’ historical information,
this framework will significantly improve object detection
performance with short-term occlusion and out-of-range
issues. In addition, the HYDRO-3D is a general object
detection and tracking framework to be applied to both the
cooperative perception and individual vehicle perceptions.

¢ In order to integrate global manipulations and low-level
local operations from object tracking into object detection,
we propose a spatial-temporal deep neural network shown
by the object tracking trajectory network module in Fig. 2
to process the historical object tracking information. Then,
we design a novel detection head to predict bounding boxes
by fusing the heterogeneous object detection and tracking
features.

® Based on the HYDRO-3D, we design a dedicated training
strategy to train the networks in the framework easily. We
further explicitly emphasize the benefits of incorporating
object tracking into object detection, which is verified via
comprehensive experiments and results.

The remainder of this article is organized as follows: Section II
introduces our HYDRO-3D design including the overall archi-
tecture, cooperative object detection feature extraction, object
detection and tracking feature fusion, the cooperative object
tracking algorithm and then, the novel spatial-temporal network.
Section Il briefly describes our experimental setup and the quan-
titative and qualitative performance of the proposed HYDRO-3D
for both single-vehicle and CAV scenarios. Section IV concludes
this article.

II. METHODOLOGY

In this section, the architecture of HYDRO-3D in Section II-A
is designed. Then, the object detection feature extraction is
presented in Section II-B. The object detection and tracking
feature fusion module is described in Section II-C. Next, the
object tracking algorithm is detailed in Section II-D. The spatial-
temporal neural network is detailed in Section II-E. The training
strategy for the HYDRO-3D is illustrated in Section II-F.

A. Overall Architecture

Fig. 2 overviews the framework of the HYDRO-3D, which
is comprised of object detection feature extraction, object de-
tection and tracking feature fusion, object tracking, and ob-
ject tracking trajectory network (TTNET) modules. The object
detection feature extraction consists of a point cloud object
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detection (PointPillar [59]) backbone and a transformer inter-
mediate feature fusion network to extract and fuse the object
detection features from the adjacent CAVs [36]. In the object
detection and tracking feature fusion module, the features from
the object detection backbone and the object tracking features
(historical information of the objects) are concatenated for the
object detection head. With the concatenated features, the object
detection head is able to generate 3D bounding boxes.

Upon obtaining the 3D bounding boxes for detected objects,
the object tracking algorithm is to associate detected objects
in the current frame with trajectories in the previous frames
and provides their identification (ID) based on the Kalman filter
algorithm [60] and the Hungarian method [61]. The main goal
of Kalman filter is to predict the motion of detected objects
based on their past tracklet and update the states of trajectories.
Then the predicted trajectories and detected boxes are asso-
ciated by the Hungarian method, which assigns the identity
to each object. In addition, to improve the object detection
performance with short-term occlusion and out-of-range issues,
the historical trajectories of the objects from the object tracking
module will be passed to the object tracking trajectory network
(the spatial-temporal pyramidal network) and the tracking fea-
tures will be obtained for object detection and tracking feature
fusion.

Remark 1: As shown in Fig. 2, the object detection and
tracking feature fusion and object tracking trajectory network
highlighted in purple blocks, which are the two main contribu-
tions of this work, make this architecture HYDRO-3D a close
loop from object detection and tracking feature fusion to object
tracking. The TTNET serves as the bridge which allows us to
leverage the historical objects’ information to improve the object
detection performance when fusing the object detection features
and object tracking features from the temporal manner. In other
words, through this close-loop framework, it is feasible to uti-
lize the historical information to further assist object detection
to address the occlusion, sparsity, and out-of-range issues for
LiDAR-based object detection.

B. Cooperative Object Detection Feature Extraction

The HYDRO-3D builds on our previous work V2X-ViT [36],
a state-of-the-art (SOTA) cooperative object detector. It iden-
tifies objects by using the shared feature-level information be-
tween smart infrastructure and CAVs. V2X-ViT first uses the
PointPillar [59] backbone to extract features from the LiDAR
point cloud in each agent and then utilizes the transformer to
fuse the features from multiple agents. Specifically, the Point-
Pillar backbone first calculates each pillar’s attribute and then
encodes pillars into pseudo images. Then the 2D convolution
architecture could extract the point cloud features, which serve
as the intermediate features for different agents. In order to
fuse the extracted intermediate features, V2X-ViT computes
two correlation scores, AT'T" and M SG, between these agents.
Given different agents 7 and j, the ATT first computes the
correlation scores between their intermediate features H,; and
H;. || represents the concatenation operation. Similar to tra-
ditional attention, m represents the number of heads, W,:’;y j
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and W™

query,j
matrix [62].

represent the Key and Query linear projector

K™(j) = Wi, - H; (1)
QM (1) = Wi, - H 2)

After computing the Key K" (j) and Query Q™ (i), we cal-
culate the attention score for each attention head head’y (7, 7).
Wo(s,5) is a linear projector matrix.

headipr (i, j) = (K™ () - Wep ™, @™@)) VT 3)

0(i,5)

me[1,h]

ATT(i,j)ZSOftmafB( | (head’lfn)(iaj)> (4)

Then, M SG is computed:

headyy g (i, j) = K™(5) - Hy - W ™M5¢ (5)
MSG(i,j) = || (heady;sa)(is]) (6)

me[l,h]

After computing the AT'T and the M SG scores, the intermedi-
ate feature H; can be reconstructed as:

H; =W,, - ATT(i,5) - MSG(i, ) Q)

With H;, V2X-ViT uses multi-scale window attention to
improve the long-range spatial interaction.

Although V2X-ViT has already tried to address the occlusion,
sparsity, and out-of-range issues of LiDAR point clouds by
extending the perception range using shared LIiDAR information
from other CAVs, the performance of the object detection may
still be compromised and the issue persists when the objects
exist at the boundary of the shared LiDAR point clouds. To
complement the performance of our research in V2X-ViT, we
explore leveraging the object tracking historical trajectories
information to enhance the object detection performance in-
stead of merely relying on the current frame of LiDAR point
clouds from different CAVs. As shown in Fig. 2, the object
detection and tracking feature fusion module takes the separately
extracted object detection and tracking features from the object
detection feature extraction module and TTNET, respectively,
and then fuses these separate features to infer the 3D bounding
boxes of objects. More specifically, the object detection and
tracking feature fusion module in HYDRO-3D further utilizes
the intermediate features from the transformer encoder and the
object tracking features from the TTNET to enhance object
detection. This object detection and tracking feature fusion will
be described in the subsequent Section II-C.

C. Object Detection and Tracking Feature Fusion (ODaTFF)

Asmentioned in Section II-A, to tackle the occlusion, sparsity,
and out-of-range issues of LiDAR-based object detection, we
propose to leverage the object tracking features in the historical
trajectories from the object tracking module to enhance the
object detection performance. To this end, the object detection
and tracking feature fusion module in HYDRO-3D will fuse
both the object detection and tracking features when perform-
ing inferences for predicting 3D bounding boxes of objects.
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Specifically, LiDAR point clouds and historical information can
be exploited by combining the internal representation of object
detection and tracking. As shown in Fig. 2, the object detection
and tracking feature fusion module performs the intermediate
fusion between the object detection and tracking feature maps.
The concatenation operation, which combines the two feature
tensors along their channel dimension, is used to fuse the two
feature maps from the object detection and tracking and maintain
their original features by (8). As shown in (9), the detection head
is a 2D fully-connected layer followed by an activation function
used to model the cross-module relations. The object tracking
features serve as supplementary information to the detection
head, which helps to detect distant and occluded objects with
sparse or few points. While the detection head read the object
detection features, the concatenation operation allows it to check
the object tracking features to ensure the existence of objects
from the historical trajectories and search for the geometric
feature of objects, such as the shape and orientation.

fconcat = H(fdetectionv ftracking) (8)
f = ¢(W : fconcat + b) (9)

where the || is the concatenation operation. The object detection
feature fyetection denotes the features from the cooperative ob-
ject detection feature extraction module and f,qckin g Tepresents
the object tracking feature extracted from the cooperative object
tracking module. W is the fully-connected layer. ¢ is a non-linear
activation function.

Remark 2: Tt should be noted that the concatenation method
used in this work is not unique and can be replaced by other dedi-
cated fusion methods such as self-attention [63] and multi-model
bilinear pooling [64], as long as they are capable to fuse the
different or heterogeneous features for object detection. In other
words, the focus of this work is to address the fusion problem
between object detection and object tracking features with an
appropriate algorithm, and thus, there may exist other better
fusion solutions other than the concatenation approach used
in this work and interested readers may try other alternatives.
More importantly and generally, although the concatenation
method itself is not a novel approach, the idea of fusing the
information in the current LiDAR frame with the historical
information from object tracking provides a new direction to
both the traditional object tracking by detection and joint object
detection and tracking frameworks.

D. Cooperative Object Tracking

After having the 3D bounding boxes of the objects from the
object detection and tracking feature fusion module, a classical
object tracking algorithm [45] in this subsection shown by the
top right block in Fig. 2 is applied to associate the objects across
different LIDAR frames to estimate the pose/trajectory of each
object and provide the identity information.

1) Trajectory Prediction and Association: With the detected
bounding boxes from the object detection and tracking feature
fusion module in Fig. 2, all valid matches between detected
bounding boxes D(t) and trajectory T'(t — 1) will need to
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be found, where ¢ denotes the corresponding timestamp. To
achieve this, a Kalman filter [65], [66] is applied to estimate
the trajectories T'(t — 1) of objects based on a constant velocity
kinematic vehicle model. This estimated spatial information of
trajectories combined with the information of detected objects,
i.e., 3D bounding boxes, will be used to calculate the affinity
matrix in the Hungarian algorithm to determine whether cur-
rently detected objects in D(t) can be matched to trajectories in
T(t — 1). Specifically, given a sequence of trajectories:

T~ 1) = {1, 105

o (10)

at frame ¢ — 1.5 is the index of the corresponding bounding
boxes. M;_; is the previous associated trajectories. A constant
velocity kinematic vehicle model in the Kalman filter is used to
predict the position of the object in each trajectory in T'(t — 1)
as follows:

T pred = Tl V5, (11)
Yl prea = Y11+ 0], (12)
2 pred = 21 TV, (13)

where (x,y, z) correspond to the center of the bounding box.
The final predicted trajectory is

J _
Tt,pred -

J J J J J
(xt,pred’ yt,pred7 Zt,pred7 0t717 Wi_1, (14)

Mol ) ()
where subscript pred means the variable is predicted by the
Kalman filter, (w, h,l) represents the width, height, and length
of the object, # is the heading angle of the object, and s is
the detection confidence score, which depends on the object
detection and tracking feature fusion module. The additional
variables (v, vy, v, ) in trajectories represent the object velocity
in x, y, and z directions.

After predicting the set of trajectories T'(¢) yyeq, the 3D Inter-
section of Union (IoU) is used to compute the data affinity matrix
A € RMe-1xNt to determine the similarity between predicted
trajectories and detected bounding boxes D(t), where each
element A; ; is the 3D loU for the predicted trajectory 7 and the
3D bounding box j at frame ¢. The affinity matrix will be solved
by the Hungarian algorithm, which considers the association
as a bipartite matching problem to associate the corresponding
objects.

2) State Update and Trajectory Management: After having
the predicted trajectories and association results from the Hun-
garian algorithm, the Kalman Filter [67] is used to update the
state of the predicted trajectory by considering the current detec-
tion objects and accounting for uncertainties from the detection
errors. Accordingly, we have:

/" = KF(T", Dy) (16)

where Df € D(t) and T;™ € T(t) are the associated pair
obtained from Hungarian algorithm, k € {1,2,...,N;}, m €
{1,2,...,M;}. The updated state of corresponding predicted
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The proposed spatial-temporal 3D network. The proposed TTNET is used to extract multi-scale object tracking features. Temporal feature extraction

utilizes different convolution blocks to temporally extract multi-scale object tracking trajectories features. Then spatial feature extraction generates multiple level
features. The information flow aggregates features from different levels to enhance both global and local feature extraction. Then the extracted object tracking
features will be concatenated with the object detection features to predict the 3D bounding boxes.

trajectory T} € T'(t) is a weighted average between the related
DF € D(t) and T/™ € T(t) [60].

Then, trajectory management will organize the new and old
trajectories. When an object starts to appear at frame ¢, it could
either be a false positive due to the detection error or it naturally
enters the field of view. Similarly, when an object starts to
disappear at frame t, it could either be a miss detection or it
naturally leaves the LiDAR range. Both scenarios are handled
by tracking objects in additional frames. Specifically, when D!
is an unmatched object entering the field of view, we will treat it
as a new trajectory if D! can be matched in the next few frames
to prevent adding false positive detection as a new trajectory.
When T} is an unmatched trajectory leaving the field of view,
we will treat it as a dead trajectory if 77 cannot be matched
with any detected bounding boxes in the next couple of frames
to prevent removing the true positive trajectory.

Remark 3: Itis worth mentioning that although the trajectory
management module in the object tracking algorithm will handle
the birth and death of the corresponding object, it still highly
relies on the performance of the object detection in particular in
the area where the occlusion, sparsity, and out-of-range issues
of LiDAR are severe. Better object detection around the area
mentioned above will make better object tracking results. This
motivates us to leverage the well-tracked objects’ historical
information to improve the performance of object detection
as the actual objects won’t appear and disappear immediately
but the falsely detected objects may make this appearance and
disappearance. If we can make full use the historical information
as a memory, the sudden appearance, and disappearance of
object detection can be avoided and therefore, the performance
of object detection will be improved. To this end, we propose
the object tracking trajectory network (TTNET) in the next
subsection.

E. Object Tracking Trajectory Network (TTNET)

In order to provide the historical tracking objects’ information
for the ODaTFF module in Fig. 2, we propose a TTNET in this
subsection. With this intention to provide linkage between the
past object tracking cues and current object detection simulta-
neously, we propose a 3D-spatial-temporal pyramidal network,
which propagates the global temporal information and local
spatial information in the object tracking to the object detection.
The temporal information records the historical movement paths
of objects, the varying distance to the ego vehicle, and the
number of occurrences of the same object, which is critical to
determine the existence of objects in the current frame. The
spatial information includes the 3D geometric information and
locations of objects, which is crucial to keep the invariant size
of the same object. Thus, the TTNET should perform both the
global spatial operations, which judge the existence of objects,
and the local spatial operations to transmit the geometric and
location information of the same objects.

As shown in Fig. 3, the TTNET could process the object
tracking cues at multi-scales through convolutional networks
of different sizes. The base of the TTNET performs global
operations through the large convolution blocks, which contain
high-level features, such as the existence of objects. Similarly,
the top of the TTNET generates low-level features through
several small convolution blocks including the shape and po-
sition information of objects. All the global and local features
will be further concatenated with the features obtained from
the cooperative object detection feature extraction module in
Fig. 2. Specifically, given the historical object tracking infor-
mation, we first convert the 3D bounding boxes and ID to the
anchor format. Then, we use a 3D convolutional neural network
(CNN) [68] to perform the 3D convolutions shown by Fig. 3
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over the spatial-temporal tracking anchor. As mentioned, the
problem of mapping historical object tracking cues to the current
detection involves both global and local manipulations. The
global operations are used to find the high-level properties, such
as the existence of objects, errors, or misses in the object tracking
information, while the low-level processing is needed for the
prediction of the specific position and orientation of objects.
More importantly, there should be an interaction between the
global and local modifications, as, for example, the existence
of objects is critical for the coordinate predictions of objects.
To address this issue, a novel 3D pyramidal CNN architecture,
which processes the anchor at different scales and combines the
learned global and local features together, allows the network to
capture good features of bounding box information at smaller
scales and performing mostly global anchor manipulations that
are working with noisy object tracking information.

Fig. 3 illustrates the detailed schematic representation of the
proposed deep learning architecture. The model has an inverted
pyramidal shape and processes the bounding boxes from the
object tracking algorithm at four different scales. The proposed
architecture has a number of blocks that processes feature maps
in parallel with 3D convolutions of different size, and the outputs
of the corresponding convolutions layers are then concatenated,
which allows the network to learn a more diverse set of features at
each level. Maxpooling and ReL.U activation function is applied
after each convolution operation.

After discussing the detailed architecture of TTNET, we
explain how TTNET leverages the tracking information to im-
prove object detection performance. The TTNET model acts
as a bridge between object detection and object tracking. The
generated object-tracking features work as supplementary in-
formation to the object detection head in ODaTFF. With these
features from TTNET, the detection head is able to judge the
existence of objects based on both the object detection feature
and the high-level object tracking feature, and at the same time
uses the low-level features to correct the size of objects. From the
perspective of feature map design, the feature maps generated by
TTNET are in the same format as the detection features, which
allows the object detection and tracking features of the same
objects can correspond to the nearby regions in the feature maps.
While performing the convolution operations, the detection head
is able to fetch the same object features from the object detection
and tracking feature maps. Thanks to prior knowledge provided
by object tracking, the detection head can better predict whether
the object exists, whether it will travel out of the perception
range, and the geometric information about objects.

Remark 4: Compared to traditional object tracking by de-
tection or joint-object-detection-tracking frameworks, it can be
seen that the proposed TTNET allows us to take the object
tracking information and generate the appropriate features as the
additional prior knowledge about the objects to further assist the
object detection. It differs from the object tracking-by-detection
framework by incorporating the historical objects’ information
into the object detection and also distinguishes itself from the
joint-object-detection-tracking framework in terms of two per-
spectives: 1) its capability to consider longer valuable historical
objects’ information when performing object detection; 2) the
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structure of the framework is straight forward and explainable
from the functionality perspective compared with the object
joint-detection-tracking framework. Benefiting from this clear
structure, the improvement of object detection caused by histor-
ical object tracking information can be explicitly identified.

F. HYDRO-3D Training Strategy

As shown in Fig. 2, in our HYDRO-3D, there are three
networks including object detection and tracking feature fusion,
object tracking trajectory network, and V2X-ViT. The complex-
ity of these three networks in our HYDRO-3D makes it difficult
to train the HYDRO-3D. To properly train the HYDRO-3D, we
adopted a dedicated training strategy instead of jointly training
all the CNN modules in the HYDRO-3D.

Since the main objective of cooperative object detection and
feature extraction is to extract corresponding features of objects
and this module is relatively independent, our overall training
logic is to separate the training of the cooperative object de-
tection feature extraction module and the TTNET and let the
detection head in ODaTFF make determinations based on the
extracted object detection and tracking features. We adopted this
strategy because first training overall HYDRO-3D will consume
a lot of GPU memory as the point cloud features from CAVs
occupy a lot of memories, putting the object tracking historical
information together would exceed the GPU memories with de-
sired batch size. Secondly, jointly training the cooperative object
detection feature extraction module and TTNET modules would
cause bias in object tracking features. During the training, when
the historical tracking data are accurate, simply jointly training
the HYDRO-3D from the scratch would cause the network to be-
lieve the object tracking features without obtaining satisfactory
object detection features from the point clouds. This is because
when the TTNET fetches accurate past tracking information,
the detection head tends to directly utilize the object track-
ing features instead of learning from both object tracking and
detection features. Therefore, the cooperative object detection
feature extraction and TTNET are trained separately to ensure
the corresponding features are well extracted. Then all the layers
in the cooperative object detection feature extraction module
are frozen and do not participate in the backpropagation. In the
meantime, the TTNET module and ODaTFF module start to
be trained. Finally, after training of cooperative object detection
feature extraction and TTNET, the overall HYDRO-3D is jointly
trained for a few more epochs. Such a training strategy not
only lets both the object detection and tracking features be well
extracted and not interfere with each other but also improves the
training efficiency.

Remark 5: It should be noticed that the main goal of our
training strategy is to extract well-trained features from each
distinctive input without causing much bias to one of the
features. Bear this in mind, such a training strategy can be
generalized to other large complex multi-modality fusion tasks
to extract the modality’s features without causing feature bias
problems when the network can fastly learn from one of the
features.
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III. EXPERIMENTS

In this section, we first describe our experimental setup in-
cluding datasets and implementation details. Then, we evaluate
the quantitative and qualitative performance of the proposed
HYDRO-3D on the LiDAR-based object detection tasks of CAV
applications.

A. The Dataset

The experiments are built on our previous work, the large-
scale cooperative perception dataset V2XSet [36], which is
collected by using CARLA [69] and OpenCDA [14]. The num-
ber of intelligent agents that can communicate with each other
ranges from two to seven across all sequences and could also
vary over time within one sequence. These scenes often contain
dense traffic, objects that are far away from the ego vehicle,
and other diverse traffic scenarios where occlusion, sparsity,
and out-of-range issues happen frequently and challenge object
detection. The majority of our data comes from eight default
towns provided by CARLA and we gather 55 representative
scenes covering 5 different roadway types including the straight
segment, curvy segment, midblock, entrance ramp, and inter-
section. The period of each scene is limited to 25 seconds. Each
time step of the scene contains a single LIDAR point cloud frame
and four RGB images. The training and validation split contains
6694 and 1920 LiDAR point cloud frames.

The LiDAR, global positioning system (GPS), and inertial
measurement unit (IMU) data from the dataset are used for
our experiments. The sensors are mounted on top of each CAV
and infrastructure. The equipped LiDAR on each CAV has 32
channels of lasers and the range of the lasers is 120 meters. At the
intersection, mid-block, and entrance, the infrastructure sensors
are installed on the light poles at a height of 14 feet. The point
clouds were recorded at 10 Hz and the corresponding GPS/IMU
data and timestamp were saved. The ground-truth data contains
the surrounding vehicle’s 3D bounding boxes and their unique
ID. More dataset details can be found in [36].

B. Implementation Details

To train the HYDRO-3D, information within 10 past object
tracking frames along with the current LiIDAR frame was used.
The object tracking information contains both accurate and in-
accurate information. The accurate information, which consists
of the accurate bounding boxes and ID information, was directly
obtained from the ground truth of V2XSet. The inaccurate
bounding box came from the V2X-ViT output and inaccurate IDs
were generated by the object tracking algorithm in Section II-D.
The model was implemented in PyTorch and was trained on
Nvidia V5000. Stochastic gradient descent with momentum [70]
is used to train the model with a batch size of 12, a dropout of
0.5, a momentum of 0.9, and a learning rate of 0.01. Networks
are trained for 80 epochs, and the learning rate is decayed by
a factor of 10 at epoch 60. We initialize the spatial-temporal
pyramid network with Kaiming initialization [71]. While for
the Flow stream, we use stacks of 10 interleaved horizontal and
vertical optical flow frames and use the kinetic model, provided
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Fig. 4. The correlation between the object detection performance improve-
ment and detection range. As the range increase, the object detection perfor-
mance increases for both connected automated vehicles (CAVs) and single-
vehicle.

by the authors of [41]. Both the V2X-ViT and our experiments
are done under the perfect setting.

C. Comprehensive Experimental Results

The HYDRO-3D is tested in the diverse scenes of the V2XSet
dataset and the quantitative performance is discussed in this
subsection. Table I shows the object detection comparisons
between HYDRO-3D and V2X-ViT [36] on the V2XSet val-
idation set. We report the results in the Average Precision [36]
under the different thresholds. As the Table I shows, with the
shared information from different CAVs, the object detection
performance exceeds the V2X-ViT by 3.7% in AP@0.7. The
performance improvement is positively correlated with the dis-
tance as shown in Fig. 4. When detecting objects at 40 - 60
meters, the detection performance has been increased by 5.6%
in AP@0.7. The performance at 20 - 40 meters increased by
5.3%, which is slightly lower than the long-range improvement
(40 - 60 meters). This is because when the vehicles are far
away from the ego vehicle, the performance of detection will be
impacted by the sparsity of the LiDAR point cloud. Compared
to the V2X-ViT, our method can better detect these vehicles
by leveraging the historical information of the tracked vehicles
through the TTNET. However, for objects within 0 - 20 meters,
there is no improvement. This is the advantage of using the
shared information to achieve cooperative object detection in the
original V2X-ViT because in this area, the point cloud is dense
and the occlusion issue can easily be resolved by using the shared
information to complement the point cloud of the ego vehicle.
This can also be seen from Fig. 4 that, the improvement of object
detection for single vehicle is higher than that of CAVs since
the shared information can be used to resolve the challenges
aforementioned to some extent.

As mentioned, because the shared information from other
CAVs can naturally resolve the occlusion, sparsity, and out-of-
range issues to some extent but the LIDAR-based single-vehicle
object detection is prone to these issues, to further investigate the
possible reasons for the variable improvement under different
perception ranges, we also tested the model on the single vehicle
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TABLE I
THE COMPARATIVE RESULTS OF OUR HYBRID OBJECT DETECTION AND TRACKING FOR COOPERATIVE PERCEPTION(HYDRO-3D) AND OTHER DETECTION
MODELS ON THE V2X VALIDATION SCENARIOS. AS THE COOPERATIVE OBJECT DETECTION ON CAVS USES SHARED INFORMATION TO DETECT THE OBJECTS, THE
SENSING RANGE CAN BE UP TO 100 M

CAV AP@0.7 AP@(.7 AP@0.7 AP@0.7 AP@0.7 AP@0.7
(Average) (0-20m) (20-40m) (40-60m) (60-80m) (80 - 100 m)
HYDRO-3D 75.0 97.3 84.7 64.8 47.9 26.3
V2X-ViT 71.3 97.3 79.4 59.2 41.4 194
AP@0.5 AP@0.5 AP@0.5 AP@0.5 AP@0.5 AP@0.5
(Average) (0-20m) (20-40m) (40-60m) (60-80m) (80 - 100 m)
HYDRO-3D  89.1 98.9 95.0 84.7 73.3 52.3
V2X-ViT 87.1 98.7 94.4 81.2 68.6 43.6
TABLE II

THE COMPARATIVE RESULTS OF OUR HYBRID OBJECT DETECTION AND TRACKING FOR COOPERATIVE PERCEPTION (HYDRO-3D) AND OTHER DETECTION
MODELS ON THE SINGLE-VEHICLE VALIDATION SCENARIOS. DUE TO THE SPARSITY ISSUE OF POINT CLOUD, THE RANGE OF THE SINGLE VEHICLE LIDAR-BASED
OBJECT DETECTION IS LIMITED TO ONLY 60 M

Sl vahak AP@0.7 AP@0.7 AP@0.7 AP@0.7
(Average) (0-20m) (20-40m) (40 - 60 m)
HYDRO-3D 58.1 77.2 56.7 49.6
V2X-ViT 53.6 74.9 50.8 434
AP@0.5 AP@0.5 AP@0.5 AP@0.5
(Average) (0-20m) (20-40m) (40 - 60 m)
HYDRO-3D 68.7 81.9 68.2 66.4
V2X-ViT 66.3 80.4 64.9 61.7

object detection and the results are listed in Table II. As demon-
strated in Table II, our HYDRO-3D outperforms the original
V2X-Vit by 5.9% in AP@0.7 for the single-vehicle detection
at 20 - 40 meters. Nevertheless, when the objects are close to
the ego vehicles at O - 20 meters, the performance of object
detection improves 2.3% which is different from that of the CAV
application. This is because although these detected objects are
close to the ego vehicle, they are likely to be occluded such
that V2X-Vit can not make proper inferences and the tracking
cues, which are generated by the TTNET, are incorporated in the
object detection and tracking feature fusion in HYDRO-3D and
still help to detect these objects. Therefore, our HYDRO-3D
framework is able to further enhance both cooperative object
detection and single-vehicle object detection in terms of tackling
occlusion, sparsity, and out-of-range issues.

Except for the quantitative performance of the HYDRO-3D
on the validation set, some visualization regarding the typical
scenarios is also provided to demonstrate how useful the his-
torical information of objects from the object tracking is to
assist object detection. The main advantages of leveraging object
tracking to enhance object detection are for long-distance object
detection and occluded object detection. First, as the first column
in Fig. 5 shows, the HYDRO-3D outperforms V2X-ViT in terms
of long-distance object detection because there is miss detection
in V2X-ViT but the HYDRO-3D can predict the bounding box
of the object normally. It is mainly because the vehicles that are
far away from the ego vehicle are preserved in object tracking
information, specifically, in the features generated by TTNET.
In addition, the object detection performance for occluded ve-
hicles can also be boosted by our HYDRO-3D as shown by
the 2nd-4th columns in Fig. 5. The point cloud representation

of these occluded vehicles is generally not complete/sufficient
and sometimes sparse and thus, the object detection of V2X-
ViT may fail. In our HYDRO-3D, the TTNET and ODaTFF
can utilize historical information to make inferences to predict
these occluded vehicles at the current LIDAR frame. What’s
more, the TTNET and ODaTFF in the HYDRO-3D can also
prevent false positive errors because, in reality, vehicles have
momentum and cannot suddenly appear or disappear. There-
fore, when the object detection algorithm detects objects that
suddenly appear in the current frame and don’t exist in the
features from TTNET, the ODaTFF has a low probability of
outputting such vehicles as detected objects. After fusing both
the object detection features and object tracking features, it
is likely for ODaTFF to remove these false positive detected
vehicles.

Therefore, in short, these comparisons between our HY DRO-
3D and V2X-ViT further confirm the TTNET and object de-
tection and tracking feature fusion modules using historical
object tracking information for object detection will enhance
the performance of long-distance object detection in particular
where the sparsity of point cloud dominates the performance of
object detection.

D. Ablation Study

To further investigate the effectiveness of leveraging the ob-
ject tracking algorithm in Section II-D to the detection per-
formance, we also replace the object tracking algorithm in
Fig. 2 with the ground truth object tracking results for TTNET.
Other modules Fig. 2 are the same. Then, the object detection
results with ground truth object tracking historical information
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a. out-of-range issue

b. out-of-range issue

Fig. 5.
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d. occlusion

¢. occlusion

The visualization of hybrid object detection and tracking for cooperative perception (HYDRO-3D). The first row gives the detection results of our

HYDRO-3D. The second row is the results from V2X-ViT. The green bounding boxes represent the ground truth of the objects and the red ones are predicted by
our HYDRO-3D and V2X-ViT. We compare the out-of-range and occlusion scenarios to illustrate our improvements.

TABLE III
THE PERFORMANCE OF THE HYBRID OBJECT DETECTION AND TRACKING FOR COOPERATIVE PERCEPTION ALGORITHM BASED ON THE ACCURATE OBJECT
TRACKING INFORMATION. NOTE THAT OUR NOISY SETTING IS DIFFERENT FROM THE V2X-VIT [36] PAPER

CAV AP@0.7 AP@0.7 AP@0.7 AP@0.7 AP@0.7 AP@0.7
(Average) (0-20m) (20-40m) (40-60m) (60-80m) (80 - 100 m)
Noisy 75.0 97.3 85.7 66.8 47.9 26.3
Perfect  75.7 97.3 85.9 67.6 49.0 27.7
AP@0.5 AP@0.5 AP@0.5 AP@0.5 AP@0.5 AP@0.5
(Average) (0-20m) (20-40m) (40-60m) (60-80m) (80 - 100 m)
Noisy 89.1 98.9 95.0 84.7 73.3 52.3
Perfect  89.9 98.9 95.3 85.3 74.3 52.5
TABLE IV

THE COMPARATIVE RESULTS OF OUR HYBRID OBJECT DETECTION AND TRACKING FOR COOPERATIVE PERCEPTION (HYDRO-3D) AND OTHER DETECTION
MODELS ON THE V2XSET DATASET. NOTE THAT OUR NOISY SETTING IS DIFFERENT FROM THE V2X-VIT [36] PAPER

Sl sEilsis AP@(.7 AP@0.7 AP@0.7 AP@0.7
(Average) (0-20m) (20-40m) (40 - 60 m)
Noisy 57.6 77.2 56.7 49.6
Perfect 58.5 77.2 56.9 50.5
AP@0.5 AP@0.5 AP@0.5 AP@0.5
(Average) (0-20m) (20-40m) (40 - 60 m)
Noisy 68.7 81.9 68.2 66.4
Perfect 69.9 81.9 68.7 68.1

in the loop can be gathered. The object detection results with
accurate object tracking information and inaccurate real object
tracking information are listed in Tables IIT and IV, respectively.
The “perfect” in the first column means that the HYDRO-3D
takes the ground truth of object tracking for the ODaTFF to
make inferences. The “noisy” represents the results taking the
output of the object tracking algorithm Fig. 2 as inaccurate
object tracking information. From Tables IV and III, we can
observe the influence of the performance of object tracking on
object detection: The more accurate object tracking results are,

the better object detection performance is for both cooperative
object detection in Table IV and single vehicle object detection
Table III. However, it is also worth mentioning that, although
having more accurate object-tracking information does result in
more accurate object detection in our HYDRO-3D, the improve-
ment is not that substantial. On another aspect, based on Table IV
Table III, it can be inferred that the object tracking algorithm
Fig. 2 is valid for our holistic framework of HYDRO-3D and
contribute to the performance improvement of object detection
through the TTNET and ODaTFF.
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IV. CONCLUSION

In this article, a novel hybrid object detection and tracking
for cooperative perception framework is presented to leverage
the object tracking historical information further enhance object
detection in areas where occlusion, sparsity, and out-of-range
issues affect object detection heavily. To achieve this, a spatial-
temporal pyramidal 3D network in the TTNET is designed to
generate the object tracking features. With these features, the
object detection feature and tracking feature fusion module is
put forward to fuse the current object detection features and the
historical object tracking features to make robust inferences of
objects. The following conclusions can be drawn based on the
comprehensive experimental results: 1) our HYDRO-3D is ca-
pable of incorporating the historical object tracking information
to assist object detection; 2) the object tracking information can
benefit the object detection for both cooperative object detection
for CAVs and object detection for the individual vehicle; 3)
better object tracking information in our HYDRO-3D frame-
work makes better object detection performance. In detail, our
HYDRO-3D has outperformed the SOTA V2X-ViT by 3.7% and
4.5% in AP@0.7 of object detection for CAV and single-vehicle,
respectively.
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