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ABSTRACT Simulating automotive functions that rely on interaction with other vehicles (e.g., perception-
based control or algorithms relying on inter-vehicular communication) created a demand for traffic simula-
tion in the automotive field as well. Large-scale traffic simulation can be used to generate long, synthetic
drive-cycles for EGO vehicles with realistic traffic. An EGO vehicle is defined as the vehicle the scenario
revolves around, presumably running a control algorithm to be tested. On the other hand, simulating an entire
district or city with thousands of vehicles present is superfluous and comes with a heavy computational
burden while only the vicinity of the EGO vehicle is relevant. On the other hand, major traffic patterns can
that could still influence the nearby traffic (e.g., traffic disruptions farther away) but can be simulated with
lesser accuracy. Thus, simulation accuracy far from the EGO vehicle can be traded for simulation speed. This
paper achieves this trade-off by co-simulating SUMO in microscopic and mesoscopic modes using Libsumo
API. Microsimulated traffic is continuously spawned in an EGO-centered sub-network based on traffic states
in the mesoscopic simulation. Simulation results in large urban scenarios suggest that the behavior of the
EGO vehicle in terms of velocity distribution, headway distribution, and lane changes accurately matches
pure microsimulation while simulation speed increased by 3 − 10 times. This result assumes linear time
complexity control algorithms with respect to the vehicle number and a single EGO vehicle. Reducing the
number of microsimulated vehicles with co-simulation yields even larger simulation speed gains for more
computationally complex algorithms. The aggregate (macroscopic) traffic parameters match for both the
micro-, meso-, and co-simulated cases. Thus coupling the two simulators does not distort the mesoscopic
simulation.

INDEX TERMS Co-simulation, traffic simulation, optimization, SUMO, Libsumo.

I. INTRODUCTION
A growing trend in traffic simulation is the creation of highly
detailed (microscopic) models from entire cities or regions,
e.g., [1], [2], [3], [4], and [5]. That is to support the testing and
development of ITS (Intelligent Transportation System) or
CCAM (Cooperative Connected Automated Mobility) algo-
rithms [6], [7], [8], to evaluate traffic bottlenecks [9] and rout-
ing [10], or to assess security aspects of V2V communication
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[11]. This paper focuses on the benefits of large-scale traffic
simulation for single-vehicle-focused testing.

Traditionally, the automotive industry focused on its own
product - the vehicle or a specific vehicle component. With
increasingly complex (Advanced Driver Assistance Systems,
ADAS) vehicle functions, this focus widened, and sensing
or communicating with surrounding traffic became more
important [12]. Additionally, this trend shows no signs of
slowing [13]. Along with this, testing of such functions
requires more and more complex, large-scale, and detailed
scenarios. Simulated large-scale traffic networks can serve
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as artificial proving grounds to generate long drive cycles
for vehicles to evaluate their performance. Traffic simu-
lation can provide realistic (calibrated) traffic flow pat-
terns, complex traffic situations, and driver behaviors around
the tested vehicle to accelerate the scenario-based testing
of highly automated vehicles [14]. Moreover, exploiting
the stochastic nature of traffic simulation, many vari-
ants of the same test can be carried out. Meanwhile,
if necessary, simulation scenarios can be reproduced pre-
cisely by setting a fixed random seed for the traffic flow
simulation.

A vast array of applications can benefit from large-scale
traffic simulation-based testing: evaluating missions or
energy consumption of a vehicle in a simulated environ-
ment [15]. Similarly, energy-based navigation of vehicles
[16] or GLOSA algorithms [17] require large-scale traf-
fic scenarios to test comprehensively. Considering such
scenarios, accurate driving behavior is required near the
tested vehicle while farther away, knowing the congestion
state of each road link is sufficient. Simulating the traf-
fic of large-scale urban networks can be helpful in testing
cloud-based connected vehicle services (C-ITS) [18], [19],
V2X-based (Vehicle-to-Everything) functions [20], platoon-
ing [21], or cruise control [22] too. Additionally, in hardware-
in-the-loop testing (e.g., [23]), the scale of the scenario is
limited by the demand for real-time simulation. What is
common in all of the above references is that they all use
large-scale SUMO simulation while only focusing on a few
select vehicles. Moreover, many of them note high compu-
tational complexity as a limitation. This paper attempts to
remedy this issue.

The main bottleneck for large-scale microscopic traffic
simulation is the polynomial time complexity concerning
the vehicle number. Microscopic car-following models con-
sider at least the leading vehicle, but when augmented with
lane-change logic, the vehicles to be accounted for increase
considerably [24]. Thus, when computing the relative dis-
tance between vehicles (for headway and gap acceptance),
the dimension of the pairwise distance becomes large, even
if the model only considers a limited number of adjacent
vehicles. This polynomial time complexity is more critical
in V2X scenarios, where each vehicle can communicate with
every other within hundreds of meters of range. The com-
putational burden worsens when traffic simulation is used in
conjunction with sophisticated communication models [25].
For example, simulation-based testing of Connected Auto-
mated Vehicles (CAVs) require extensive scenarios involving
lots of vehicles interacting with each other in various traffic
situations [26], [27].

Thus, there is a need for efficient simulationmethodologies
that can help with assessing vehicle functions that rely on
interaction with other vehicles. This is a clear research gap
as well the basic motivation of this paper.

Moving forward, the EGO vehicle will be the term we use
to refer to the vehicle that is the main focus of the simulation.

Speeding up large-scale microscopic SUMO [28] sim-
ulation has been tackled by dividing the network into
sub-networks for parallel processing [29], [30], [31] or uti-
lizing simulation of varying simulation scale [32]. In an
EGO-centric simulation, detailed (microscopic) simulation is
only necessary for the vicinity of the EGO vehicle, while
the rest of the network can be modeled in a less detailed
(mesoscopic) fashion. Thus, simulation accuracy is traded
far from the EGO vehicle for simulation speed. The meso-
scopic model does not consider the car-following behavior
and scales better with the size of the network. The desired
range for microsimulation varies according to the scenario.
A traffic jam assist system can work with just a few dozen of
meters, but V2X-based applications would typically require
a range of several hundred meters [33].

The contribution of this paper is a multi-scale simulation
method that can significantly speed up EGO-centric traf-
fic simulations. The method utilizes SUMO’s mesoscopic
simulation [34] in conjunction with the traditional micro-
scopic model. In this novel approach, two SUMO instances
are running parallel through a custom middleware: one
with mesoscopic simulation (without the EGO vehicle) and
another one with microscopic simulation without any route
file. Then, the middleware synchronizes themesoscopic vehi-
cles to the microscopic simulation, but only those which
are close enough to the EGO vehicle’s location. The pro-
posed framework is also capable to identify dynamic traffic
pattern changes (e.g., accidents) on the mesoscopic level.
It is emphasized that in this paper, it is not an objec-
tive to demonstrate a specific driver assistance function or
improve the performance of the EGO vehicle. At the same
time, we provide an efficient simulation framework that
enables the testing of such functionalities much faster than
currently possible or on much larger-scale traffic networks
that were previously possible with reasonable computational
demand.

The remainder of the paper is organized as follows.
Before delving into the description of the co-simulation
framework (Section III), some preliminaries are discussed in
Section II. Section IV evaluates the proposed approach on
four large-scale traffic networks. Finally, SectionV concludes
the findings of this paper.

II. PRELIMINARIES
A. TRAFFIC MODELING AND SIMULATION
In the literature, traffic modeling can be categorized
based on their modelling approach into several levels:
macroscopic, mesoscopic, microscopic, submicroscopic, and
nanoscopic [35], [28], [36]. When traffic modeling is real-
ized in a dynamic manner using computer technology, the
above notions are referred simultaneously as simulation,
i.e., macro-, meso-, micro-, sub-micro, and nanosimulation.
Each category has a trade-off between accuracy and com-
putational demand and has its specific purpose in traffic
simulation.
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Macroscopic models neglect vehicle dynamics. Instead,
the traffic is described as flow of vehicles. The flow is
generated with aggregated variables such as space-mean
speed, traffic density, and traffic volume of the road links.
Macroscopic flowmodels have a vast literature, just mention-
ing a few important ones: [37], [38], [39], [40].

Mesoscopic traffic models describe the traffic on an inter-
mediate level, where the movements of individual vehicles
are neglected or simplified. Mesoscopic models are either
continuum-based or cluster-based. They use equations from
fluid dynamics to describe traffic flow as a homogeneous
continuum [41], [42]. Furthermore, queuing models [34]
and shockwave theory [43] are also adopted in mesoscopic
approaches. Compared to the macroscopic approach, which
deals with aggregated traffic variables (e.g., vehicles per
hour), mesoscopic models are more fine-grained and can
capture fluctuations in traffic flow caused by traffic lights or
shockwaves.

Microscopic models describe the traffic flow in a
detailed manner, handling vehicles as individual objects,
but still with limited vehicle dynamics, focusing mainly
on the car-following dynamics [44]. Additionally, the
micro-modeled vehicles can also interact with traffic control
devices (e.g., traffic lights). This car-following model based
approach is essential to simulate the interaction between
vehicles properly. The type of interaction is specified by
the scenario, e.g., car-following in a cruise control sce-
nario or communication-related interactions in a V2X-based
scenario.

Submicroscopic modeling is an extension of the basic
car-following models where individual features of the vehicle
functions are explicitly described, e.g., gear shift functioning
or psycho-physical properties [45], [46].

Nanoscopic modeling approaches are more detailed than
microscopic/submicroscopic approaches. For EGO-centric
simulations, microsimulation is often coupled with detailed
vehicle dynamics simulation producing the so-called
nanosimulation [32].

In all, the fine-grained approaches of micro-, submicro-,
and nanoscopic modeling entail high computational demand
limiting the practical applicability in large-scale traffic net-
works. Accordingly, the main contribution of our paper is the
proposed co-simulation technique providing an efficient solu-
tion with a minimal trade-off. Even though in an EGO-centric
simulation, the vehicles hundreds ofmeters up or downstream
have no direct effect on the EGO vehicle, modeling indirect
fluctuations is necessary to retain the accuracy of the simu-
lation. These traffic flow patterns can be calculated without
computationally expensive microscopic simulation. At the
same time, microscopic traffic close to the EGO vehicle can
be ‘‘rendered’’ from the mesoscopic simulation. Kilometers
farther from the EGO vehicle (or at the network perimeters),
the uniformly distributed macroscopic approach is sufficient.
However, determining exact thresholds depends on the spe-
cific use case.

B. THE APPLIED SIMULATION FRAMEWORK: SUMO AND
LIBSUMO API
SUMO (Simulation of Urban MObility [28]) is an
open-source microscopic traffic simulator using the Krauss
car-following model [47] by default. The software has addi-
tional car-following models implemented too, better suited
for testing (EGO-centric) platooning or ADAS functions,
e.g., [48] and [49].

In addition to its well-known microscopic capabilities,
there is a mesoscopic option in SUMO, relying on the model
outlined in [34]. The mesoscopic simulation is still able
to retain the patterns of traffic flow. An essential feature
of the mesosimulation is that it uses the same network
and route definition as the microscopic one. Additionally,
this mesoscopic model is also vehicle-based. Nevertheless,
it does not consider car-following dynamics. According to
the SUMO documentation, the mesoscopic model computes
vehicle movements with queues and runs up to 100 times
faster than the microscopic model of SUMO. The similar
architecture of the microscopic and mesoscopic SUMO sim-
ulations means that interaction with them follows a similar
logic.

The primary way to interact with SUMO is TraCI (Traffic
Control Interface). The main drawback of TraCI is the high
communication overhead of the TCP/IP communication [50].
The Libsumo API on the other hand, provides a much more
efficient coupling, exposing the same interface methods of
TraCI as C++ static functions, though with few limitations
and less mature support than with TraCI. One key limitation
of Libsumo is the lack of support for multiple server connec-
tions that is necessary for the co-simulation approach. In this
paper, however, these issues were solved to achieve the main
objective, which is faster runtime. Additionally, parallelizing
two SUMO instances helps better utilization of CPU cores.
However, the co-simulation is more I/O-bound rather than
CPU-bound, i.e., it relies on the communication between the
different processes using shared memory stored in the RAM.
The CPU power is mainly used for stepping the simulation.

III. MULTI-SCALE SUMO SIMULATION FRAMEWORK
In this section, the proposed co-simulation architecture is out-
lined. First, the theoretical foundations are laid to transition
from the mesoscopic layer to the microscopic one. Then, the
practical implementation is described.

A. DYNAMIC DOWNSCALING OF TRAFFIC
The main assumption of the paper is that the mesoscopic
model of SUMO can generate accurate traffic flow patterns,
and the vehicle count on every edge at every time step is
accurate. Additionally, we assume that the presence of the
EGO vehicle is negligible on the mesoscopic scale. The
microscopic simulation is initialized with only the EGO vehi-
cle inside the network. Then, based on the mesoscopic data,
microsimulated vehicles are spawned within a predefined
range of the EGO vehicle. Similarly, they are removed from
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FIGURE 1. Microsimulating the traffic within the sub-network. The yellow
circle around the (red) EGO vehicle with radius r determine the links that
are affected by the microsimulation, i.e., the microsimulated subgraph
(purple).

the simulation if they go out of range. Next, this insertion and
removal logic is outlined.

First, a sufficient area of the network has to be selected
where the traffic is microsimulated. It can be either done
by defining an EGO-centered circle with radius r or by
performing a graph search on the road network, finding
every path upstream and downstream of the EGO vehicle
that can be reached by traveling distance r . Although the
graph-search-based algorithm can yield a more relevant sub-
network, it is computationally more complex, considering
the cyclic-graph nature of road networks. On the other hand,
searching based on Euclidean distance has linear time com-
plexity with the number of edges in the network. For sim-
plicity, the sub-network does not consider truncated edges.
Thus, edges that are intersected by r (or one end of an edge is
closer than r and the other is farther) are fully included in the
sub-network. Note that this sub-network constantly changes
as the EGO vehicle traverses the network. Thus it has to be
recomputed in each time step. Then, the following logic takes
place in the sub-network:

• Vehicles within the sub-network are microsimulated
(Figure 1).

• If an edge’s starting point is farther than distance r ,
it is considered as an entry edge. On such edges, the
mesoscopic traffic simulation is queried in every time
step if there are new vehicles on them. If so, these
vehicles are mirrored in the microscopic simulation as
well.

• Edges that are new to the sub-network (were not in
the sub-network in the previous time-step) have to be
rendered. This means every vehicle on this edge in the
mesoscopic simulation is inserted into the microsimula-
tion with similar parameters.

• If a vehicle leaves the sub-network, it is removed from
the microsimulation.

The above actions have linear time complexity regarding
vehicle counts because the edge ID of every vehicle cur-
rently in the microsimulation has to be queried (for removal).
Adding vehicles can be resource intensive but has linear
time complexity too. Thus, in large-enough simulations, these
extra computations subordinate the polynomial complexity
of vehicle interactions that would be needed in a full-scale
microsimulation.

B. IMPLEMENTATION
Next, the implementation of the above co-simulation logic
and the parallelization of Libsumo is described. The proposed
framework is implemented in Python 3.9, for 64-bit Windows
operating system.

Since our primary goal is speeding up the simulation,
Libsumo API is chosen to interact with SUMO simula-
tor. That is because synchronizing between the two simulators
entails many API calls, and the TCP/IP communication’s
computational overhead would significantly degrade the
co-simulation performance in terms of speed. On the other
hand, multiple-client support does not exist in Libsumo. That
is circumvented by assigning the two SUMO instances to
two separate processes and interacting with them via shared
memory. Note that Python (at least versions below 3.10) is
notorious for its poor multiprocessing performance due to
the Global Interpreter Lock (GIL, [51]). This means that syn-
chronizing between processes in a thread-safe way requires a
mutex mechanism (e.g., queues, semaphores) that can hinder
processing. With that in mind, the number of interactions
between the processes shall be minimized and realized in an
aggregated way.

The co-simulation is initializedwith a typical SUMO simu-
lation, including the configuration file, network file, and route
file(s). Additionally, the microsimulation range r has to be
defined. The EGO vehicle can be included through Libsumo
API with a predefined name and route. First, the SUMO
configuration file is automatically parsed, and two copies are
created from it: one with the mesoscopic simulation enabled
and a microscopic one without route files. Additionally, the
graph representation of the road network is stored in mem-
ory. The simulation is initialized from a Python script that
starts two subprocesses, each responsible for one SUMO
instance. To achieve thread safety, communication between
the processes is done via sharedmemory and semaphores; see
Figure 2. In the main loop, in each step, first, the sub-network
(or subgraph) is constructed, and the inflow edges are found
based on the position of the EGO vehicle. Then, the process
running themesoscopic simulation borrows this subgraph and
collects new mesosimulated vehicles on it through Libsumo
API. Then, the list of vehicles to add (with their ID, remaining
route, speed, and edge position) are passed to the process with
the microsimulation. The list of new vehicles is added to the
microscopic SUMO instance. If vehicles move out of range,
it is checked whether they can transition to the next road edge.
I.e., if the downstream link is congested in the mesoscopic
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FIGURE 2. Sequence diagram of the co-simulation framework.

simulation, the vehicle is queued in the microsimulation until
the downstream link in the mesoscopic simulation is freed.

FIGURE 3. Simulated road networks.

Then the vehicle is removed from the microsimulation. Then,
both simulation instances are stepped in parallel. On top
of the aforementioned core functionality, the two SUMO
instances can be interacted with from the main script via
custom callback functions. These functions are passed to the
subprocesses upon initialization and called in each time step.
Their arguments and return values are read and written from
shared memory, respectively.

IV. SIMULATION RESULTS
This section demonstrates the efficiency of the pro-
posed co-simulation algorithm on four large-scale SUMO
networks, all of them validated and publicly available
(see Figure 3). Namely, Gyöngyös (Hungary), Ingolstadt
(Germany), Luxembourg City, and Turin (Italy). The main
attributes of each city scenario are summarized in Table 1.

The main focus is speeding up the simulation of these
networks while avoiding performance degradation from the
EGO vehicle’s perspective. In every scenario, the EGO vehi-
cle randomly travels the network, and when it reaches the end
of its route, it is randomly rerouted. The EGO vehicle uses
the default car-following model of SUMO [47] and interacts
with other vehicles accordingly. Road traffic is given by a
list of vehicles with fixed routes (in a route file), previously
calibrated by the author of each scenario. Themicrosimulated
sub-network is defined by an EGO-centered circle with a
radius r . This value is selected empirically and not only
depends on the specific scenario but also encompasses some
trade-off: if r is too large, it slows down the simulation. Con-
versely, if it is too small, the car-following dynamics might be
biased, e.g., the leading vehicle often leaves the simulation.
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TABLE 1. Parameters of the simulated networks.

Additionally, when inserting vehicles, there will be some
transients until they completely blend into the surrounding
traffic. With too small r , these transients might reach the
EGO vehicle too. This sensitivity to r is demonstrated in
Figure 4 for the smallest network (the town of Gyöngyös1)
through the relative error of the EGO velocity compared to
the mesoscopic simulation. It is observable that practically
both the mean simulation time and the mean EGO velocity
relative error are evolving in an exponential fashion along
the microsimulation range. As a further sensitivity analysis,
we have evaluated two additional car-followingmodels (ACC
and EIDM [49]). According to Figure 4, both the simula-
tion time and the mean EGO velocity follow a similar trend
regardless of the car-following model, showing the univer-
sality of the methodology. In the subsequent experiments,
the default (Krauss, [47]) car-following model will be used
with 1 second simulation step time. The authors assume that
the shorter step times increase the accuracy proportionally
while it might have a different impact on the accuracy of
the simulation. The sensitivity analysis also concludes that
the microscopic range r > 150 m is sufficiently accurate
for longitudinal dynamics. Additionally, for most perception
sensor-based scenarios, a microscopic range between 150 m
and 500 m is sufficient. Note that one should select this
range above the viewing distance or communication range of
the tested algorithm to avoid the transients occurring at the
perimeter of the simulated range. In the sequel, the micro-
scopic range is set to r = 250 m.

Since most EGO-centric simulations aim at testing some
control algorithm, frequent interaction with the simulator is
needed to get the inputs for the control algorithm periodically.
To mimic this interaction, the position of every vehicle is
queried (linear time complexity operation) in every time step
via Libsumo API. For each network, the co-simulation is
compared to pure microsimulation using five different ran-
dom seeds. The only exception is the Turin network, which is
too large to run on a micro-level in a reasonable time (i.e., its
real-time factor is below 1). The primary comparison metric
is the simulation time, summarized in Table 2 and Figure 7.
To evaluate the validity (or performance degradation) of the
co-simulation on the more extensive networks too, the veloc-
ity distribution (Figure 5), headway distribution (Figure 6),

1https://github.com/bmetrafficlab/EGO-centric-SUMO

FIGURE 4. Sensitivity analysis to the radius value (r ) applied in the
simulation and different car-following models.

and the number of lane changes (Table 2) for the EGOvehicle
are compared.

Results suggest that the simulation can be sped up by
3 − 10 times in the evaluated scenarios. The more vehi-
cles the microscopic simulation contains, the greater the
speedup factor that can be achieved by the co-simulation.
Additionally, running experiments on extremely large net-
works such as the Turin scenario is, although possible, too
tedious. Thus, the co-simulation serves as an enabler for
simulating EGO-centric scenarios in that network too. In both
cases, the simulation has approximately linear time complex-
ity concerning the vehicle numbers. The co-simulation has
some computational overhead proportional to the network
size. Thus, microsimulation is faster when there are only
a few vehicles in the microsimulation. On the other hand,
the spatial limitation of microsimulation in the co-simulation
framework gives an upper bound to vehicle numbers, eventu-
ally making the co-simulation faster. As seen from Figure 7,
below a few hundred vehicles in the simulation, the overhead
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FIGURE 5. CDFs of the EGO vehicle velocity. The shaded area depicts the standard deviation of the samples.

FIGURE 6. CDFs of the EGO vehicle’s headway. The shaded area depicts the standard deviation of the samples.
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FIGURE 7. Duration of one simulation step as the function of the vehicles in the simulation (on logarithmic
scale). Co-simulation vehicle numbers are bounded by the proposed algorithm. The shaded area depicts the
standard deviation of the samples.

TABLE 2. Numerical results. Numbers in the parentheses denote the
standard deviation of the results of the 5 random seeds. The Turin
scenario was run only once in co-simulation due to its size.

of the co-simulation makes the simulation slower. On the
other hand, if the number of vehicles in the network is

above one thousand, the co-simulation becomes much faster.
A thousand vehicles traveling simultaneously on a city-scale
network in peak hours is possible even in smaller towns, e.g.,
on 7 (a). When it comes to accuracy, longitudinal dynamics
were evaluated with the velocity and headway distributions
(Figure 5 and Figure 6, respectively). For every run and
every simulation step, the Cumulative distribution function
(CDF) of velocity and headway (the distance between the
EGO and the leading vehicle in meters) of the EGO vehicle
were logged. That is to compare the frequency (in the number
of occurrences) of different EGO velocities and headways.
If the co-simulated velocity and headway distributions match
the microsimulated one, we can assume that the longitudi-
nal dynamics of the EGO vehicle are not affected by the
co-simulation, i.e., there is no accuracy degradation. Differ-
ences in velocity and headway distribution for the EGO vehi-
cle mean that it encounters vehicles in front of it differently
in the co-simulation compared to the full-scale microsim-
ulation. Given that the CDFs are from five different runs
and the simulations are very long, there is not too much
deviation (the shaded area) between the scenarios. In every
scenario, the velocities and the headways closely match in
the co-simulation and the microscopic scenarios. This means
the traffic in the co-simulated sub-graph behaves similarly to
full-scale microsimulation. The minor deviation stems from
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FIGURE 8. Urban MFD of the subgraph using full-scale microsimulation,
mesoscopic simulation compared to co-simulation.

two sources. One source of difference is the randomness of
the EGO vehicle’s route. The other difference stems from the
trade-off between speed and accuracy and the selection of
r = 250 m, see Figure 4. There is a slightly lower occurrence
of small headways and a higher number of lane changes
in co-simulation compared to microsimulation. This means
more overtaking opportunities and less tailgating. From a
macroscopic perspective, the traffic density around the EGO
vehicle is slightly smaller (approximately by 2 − 5%) in the
co-simulation. The reason for this discrepancy is explicable
based on the transients mentioned earlier from inserting new
vehicles into the co-simulation.

Next, we explore how the coupling of the co-simulation
affects the traffic within the microsimulated range. More
specifically, how aggregated traffic parameters change if
vehicles are spawned and destroyed around the EGO vehi-
cle compared to a full-scale microsimulation. For that, the
urban macroscopic fundamental diagram (MFD) [52] is
used. It describes the relationship between traffic produc-
tion (outflow) and accumulation (number of vehicles) in a
(sub-)network. Naturally, the subnetwork of our choice is
the one where microsimulation is used. For this analysis, the
EGO vehicle is stationary and ‘‘invisible.’’ That is to keep
the subgraph static during the simulation and not to cause
any bottleneck. Additionally, traffic was scaled up to simulate
highly congested cases. Results are summarized in Figure 8.
According to the figure, the co-simulation does not cause
discrepancies on the aggregate level.

Simulations were executed on a computer equipped
with an Intel®CoreTM i9-9900 processor, an overclocked
NVIDIA®GeForce®1650 graphics card with 4GBmemory,
32GB DDR4 RAM with a frequency of 1333 MHz, and
running on Windows®10 operating system.

V. CONCLUSION
This paper presented a parallel co-simulation framework
for combined microscopic and mesoscopic traffic simula-
tion employing SUMO software. The main purpose of the

simulation framework is to enable faster simulations focus-
ing on a single vehicle in large-scale road traffic networks
featuring thousands of vehicles. On the mesoscopic level, the
whole traffic is simulated with a very high real-time factor.
Then traffic is simultaneously synchronized to a microscopic
simulation in a predefined vicinity of the EGO vehicle. The
paper presented the co-simulation logic alongside its practical
implementation using multiple processes and shared mem-
ory. The efficiency of the proposed co-simulation approach
was demonstrated through four urban traffic networks: the
town of Gyöngyös, as well as the cities of Ingolstadt,
Luxembourg, and Turin. The achieved results suggest that
a minimal trade-off of accuracy for simulation speed can
be obtained: the distributions of the EGO vehicle’s motion
(both longitudinal and lateral) match the microsimulation
benchmark with a 2 − 5% error bound. Meanwhile the sim-
ulation speed can be increased 3 − 10 times depending on
network size, i.e., the more extensive the network, the more
improvement there is. This improvement stems from upper
bounding the number of microsimulated vehicles. In conclu-
sion, the proposed co-simulation framework can efficiently
accelerate the simulation-based testing of vehicle functions
that rely on the interaction with other vehicles. The impact of
the co-simulation has been evaluated for aggregated traffic
parameters as well, i.e., to verify that the microsimulated
traffic in the co-simulated subnetwork is similar to full-scale
microsimulation. Although the technique has been demon-
strated based on SUMO traffic simulation tool, it can be
adopted straightforwardly for any other software solutions,
i.e., the main achievement of our research is the applicable
co-simulation methodology.
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