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ABSTRACT | Micro-expression (ME) is an involuntary, fleeting,
and subtle facial expression. It may occur in high-stake situa-
tions when people attempt to conceal or suppress their true
feelings. Therefore, MEs can provide essential clues to peo-
ple’'s true feelings and have plenty of potential applications,
such as national security, clinical diagnosis, and interrogations.
In recent years, ME analysis has gained much attention in vari-
ous fields due to its practical importance, especially automatic
ME analysis in computer vision as MEs are difficult to process
by naked eyes. In this survey, we provide a comprehensive
review of ME development in the field of computer vision,
from the ME studies in psychology and early attempts in
computer vision to various computational ME analysis methods
and future directions. Four main tasks in ME analysis are
specifically discussed, including ME spotting, ME recognition,
ME action unit detection, and ME generation in terms of the
approaches, advance developments, and challenges. Through
this survey, readers can understand MEs in both aspects of
psychology and computer vision, and apprehend the future
research direction in ME analysis.
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LINTRODUCTION

Emotions are neurophysiological responses to external
and/or internal stimuli [1], [2], [3]. They are associated
with feelings, thoughts, behavioral responses, and plea-
sure or displeasure [3], which influence human cognition,
decision-making, perception, learning, and so on [4], [5].
Thus, emotions play a crucial role in everyday human
life. However, emotional expression and perception are not
easy jobs for some people, such as those who suffer from
psychological disorders, e.g., alexithymia [6].

In recent years, research on emotions has grown signif-
icantly in interdisciplinary fields from psychology to com-
puter science. In the beginning, the affects were mainly
studied by psychologists. The concept of affective comput-
ing was introduced by Picard [7] in 1997, proposing to
automatically quantify and recognize human affects based
on psychophysiology, biomedical engineering, computer
science, and artificial intelligence. Affective computing
aims to endow computers the human-like capabilities to
observe, understand, and interpret human affects, refer-
ring to feeling, emotion, and mood [7], [8], [9].

Psychological research demonstrates the body language
that we use, specifically our facial expressions, and relates
to 55% of messages when people perceive others’ feel-
ings [10], [11]. To this end, facial expressions are a major
channel that humans use to convey emotions. Analyzing
facial expressions is meaningful and important, which can
be seen from a wide study of facial expressions. However,
people may try to conceal their true feelings under certain
conditions when people want to avoid losses or gain bene-
fits [12]. In this case, facial micro-expressions (MEs) may
occur.

Recent research illustrates that, besides ordinary facial
expressions, affect also manifests itself in a special format
of MEs. MEs are spontaneous subtle and fleeting facial
movements reacting to emotional stimulus [13], [14]. MEs
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are almost impossible to control through one’s willpower.
Learning to detect and recognize MEs is critical for emo-
tional intelligence and has various potential applications,
such as clinical diagnosis, education, business interactions,
and interrogation. Due to the practical importance of ME
analysis in our daily life, researchers have increasing inter-
est in ME analysis recently.

In this article, we review the ME studies from psychology
to computer science, focusing on its research progress in
computer vision and machine learning. Although there
have been a few ME surveys [15], [16], [17], [18], [19],
[20], [21] published, they only focus on machine learning
approaches of ME spotting and recognition, which are for
researchers and professionals in the related field. Different
from previous surveys, this overview introduces the gen-
eral development of ME analysis from psychological study
to automatic ME analysis in the computer vision field. The
goal is to provide a tutorial that can serve as a reference
point for all people who are interested in MEs. We start
from the discovery of the ME phenomenon and explo-
rations in psychological studies and then track the studies
in cognitive neuroscience about the neural mechanism
beneath the behavioral phenomenon. After that, we intro-
duce the technological studies of ME in the computer
vision field, from the early attempts to advanced machine
learning methods for recognition, spotting, related AU
detection tasks, and ME synthesis or generation. Finally,
open challenges and future directions are identified.

The rest of this article is organized as follows. Section II
presents ME studies in psychology. Section III introduces
the early attempts of the computer vision study. Section IV
discusses spontaneous ME datasets. Section V reviews
computational methods for ME analysis. The open chal-
lenges and future directions are discussed in Section VI.

II. ME STUDIES IN PSYCHOLOGY
The research of MEs can be traced back to 1966 when
Haggard and Isaacs [22] first reported finding one kind
of short-lived facial behavior in psychotherapy that is
too fast to be observed with the naked eyes. In their
report, these short-lived facial behaviors were referred to
as micromomentary facial expressions. This phenomenon
was also found by Ekman and Friesen [23] one year after
and named it micro-facial expression. Ekman and Friesen
studied clinical depression patients who claimed they have
recovered but later committed suicide. When examining
the films of one patient in slow motion, although the
patient appeared to be happy most of the time, a fleeting
agony look lasting only 1/12 s was found, which reveals
strong negative feelings of the patient. Upon the doctor’s
questioning, the patient confessed that she was trying to
hide her plan to commit suicide. This finding illustrates the
existence and essence of MEs that are important behavioral
clues revealing human’s hidden true emotions.
MEs have different appearance characteristics compared
to ordinary facial expressions [referred to as macro-
expressions (MaEs)]. MaEs can involve multiple facial
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Fig. 1. Examples of MaEs and MEs from the same person.
Compared to an MaE, an ME involves fewer muscles [action units
(AUs)] with much lower intensity and shorter duration. AU6, AU7,
AU12, and AU25 represent cheek raiser, lid tightener, lip corner
puller, and lips part, respectively.

muscles with different levels of intensities (see subtle
expressions [24] for MaEs with low intensities) and last
between 0.5 and 4 s [25], [26], while MEs involve fewer
facial muscles (usually only one or two) with very low
intensity and short duration (the criteria of ME duration
varies according to different researchers, but it is com-
monly agreed that an ME should be at least less than
500 ms [27], [28]). This is due to the fact that MEs occur
under special conditions [23], e.g., when people attempt
to cover their true feelings under high-stake situations,
some may involuntarily leak in the form of ME. With such
constrained conditions and strong intentions to inhibit and
disguise, it is natural that MEs present in a condensed and
fragmented way. One pair of example figures is shown in
Fig. 1 to illustrate the differences between MaEs and MEs.

Ordinary persons can recognize MaEs effortlessly, but it
is very challenging, if not completely impossible, to rec-
ognize MEs with naked eyes. According to psychological
studies [29], [30], without special training, people can
only perform slightly better than the guessing chance on
ME recognition (MiX). On the other side, MEs are very
important behavioral clues for lie detection, and some
special occupations (law enforcement and psychotherapy)
could be benefited if there is any way to train their staff
to better detect and recognize MEs. In 2002, a micro-
expression training tool (METT) [30] was developed for
such a purpose. It was reported [14] that, after a training
of 1.5 h, the trainee’s MER ability can be improved by
30%-40%. One limitation of METT is that it is composed
of “man-made” ME clips, e.g., by inserting one happy
face image into a sequence of neutral faces, which are
different from real, spontaneous MEs. Besides, Matsumoto
and his colleagues also developed training tools' for both
MiX and subtle expression recognition (SubX) as it was
reported [31] that the ability to read subtle expressions is
also related to MER and lie detection. Such tools have been
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commercialized for both academic research and business
purposes.

Another region of psychological research that is closely
related to ME is the facial action coding system (FACS).
FACS is a comprehensive tool to measure facial movements
objectively [32]. FACS encodes and taxonomizes each
visually discernible facial muscle movement according to
human face anatomical structure, which is called AU.
FACS provides detailed descriptions and coding criteria for
28 main code AUs, together with dozens of side codes
about eye and head movements. Each action/movement
can be coded both with the category (e.g., AU4 and AU12)
and the intensity level (A-E: A for the weakest and E for the
strongest). FACS and AUs are very important for studies of
FER and MER although not all AUs are related to emotions.
In FACS Investigator’s Guide, an AU-emotion table (page
136) was provided which maps AU combinations to cor-
responding emotion categories according to observation
evidence achieved from psychological studies. Such AU
combinations are considered as the “prototypes” of facial
expressions, e.g., AU6 + 12 for happiness and AUl + 2 +
5 + 25 for surprise. However, it is worth mentioning that
the mapping table is for MaE emotions but not directly
for MEs. Although, in practice, most current ME datasets
followed FACS and adopted the same AU-mapping rules as
MaEs based on a premise that “ME and MaE share the same
emotion categories and appearances,” such premise was
not systematically verified yet, and the correspondences
between AU and ME emotion categories are still open for
discussion [33].

The neural mechanisms of MEs are also explored and
explained. Two neural pathways [34] originating from
different brain areas are involved to mediate facial expres-
sions. One pathway originated from the subcortical areas
(i-e., the amygdala), which drives involuntary emotional
expression, including facial expressions and other bodily
responses, while the other pathway is originated from the
cortical motor strip, which drives voluntary facial actions.
According to Matsumoto and Hwang [35], when people
are feeling strong emotions but try to control/suppress
their expressions in high-stake situations, the two path-
ways meet in the middle and engage in a neural “tug
of war” over the control of the face, which may lead to
fleeting leakage of MEs.

Over the years, ME study has gained the interest
of researchers from various fields. It even inspired the
award-winning American crime drama television series
“Lie to Me.” The show invited the ME researcher to analyze
each episode’s script and teach actors and staff the science
of deception detection. Many episodes of “Lie to Me”
referred to the true experiences of MEs.

III. EARLY ATTEMPTS FROM
COMPUTER VISION STUDY
The ME analysis topic was first introduced to the com-
puter vision field around the year 2009. Early research on
automatic ME analysis mainly concerns ME spotting and
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MiX. The ME spotting task aims to detect and locate ME
occurrences from context clips, and the recognition task
aims to classify MEs into emotional categories. ME data
are needed to research the two tasks, but no ME dataset
was available by that time. It is not easy to induce and
collect spontaneous MEs as they only occur on very special
occasions. To overcome this obstacle, some early works
attempted to build posed ME datasets [36], [37] and used
them for evaluating proposed methods for ME spotting and
recognition tasks.

Polikovsky et al. [36] collected the first posed ME
dataset by asking participants to act facial expressions
as fast as possible. Eleven participants were enrolled,
and the data were recorded with a pixel resolution of
640 x 480, at a frame rate of 200 frames/s (fps) in
a laboratory environment. Each frame was labeled with
AUs, and a 3-D-gradient orientation histogram descriptor
was proposed for AU analysis in specific facial regions,
which was related to the recognition of MEs. However, the
authors did not mention the length of such posed MEs, nor
did they concern the temporal progress of an ME in their
experiments.

Meanwhile, Shreve et al. [37], [38] also conducted work
on posed ME data. They built one dataset called USF-HD,
in which ME examples were shown to the participants and
the participants were asked to mimic the ME motions. Via
this way, they collected 100 posed ME samples with a pixel
resolution of 720 x 1280 at 29.7 fps. According to the
authors, the USF-HD dataset contains both MEs and MaEs
(a detailed description of the data is limited), and they
proposed a spotting method using spatiotemporal strain,
which can spot 74% of all MEs and 85% of all MaEs in the
USE-HD dataset.

These studies represent the early attempts of building
computing algorithms for automatic ME analysis, which
contributed in the way that they helped draw more atten-
tion of computer vision researchers to the topic of ME.
On the other side, the limitation of these studies is obvi-
ous, i.e., the posed MEs are different from real, naturally
occurred MEs on their appearances in both spatial and
temporal domains; thus, it is questionable whether the
methods trained on posed ME data could be helpful in
detecting and recognizing real MEs in practice. Early posed
ME datasets are not used in current ME studies anymore,
and multiple spontaneous ME datasets were built and
shared with the research community later, which are intro-
duced in Section IV.

IV. DATASETS

In recent years, several spontaneous ME datasets
(SMIC [39] and its extended version SMIC-E,
CASME [41], CASME 1II [42], CAS(ME)? [43],
SAMM [44], MEVIEW [46], CAS(ME)? [47], micro-
and-macro expression warehouse (MMEW) [20], and
4DME [33]) have been built, and details of these datasets
are summarized in Table 1.
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Fig. 2. Sample figures of the most popular ME datasets. (a) CASME. (b) CASME Il. (c) CAS(ME)2. (d) SAMM. (e) MEVIEW. (f) MMEW. (g) SMIC.

(h) CAS(ME)3. (i) 4DME.

One common way to induce spontaneous MEs is to use
movie clips with strong emotional clips. Pfister et al. [48]
first proposed a protocol for inducing and collecting spon-
taneous MEs. They asked each participant to watch movie
clips with strong emotional content in a monitored lab
and asked them to try their best to keep a poker face
not to reveal their true feelings. If failed (found by the
experimenter via the monitoring camera), there will be a
punishment, e.g., filling out a long questionnaire. Many
of the later ME datasets followed the same protocol
as it was demonstrated to be effective. However, this
emotion-eliciting approach also has limitations, and the
setup of “movie watching” is simplified compared with
practical scenes in daily life. Some studies considered
different scenarios for ME data collection. For example,

Table 1 Spontaneous ME Datasets

in real life, MaEs and MEs often occur during interpersonal
interactions. Husak et al. [46] collected an in-the-wild
ME dataset MEVIEW. The samples were from TV series
of poker games. Poker games are one kind of high-stake
scenario when the players need to hide or disguise their
true emotions from their opponents to achieve a win so
that MEs are likely to occur. The MEVIEW dataset brought
a new sight into the ME study, but, on the other side, there
are also constraints of the dataset. First, the videos were
recorded for TV shows but not for research, so there were
frequent scene changes and also other factors, such as side
views and occlusions. Second, the dataset is very small
with only 31 video clips from 16 persons, which further
limits its usage. Recently, inspired by the paradigm of mock
crime in psychology, Li et al. [47] collected one new ME

Subjects ME video clips Annotation
Database — . . Task
Num Eth | Num Resolution FR Modality Emotion AU
16 164 640 x 480 100 HS (RGB) Pos (51) Neg (70) Sur (43) /
SMIC [39] 8 Y | 71 640 x 480 25 NIR Pos (28) Neg (23) Sur (20) / - RG
8 71 640 x 480 25 VIS (RGB) Pos (28) Neg (24) Sur (19)
SMIC-E-Long [40] 26 Y 162 640 x 480 100 RGB - - S
640 x 480 60 Hap (5) Dis (88) Sad (6) Con (3)
CASME [41] 9 N 19 jo80x720 60  ROB Fea (2) Ten 28) Sur 20) Rep (40) 12+ | RAG
Hap (33) Sur (25)
CASME 1I [42] 26 N 247 640 x 480 200 RGB Dis (60) Rep (27) Oth (102) 11+ RA,G
CAS(ME)? [43] 2 N | 57 640 x 480 30 RGB Hap (51) Neg (70) Sur (43) Oth (19) 28 | RSA.G
Hap (24) Ang (20) Sur (13) Dis (8)
SAMM [44] 32 Y 147 2040 x 1088 200  Grayscale Fea (7) Sad (3) Oth (84) ALL RAG
SAMM-LV [45] 32 Y 79 2040 x 1088 200  Grayscale - ALL S
Hap (6) Ang (2) Sur (9)
MEVIEW [46] 16 N 29 720 x 1280 30 RGB Dis (1) Fea (3) Unc (13) Con(6) 7 RAG
Hap (36) Ang (8) Sur (80) Dis (72)
MMEW [20] 36 N 300 1920 x 1080 90 RGB Fea (16) Sad (13) Oth (102) 17 R.AG
]‘;fﬁl Hap (992) Dis (2528)
CAS(ME)? [47] 247 N 1059 1280 x 720 30 Pg Fear (892) Ang (619) Con (401) ALLE | RSAG
; Sur (1208) Sad (635) Oth (251)
Audio
1228 i 411(8380 28 Grai/?cale g (2 jang (G $857
4DME  [33] 56 Y 1068 . (30) Rep (6) PS (13) NS (8) 22 RSAG
FORAD RGB RS (3) PR (8) NR (7) Oth (31)
640 x 480 30 Depth
1 Modality: RGB indicates 2D color videos; NIR indicates 2D near infrared videos; HS indicates 2D high-speed videos; PS indicates
physiological signal.
2 FR: frame rate
3 Eth: whether subjects are of multiple ethnicities.
4 ALL: all observed AUs; ALLE: all observed AUs except eye blinking.
° Sur: Surprise; Pos: Positive; Neg: Negative; Dis: Disgust; Hap: Happiness; Rep: Repression; Sad: Sadness; Fea: Fear; Ang: Anger; Con:
Contempt; Oth: Others; Unc: Unclear; NS Negatively surprise; PS: Positively surprise; PN: Positively negative; NN: Negatively negative;
5 Task: R indicates ME recognition; S indicates ME spotting in long videos containing MaEs and MEs; A indicates ME-AU detection; G
indicates ME generation.
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dataset CAS(ME)3, which was a new approach to induce
MEs.

The spontaneous ME datasets also update and evolve in
the data form. Earlier spontaneous ME datasets only con-
tain frontal 2-D videos as they were relatively easy to col-
lect and analyze, which leads to the fact that most existing
ME methods can only analyze frontal faces and are inca-
pable of dealing with challenges in real-world applications,
such as illumination variation, occlusion, and pose vari-
ations. One research [49] on facial expression recognition
illustrated that dynamic 3-D videos with richer information
could facilitate facial expression analysis and alleviate
the self-occlusion, head motions, and lighting changes
problems. Currently, the fast technological development
of 3-D scanning makes recording and reconstructing high-
quality 3-D facial videos possible. Li et al. collected a 4-D
ME dataset (4DME) [33]. Moreover, the 4DME consists of
multimodal videos, including Kinect-color videos, Kinect-
depth videos, gray-scale 2-D frontal facial videos, and
reconstructed dynamic 3-D facial meshes since leverag-
ing multiple modalities is able to provide complementary
information to improve the robustness of the analysis. Also,
CAS(ME)? also consists of depth information, physiological
signals, and voice signals in addition to 2-D color videos.
Fig. 2 shows the examples in ME datasets.

The MMEW [20], CAS(ME)? [43], CAS(ME)? [47], and
4DME [33] contain both MEs and MaEs, which can be
used to further identify the ME and MaEs. Moreover, the
4DME [33] dataset annotates the cases when MEs are
mixed with MaEs based on AUs. This dataset provides the
possibility to analyze the co-occurrence and relations of
MEs and MakEs.

The above-discussed ME datasets are mostly constructed
for MER. For researching ME spotting, some ME datasets
have been extended by including non-micro-frames before
and after the annotated ME samples to generate longer
videos, such as the extended versions of CASME, CASME
II, and SMIC. However, the video lengths in these datasets
are still quite short, which means that we are only con-
cerning the spotting task under a simplified scenario. Later,
CAS(ME)? [43] was released which raised the challenge
level of the spotting task by introducing long video clips
(148 s on average) that include both MaEs and MEs.
Another dataset, the SMIC-E-Long [40], was also estab-
lished for the same purpose, i.e., extend the SMIC-E clips
into much longer clips by adding context frames from the
original recordings. For such long clips, the challenge of
ME spotting lies in multiple aspects, not only that the
duration of videos is longer but also other impacts such
as eye blinks, head movements, and rotations, MaEs, all
become more significant and complex if compared to that
within a narrow observation window. Moreover, SAMM-
LV [45] and CAS(ME)? provide long videos containing
annotated intervals of MaEs and MEs according to the AUs.
However, the above datasets mainly focus on separated
MEs and MaEs even though, in practical situations, the
MEs may occur with MaEs. The 4DME dataset emphasizes
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the MEs and MaEs coexisting situation, which is suitable
for studying spotting ME and MaE simultaneously in real-
istic situations.

V.COMPUTATIONAL METHODS FOR
ME ANALYSIS

A general pipeline for ME analysis is shown in Fig. 3.
Given raw collected videos, preprocessing is usually the
first step to be performed, and then, the ME clips can be
detected and located through ME spotting. After that, MiX
and ME-AU detection can be carried out as separate or joint
tasks. ME generation can synthesize either long videos,
including mixed MEs and MaEs or short clips with just
MESs, which is expected to benefit different ME analyses.
In this section, we first introduce preprocessing steps in
ME analysis and discuss different inputs. Four main tasks
in nowadays ME analysis with computational methods are
discussed, including ME spotting, MER, ME-AU detection,
and ME generation.

A. Preprocessing

Given one ME dataset, there are multiple interfering
factors of the raw facial videos, which need to be dealt
with first before the actual ME analysis could be carried
out, e.g., background removal, head pose change, and
face size/shape variation. As subtle as MEs are, the ME
analysis performance might be significantly impeded if
these problems are not solved properly. Like most facial
video analysis tasks, ME analysis methods include two
“common” preprocessing steps, i.e., face detection and face
alignment. The former removes the background and keeps
only the facial region, and the latter reduces the varia-
tion of facial shapes and poses by aligning corresponding
facial landmarks. Moreover, there are two other “special”
preprocessing steps that are commonly used in many ME
methods as they are specifically helpful for ME analysis.
The first one is motion magnification. Since MEs have very
low intensity, motion magnification can help to enlarge the
motion, thus facilitating ME analysis. The second one is
temporal interpolation. Since MEs are fleeting phenomena
with very short duration and various clip lengths, tem-
poral interpolation can help to generate more frames or
normalize the video length. The four preprocessing steps,
i.e., face detection, face alignment, motion magnification,
and temporal interpolation, are each elaborated on in the
following.

1) Face Detection: Face detection is the first step in
an ME analysis system. Face detection finds the face
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location and removes the background. The Viola-Jones
face detector [50] is one of the most widely used face
detection algorithms. It can achieve robust face detec-
tion on near-frontal faces with cascaded weak classifiers.
Moreover, it is computationally efficient and could run in
real time, so it is widely employed in many face anal-
ysis scenarios. However, the Viola—Jones detector does
not work well with significant pose variations and occlu-
sions [51]. Wu et al. [52] proposed to utilize probabilistic
and pose-specific detector approaches for handling these
problems. Later, with the development of deep learning
methods, deep learning-based face detection methods have
been presented to deal with scale and pose variations [53],
[54], [55]. A lightweight deep convolutional network was
proposed for robust face detection by using incremental
facial part learning [54]. HyperFace proposed in [55]
exploited synergy among multiple tasks of landmark local-
ization, face detection, gender recognition, and pose esti-
mation for better face detection performance. Currently,
deep learning-based face detection methods have been
integrated into popular open- source libraries, such as
OpenCV and Dlib, to facilitate facial video analysis tasks,
including ME spotting and recognition.

2) Face Registration: MEs are very subtle movements,
which could be easily affected by head pose variations.
Face registration aims to align each detected face to a refer-
ence face according to key facial landmarks so that to alle-
viate pose variation and head movement problems. There-
fore, face registration is an essential preprocess needed
for MER. There are multiple methods available for face
registration, such as discriminative response map fitting
(DRMF) [56], active appearance models (AAMs) [57], and
active shape models (ASMs) [58], which are all widely
adopted in related studies. AAM [57] is able to match faces
with different expressions rapidly, and DRMF is good at
handling occlusions in complex backgrounds efficiently in
real time [56]. Similar to face detection, deep learning is
also exploited for face registration. For example, a deep
cascaded framework was proposed by Zhang et al. [59] to
exploit the correlation between alignment and detection
to further enhance the alignment performance in uncon-
strained environments, i.e., when various poses, illumina-
tions, and occlusions are involved.

3) Motion Magnification: Motion magnification aims to
enhance the intensity level of subtle motions in videos,
e.g., the invisible trembling of a working machine. It was
found to be helpful for ME analysis tasks and employed as
a special preprocessing step. The Eulerian video magnifi-
cation (EVM) method [60] is one of the most popular used
magnification methods [61]. The original method can be
used to magnify either color or motion content of an input
frame sequence. There is one adjustable parameter for the
magnified level, i.e., a larger amplification value leads to a
larger scale of motion amplification. For ME magnification,
it is not the case that the larger magnification the better.
One issue to be concerned with is that, for a very large
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magnification level, bigger artifacts and more noises are
introduced at the same time. According to empirical stud-
ies [61], [62], [63], a suitable amplification factor should
be about 5-30 depending on different data. Besides EVM,
Oh et al. [64] presented a learning-based motion magnifi-
cation method that was employed to magnify ME in [65].
One advantage of the learning-based motion magnification
method is that it causes fewer noises compared to EVM.

4) Temporal Interpolation: Besides low intensity, another
challenge of ME analysis is that ME clips are very short and
with varying lengths, which is not good for clip-based anal-
ysis, especially when recording MEs with a relatively low-
speed camera. Temporal interpolation solves this issue by
interpolating sequences into a designated length. Specifi-
cally, temporal interpolation can be used to upsample ME
clips [61] with too few frames to get longer and unified
ME clips for stable spatial-temporal feature extraction.
Also, extending ME clips and subsampling to multiple
short clips with temporal interpolation can be used for
data augmentation [66]. The temporal interpolation model
(TIM) [67] is one of the most popular methods used in ME
analysis, which characterizes the sequence structure by a
path graph. Moreover, Niklaus and Liu [68] designed a
network for temporal interpolation, which extracts infor-
mation from pixelwise contextual information of the input
frames in order to calculate a high-quality intermediate
frame for interpolation. Their method can perform well in
complex temporal interpolation scenarios in reality when
large motions and occlusions are involved.

B. Inputs

The characteristics of low intensity and short duration
make MER very challenging. There can be different inputs
for MER in the form of images, videos, or optical flow.

1) Images: A large number of facial expression recog-
nition studies are based on static images because of the
convenience of image processing and the availability of
massive amounts of facial images. However, different from
MakEs, MEs involve subtle facial movements. To this end,
Li et al. [62], [69] studied using magnified apex frames
for ME analysis. Their experimental results demonstrated
that MER with one single apex frame could achieve com-
parable performance to that of using the whole ME clip.
Following [62], [69], Sun et al. [70] further studied apex
frame-based MER, which could leverage massive images in
MaE databases and turned out to be able to obtain better
performance than employing the whole videos.

One motivation for researchers to develop single apex
frame-based ME analysis methods is that processing single
apex frames reduces computational complexity. However,
on the other side, temporal information is lost when using
one single frame. Some works [71], [72] proposed to
use multiple key ME frames as inputs. ME sequences
recorded with high-frame rates (e.g., 200 fps) might con-
tain redundant information for ME analysis, and Liong
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Input modality Strength

Shortcoming

Apex [62],[69],[70] | Low computation; Leverage the facial images

Require magnification and apex detection; No temporal information

Frame aggregation . .
[711721.[731.074] Leverage key temporal information

Images

Rely on frame selection stratagy

Dynamic image

[761.1771.781.179] Embedding spatio-temporal information

Require dynamic information computation

Video [801,[81],

[82].183].[841.[85].(86] Process directly

Information redundancy; Various lengths

Optical flow [96],[97],[98]

Remove identity to some degree; Movement considered

Optical flow computation is necessary

and Wong [72] demonstrated that using only the onset
and apex frames of one ME as the input could provide
sufficient spatial and temporal information for the analysis.
Furthermore, Kumar and Bhanu [73] and Liu et al. [74]
designed strategies for automatic key frame selection, and
the selected key frames are aggregated as the input for
MiX.

Embedding dynamic information of a video to a stan-
dard image can form dynamic image input, which has been
proposed for action recognition [75]. Considering that
the dynamic image can summarize appearance and subtle
dynamics into an image, multiple MER methods [76],
[771, [78], [79] employed dynamic image as input and
achieved promising performance. The dynamic image can
simultaneously consider spatial and temporal information,
and keep computational efficiency by processing only one
image.

2) Video Input: ME video clips are commonly utilized
input for ME analysis [80], [81], [82], [83], [84], [85],
[86]. It considers spatial and continuous temporal infor-
mation simultaneously and can be processed directly with-
out extra operations. However, the ME videos have short
and varying duration. Many approaches employed TIM
to interpolate the ME clips to longer and/or the same
length [61]. There are methods using spatial-temporal
descriptors, such as local binary patterns from three
orthogonal planes (LBP-TOP) [81], long short-term mem-
ory (LSTM), and some methods utilizing LSTM and recur-
rent neural networks (RNNs) [87], which aim to process
the time-series data with various duration. However, there
is redundancy in ME sequences, and the computational
cost is relatively high [88].

3) Optical Flow: Another widely used input is optical
flow. Optical flow estimates the local movement between
images by computing the direction and magnitude of
pixel movement in image sequences [89]. Optical flow
has been verified as effective for movement representa-
tion. In recent years, various optical flow computation
methods have been proposed [90], [91], [92], [93],
[94], such as Lucas-Kanade [90], Farnebick’s [93], TV-
L1 [94], and FlowNet [95]. Inspired by the effectiveness
of optical flow, many ME analysis methods utilized opti-
cal flow to represent the micro-facial motion [96], [97],
[98]. Furthermore, the optical flow can reduce the iden-
tity characteristic to some degree [96]. MER approaches
based on optical flows often outperform MER approaches

based on appearances [96], [97]. However, current optical
flow-based MER approaches mainly employ the traditional
optical flows with complicated feature operations leading
to slow computation.

Moreover, considering the strengths of different inputs,
some works combined multiple inputs to learn multiview
information to further improve the performance [84],
[971, [99], [100]. The summarization of the input
strengths and shortcomings is shown in Table 2.

C. ME Spotting

As earlier discussed, ME spotting is one of the main
tasks in automatic ME analysis, which identifies temporal
locations (sometimes also the spatial places in faces) of
MEs in video clips. Three keyframes are included in a
complete process of one ME, i.e., the onset, the apex, and
the offset. The onset is the first frame in which the ME
motion is first discriminable. The frame with the highest
motion intensity in the ME clip is the apex frame. The offset
is the frame marking the end of the motion. ME spotting
could be identifying the keyframes in long clips. Spotting
is the very first step before many other ME analysis tasks,
such as MER and ME action unit detection but even more
challenging. There are human test experiments in the
research of [61], which indicate that automatic MER tech-
nology can outperform humans, while the performance
substantially decreases when including the ME spotting
step in the completed ME system.

The ME community has carried out preliminary research
in ME spotting. The second Facial Micro-Expression Grand
Challenge (MEGC 2019) proposed challenges for ME spot-
ting in long videos [101]. The long videos contain a lot
of non-ME movements, such as eye blinking, weak head
rotation, swallowing, and MaEs, which are similar to prac-
tical situations. Furthermore, the third MEGC 2020 [102]
developed the challenge to spot both MaE and ME from
long videos. In this section, we discuss ME spotting in
terms of heuristic and machine learning-based methods
followed by a discussion.

1) Heuristic ME Spotting: Traditional algorithms are usu-
ally training-free, heuristic, and spot MEs by comparing
feature differences in a sliding window with fixed-length
time [61], [62], [111]. The location of MEs can be
determined by a thresholding method. LBP [61], [111],
HOG [61], and optical flow [103], [112], [113], as shown
in Fig. 4, are the commonly used features for ME spotting,

Vol. 111, No. 10, October 2023 | PROCEEDINGS OF THE IEEE 1221



Zhao et al.: Facial Micro-Expressions: An Overview

Table 3 Comparison of Heuristic and Machine Learning-Based ME Spotting Methods

Method | Year | Input feature Spotting SMIC-E-HS CASME II CAS(ME)? SAMM
[103] 2015 OF Flow vector Threshold AUC: 95 - - -
- [104] 2016 OF MDMO Threshold - - Fl1: 0.3348 -
Heuristic
[61] 2018 | Video LBP Threshold AUC: 83.32 AUC: 92.98 - -
. ) FI ME: 0.0547 F1 ME: 0.1331
[105] 2020 OF Flow vector Multi-Scale Filter - - Fl MaE: 02131 | F1 MaE: 0.0725
[106] 2016 | Video Landmark Adaboost (5-folds) AUC: 86.93 - - -
[46] 2017 | Video | Intensity change SVM (LOSO) AUC: 88 AUC: 97 - -
. . [107] 2018 | Video CNN Feature matrix processing (5-folds) - ACC: 71.97*
Machine learning based -
[108] 2019 | Video HOG LSTM (LOSO) F1: 0.62 F1: 0.86 - -
[109] | 2020 | Video LBCNN SVM (LOSO) Fl: 0.0595 F1: 0.0813
[110] 2021 | Video 2+1D CNN Classification regression (LOSO) - - F1: 0.026 F1: 0.049
L OF: Optical flow.
2 F1: Fl-score; AUC: Area under ROC curves; ACC: Accuracy.
* Spotting the apex frame in long videos.

which are specifically discussed in this section. Li et al. [61]
proposed a training-free ME spotting approach based on
LBP difference contrast in 6 x 6 blocks and a sliding
window. Moreover, baseline results of ME spotting in long
videos were provided in this study [61]. On the other
hand, Patel et al. [103] located the apex, onset, and offset
frames in ME clips by computing the motion amplitude
shifted over time in optical flow. Main directional max-
imal difference analysis (MDMD) was proposed [104],
[113] to spot MEs based on the magnitude of maximal
difference in the main direction of optical flow. Similar
to [61], MDMD also utilized a sliding window and block-
based division. Ma et al. [114] employed the oriented
optical flow histogram to further improve the apex frame
spotting performance. To distinguish MaEs and MEs in
long videos, Zhang et al. [105] proposed to disentangle
head movement by computing the mean optical flow of
the nose region and utilizing a multiscale filter to increase
the ability to spot MEs and MaEs.

All of the above methods spot MEs in the
spatial-temporal domain. However, MEs have rapid
and low-intensity spatial movements, which are not
obvious in the spatial-temporal domain but can lead
to large changes in the frequency domain. To this end,
frequency-based ME spotting methods [62], [69] were
presented to spot the apex frame in the ME sequence by
exploiting information in the frequency domain, which
can reflect the rate of facial changes.

The strength of feature difference-based approaches is
that the approaches consider the temporal characteristic
according to the size of the sliding window, and the spot-
ting results can be simply obtained by setting thresholds.
However, as they are heuristic, mainly based on practical
experience regarding, e.g., a threshold in the feature dif-
ference value, the spotting results can be easily influenced
by the other facial movements with similar intensity or
duration, such as eye blinks. Thus, it is hard to distinguish
MEs from other similar facial movements with feature-
difference-based ME spotting methods.

2) Machine Learning-Based ME Spotting: As the heuris-

tic methods based on thresholds are weak to distinguish
MEs from other facial movements, machine learning-based
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methods were developed to tell apart different facial move-
ments, which regards ME spotting as a binary classification
of non-ME and ME frames. In general, these methods
first extract features of each ME frame, and a classifier is
utilized to recognize the ME frames.

Husdk et al. [46] computed an image intensity change
descriptor on Rols and applied an SVM classifier to spot
MEs. Xia et al. [106] and Borza et al. [115] both used
an Adaboost model to classify ME frames for ME spot-
ting. Specifically, the former utilized geometric features of
landmarks of face shapes, and the latter employed motion
descriptors based on absolute frame differences.

Inspired by the successful application of deep learning
in action detection [116], Zhang et al. [107] first pro-
posed to search the ME apex frame in long ME videos
thorough adopting a convolutional neural network (CNN)
with feature matrix processing. Later, LSTM networks were
introduced in [108] and [40] to spot MEs in long videos
due to their strength in processing sequences with var-
ious lengths. Moreover, Wang et al. [110] presented an
end-to-end deep framework consisting of three modules:
clip proposal, 2 + 1D CNN, and classification regression,
to extract features, propose ME clips, and classify MEs,
respectively. Moreover, a local bilinear structure-based net-
work was proposed to extract local and global features in
a fine-grained way to identify MEs and MaEs [109].

3) Discussion: In general, the heuristic ME spotting
methods are mostly based on thresholds to classify MEs
and non-MEs, which are weak to distinguish the MEs
from other facial movements, such as eye blinks. The
machine learning-based methods can recognize different
facial movements by training classifiers. However, the per-
formance of ME spotting is restricted by the small-scale ME
datasets and unbalanced ME and non-ME samples.

With the increase in ME spotting research, various
evaluation protocols have been proposed, using different
training and testing sets, and various metrics, such as the
area under the curve (AUC), the receiver operating charac-
teristic (ROC) curve, mean absolute error (MAE), accuracy,
recall, and Fl-score [18]. It causes inconsistencies and
makes fair comparisons very hard, as shown in Table 3.
Thus, in the future, it is essential to design standard
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Fig. 4. Handcrafted features for ME analysis. (a) LBP-TOP [48].
(b) HOG [117]. (c) Optical flow [118]. (d) Delaunay
triangulation [119].

evaluation protocols for ME spotting as the first step has
been taken in Tran et al.’s [40] benchmark work. In addi-
tion, multiple studies attempted to explore spotting MEs
and MaEs simultaneously in long videos. Due to the pres-
ence of noise, irrelevant movements, and mixed MEs and
MaEs, it is very challenging to learn discriminative features
on limited datasets and accurately locate the various MEs
and MaEs that should be further studied.

D. MER

The spontaneous MER research with computational
technology can be traced to the work of [48]. Pfis-
ter et al. [48] proposed to use spatiotemporal local texture
descriptors combined with a TIM. Later, various methods
were developed for efficient MER. In the beginning, most
of the MER methods are based on traditional handcrafted
features. In recent years, the fast development of deep
learning technology enables deep learning-based methods
to archive the state-of-the-art performance in MER. In this
section, we discuss the MER methods in terms of tradi-
tional learning and deep learning methods.

1) Traditional Learning Methods: Due to most ME
datasets with limited samples, handcrafted features are
widely researched in MER. The handcrafted features
represent the image details without explicit semantic
knowledge/meaning, such as intensities [120] and gra-
dients [61]. Basic classifiers such as KNN and SVM are
employed to classify the features. In this section, we mainly
discuss the LBP-TOP and its variants, gradient variants, and
optical flow-based approaches, which are widely used in
MER, as shown in Table 4.
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The most popular appearance feature utilized for MER
is LBP-TOP [81]. LBP-TOP is a texture descriptor thresh-
olding the neighbors of each pixel with a binary code
in spatial and temporal dimensions. Most of the MER
research employs the LBP-TOP as their baseline due to
its computational simplicity, as shown in Fig. 4(a). Later,
several LBP-TOP variants were proposed to meet the dif-
ferent needs of MER [120]. Wang et al. [120] presented a
spatiotemporal descriptor to enhance the efficiency of MiX
by suppressing the redundancy information of LBP-TOP
with six intersection points (LBP-SIP). Then, a more com-
pact variant with less computational time, LBP-MOB was
proposed. LBP-MOP concatenates the LBP features from
the temporal pooling results of image sequences in three
orthogonal planes [121]. Huang et al. [122] designed
a spatiotemporal completed local quantized pattern
(STCLQP), which considers not only the pixel intensity but
also the sign, magnitude, and orientation components.

Aside from LBE another widely used feature for MER
is the gradient-based feature. High-order gradients could
represent the structure information of an image in
detail [123]. The histogram of gradients (HOG) is one of
the most widely used features for its ability to describe
the edges in an image with geometric invariance [123],
as shown in Fig. 4(b). Li et al. [61] developed the his-
togram of image gradient orientation (HIGO) ignoring
the magnitude weighting of the first-order derivatives to
depress the influence of illumination affect. Moreover, both
HOG-TOP and HIGO-TOP were utilized together in [124]
to further improve the performance of MER.

Considering the strength of optical flow discussed in
Section V-B, several works designed feature descriptors
based on optical flow for MER. Liu et al. [118] proposed a
main directional mean optical flow (MDMO) that considers
both local information and its location through regions
of interest (Rols), as shown in Fig. 4(c). The MDMO
only exploits the dominant direction of optical flow in
each Rol. However, facial motions spread progressively
because of the elasticity of the skin. Allaert et al. [125]
presented to extract the coherent movement of the face
from dense optical flow to better describe facial movement.
Inspired by the strength of optical strain in capturing
small facial deformation, Liong et al. [126] proposed to
apply optical strain to the MER task. Optical strain com-
putes the shear and normal strain tensor components of
optical flow. To reduce the dimensionality and enhance
computational efficiency, Liong et al. [126] resized and
max-normalized the strain maps to a relatively low resolu-
tion to keep consistency across the database. To effectively
learn ME information from the active regions, optical strain
weighted (OSW) features were presented to weight local
LBP-TOP features according to the temporal mean-pooled
optical strain map [127]. Moreover, Liong and Wong [72]
designed a biweighted oriented optical flow (BI-WOOF)
descriptor adding local and global weighting to HOOF by
optical strain and magnitude values, respectively, in order
to reduce the noisy optical flows. In contrast to the
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above works [72], [126], [127], Happy and Routray [128]
proposed a fuzzy histogram of optical flow orientation
(FHOFO) collecting the motion directions and ignoring
motion magnitudes due to the low intensity of MEs.
A fuzzy membership function was utilized to map the
directions of motion into angular bins to create smooth
histograms for motion representation.

Besides the above features, there are descriptors rep-
resenting MEs in other views, such as color [129] and
facial geometry [119], [130]. Wang et al. [129] pro-
posed a tensor-independent color space (TICS) method.
In TICS, the RGB color is transformed into independent
color components and combined with dynamic texture to
increase MER accuracy further. Lu et al. [119] designed
a Delaunay-based temporal coding model (DTCM) to nor-
malize the ME sequences temporally and spatially based on
Delaunay triangulation to suppress the personal appear-
ance influence, which is not relevant to MEs, as shown
in Fig. 4(d). Furthermore, a facial dynamics map (FDM)
[130] was proposed to handle subtle face displacements
by characterizing the movements of an ME in different
granularity.

Once features are extracted, classifiers are used to cat-
egorize the MEs. Classification involves two stages: train-
ing and testing. In the training stage, classifiers learn to
recognize MEs based on the labels and extracted features.
In the testing stage, the trained classifier’s performance is
evaluated by evaluation metrics, such as accuracy and F1
score. Various supervised classification methods have been
used for MER, e.g., support vector machine (SVM) [131],
Adaboost [132], random forest [133], k-Nearest Neigh-
bor (kNN) [128], [134], and linear discriminant analy-
sis (LDA) [135]. SVM is the most widely used classifier
because of its robustness, accuracy, and effectiveness espe-
cially when the training samples are limited.

2) Deep Learning Methods: In recent years, deep learn-
ing has achieved excellent performance in many research
fields, such as facial expression recognition [138], object
detection [139], and image classification [140]. Several
researchers have attempted to explore MER with deep
learning. However, deep learning is a data-driven method
that requires a large amount of data to learn a robust
representation. MEs have small-scale datasets and low
intensity, which makes MER based on deep learning hard.
Patel et al. [141] first attempted to utilize facial expres-
sion and object-based CNN models and selected relevant
deep features for representing MEs. However, its MER
accuracy on CASME II is 47.3%, much lower compared
to handcrafted descriptors. Following Patel’s work [141],
various deep learning-based methods have been proposed
to improve MER. To date, deep learning-based MER
has achieved state-of-the-art performance by leveraging
massive facial images and designing effective network
structures and special blocks. In the following, we will
first discuss the MER methods of taking advantage of
existing data through fine-tuning, learning from multiview
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data, and transfer learning. Then, effective structures and
blocks designed for learning discriminative ME features
are specifically discussed. Finally, we introduce the losses
applied in MER.

In the beginning, most MER works adopted well-
designed classical convolutional networks, such as ResNet
family [140], [142], [143], Inception network [144],
[145], [146], AlexNet, and VGG-FACE [62], [147]. The
effectiveness of these networks has been verified on com-
mon tasks, such as image classification and face recog-
nition. Furthermore, these networks are pretrained on
datasets with a large number of images, such as ImageNet
and VGG-FACE datasets [147]. Fine-tuning deep networks
pretrained on large datasets can effectively avoid the over-
fitting problem caused by small-scale ME datasets [62],
[741, [77].

To further leverage the information on the limited
ME samples, multiple works adopted multistream net-
work structures to extract multiview features from var-
ious inputs. The optical flow features from the apex
frame network (OFF-Apex-Net) [148] built a dual-stream
CNN for MER based on optical flow-derived components,
the strain along the horizontal and vertical directions.
Khor et al. [149] proposed a dual-stream shallow net-
work (DSSN) based on heterogeneous features. Moreover,
other works developed multiple substreams to extract fea-
tures from frame sequences, static images, optical flow,
or Rols [85], [150], [151], [152]. Song et al. [97], [136]
designed three-stream CNN (TSCNN) models extracting
features from the apex frames, local facial regions, and
optical flow between onset, apex, and offset frames to
leverage the information of the static spatial, local, and
dynamic temporal information, as shown in Fig. 5(a).
In addition, other works developed multiple substreams
to extract features from frame sequences and optical flow,
or Rols. She et al. [152] employed three Rols and global
regions, and designed a four-stream model to explore local
and global information. To further explore the temporal
information of MEs, several works [88], [153], [154]
cascaded CNN and RNN or LSTM to extract features from
individual frames of ME sequence and capture the facial
evolution of MEs.

Recent research demonstrates that taking advantage
of the information on relevant tasks could also bene-
fit facial expression recognition [139]. Inspired by this
finding, to make full use of the information on faces,
multiple research developed multitask learning for bet-
ter MER by leveraging different side tasks [76], [155].
Nie et al. [76] designed a GEnder-based MER (GEME)
incorporating gender detection task with MER, as shown in
Fig. 5(b). Furthermore, Zhou et al. [146], [156] proposed
to recognize AUs and MEs and further aggregated AU
representation into ME representation to improve MER
performance. Other methods leverage the knowledge of
other tasks through transfer learning. Directly fine-tuning
on a pretrained model is the simplest. Besides fine-tuning,
knowledge distillation is also widely applied to MER [70].
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Fig. 5. Demonstration of improving MER performance through different methods. (a) TSCNN employing a multistream structure to leverage
multiview inputs [97], [136]. (b) Knowledge distillation [70]. (c) GEME with multitask learning framework [76]. (d) Channel attention
module [137]. (e) Spatial attention module [137]. (f) Graph on AU representation [83]. Different colors in the figure represent different paths

in the network.

Knowledge distillation utilizes pretrained high-capacity
networks to guide the training of small and fast net-
works [157]. Sun et al. [70] guided the shallow network
learning for MER by mimicking the intermediate features
of a network trained for AU detection and facial expression
recognition. Fig. 5(c) illustrates the knowledge distilla-
tion process. However, it is not reasonable to directly
mimic the MaE representation, as the appearances of MEs
and MaEs have differences. To this end, instead of fea-
tures, Zhou et al. [158] proposed to transfer attention to
improve MER. Another effective transfer learning approach
is domain adaptation that obtains domain invariant repre-
sentations through embedding domain adaptation into the
deep learning pipeline. The adversarial learning strategy is
adopted in MER to narrow down the gap between the MEs
and MaEs, and leverage massive MaE images to boost the
MER performance [159], [160], [161].

Besides utilizing more data, many studies designed
effective shallow networks for MER to avoid overfitting
[82], [162], [163]. Zhao and Xu [164] designed a six-layer
CNN and utilized a 1 x 1 convolutional layer to process
the ME input to increase the nonlinear representation.
Liong et al. [165] designed a Shallow Triple Stream
Three-dimensional CNN (STSTNet) with two layers to
learn features from optical flow features computed from
the onset and apex frames in each ME video clip. Other
works trim multiple convolutional layers of the deep net-
work to achieve a shallow network [149], [166].

Since MEs involve fewer facial muscles (usually only
one or two) with low intensityy, MEs are related to
changes [167] in Rols. In order to emphasize learning
on Rols and reduce the influence of information unre-
lated to MEs, multiple works introduced attention mod-
ules [168], [169], [170], [171]1, [172], [173]. Inspired
by the squeeze-and-excitation blocks [150] adaptively

learning the weights of each feature channel, channel
attention was employed in MER with spatiotemporal atten-
tion to improve the representational ability of MEs [66],
[137], [174], [175], as shown in Fig. 5(d) and (e).

In addition, MEs perform as specific combinations
of multiple facial AUs. The latent semantic information
among facial changes has an important contribution to
MER. The graph convolutional network (GCN) has been
verified to effectively model the semantic relationships.
Inspired by the successful application of GCN in face
analysis tasks, the research [65], [83], [146], [176]
applied the GCN to model the relationship between the
local facial movements. Specifically, Lei et al. [65], [177]
designed graphs based on the ROIs along facial landmarks,
while [73], [83], [146], and [176] built graphs on AU-level
representations to infer the AU relationship and boost MER
performance, as shown in Fig. 5(f).

Deep networks apply loss functions to perform end-to-
end classification. The loss function penalizes the devi-
ation between the predicted and true labels during the
learning process. Most ME analysis works directly utilize
softmax cross-entropy loss that is widely used in classi-
fication tasks [178]. However, ME datasets suffer from
low interclass differences due to the low intensity of MEs.
Contrastive loss [179], triplet loss, and center loss [180]
were introduced to MER to increase intraclass compactness
and interclass separability of MEs [69], [160]. In addition,
the samples in ME datasets have imbalanced distribution
since some MEs, such as fear, are difficult to trigger. The
focal loss was employed to alleviate the issue by focusing
on misclassified and hard samples [76], [96], [146].

3) Discussion: MEs are involuntary, rapid, and subtle
facial movements. The main challenge for robust MER is
how to effectively extract discriminative representations.
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Table 4 Traditional Learning-Based MER on SMIC, CASME, and CASME I

Method | Year Lxe;processing Input feature Classifier | Protocol SMIC EoME € SME
Mag TIM Cate. Fl ACC | Cate. Fl ACC | Cate. Fl ACC
[120] 2014 - - Video LBP-SIP SVM LOVO 3 - 66.40 - - 5 - 62.80
[132] 2014 - v Video | LBP-TOP+STM | Adaboost | LOSO 3 0.4731 | 44.34 - - - 5 0.3337 | 43.78
[121] 2015 - Video LBP-MOP SVM LOSO 3 - 50.61 - - - 5 - 43.72
[122] 2016 - - Video STCLQP SVM LOSO 3 0.6381 | 64.02 4 0.5 57.31 5 0.5836 | 58.39
[61] 2017 v v Video HIGO SVM LOSO 3 - 68.29 - - - 5 - 67.12
[118] 2016 - v OF MDMO SVM LOSO 3 - 80.8 4 68.86 5 64.83
[126] 2014 - OF (O SVM LOSO 3 - 53.56 - - - - - -
[128] 2017 - v OF FHOFO SVM LOSO 3 0.5182 | 51.22 4 0.5409 | 65.99 5 0.5197 | 55.86
[129] 2014 - - OF TICS SVM LOSO 3 - 59.79 4 - 61.86 5 - 60.82
[130] 2017 - v OF FDM SVM LOSO 3 0.5380 | 54.88 4 0.2401 | 42.02 3 0.2972 | 41.96
! "Mag: Magnification; TIM: Temporal interpolation model.
2 OF: Optical flow;
3 Cate: Category; F1: Fl-score; ACC: Accuracy.

Handcrafted features are low-level representations that
are able to effectively describe the texture, color, and so
on while being weak in extracting high-level semantic
information. In contrast, deep learning-based features are
abstract high-level representations.

As shown in Tables 4 and 5, in the beginning, MER
works used handcrafted features. In recent years, with the
development of deep learning, most of the current MER
methods are based on CNNs, and the deep-based MER
achieves state-of-the-art performance. The performances
of MER are influenced by various factors, such as prepro-
cessing, features, and network structure. It is difficult to
directly compare the methods of every step. However, from
the experimental results, the general trends of MER can be
found.

In general, the preprocessing step could benefit the MER
for both traditional learning and deep learning-based MER
approaches. Fig. 6 shows a comparison of the performance
with TIM and magnification. From Fig. 6, we could draw
a conclusion that magnification and TIM can benefit MER.
However, the suitable magnification and temporal interpo-
lation factor should be further studied.
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Fig. 6. Comparisons of MER performance with/without TIM and/or
magnification. Specifically, results are based on LBP-TOP and
LBP-TOP + TIM on CASME 11 [181], STRCN-A and STRCN-A + Mag on
CASME II [96], and HIGO, HIGO + TIM, and HIGO + TIM + Mag on
SMIC [61].
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Deep learning is a data-driven method. The small
amount of MEs is far from enough to train a robust net-
work. Current MER research designed shallow networks or
leveraged massive MaE images to solve the data limitation
problem. The shallow network and transfer learning have
achieved big development for MER on small-scale ME
datasets, such as STSTNet [165], MiMaNet [161], and
DIKD [70], as shown in Table 5. However, the perfor-
mance is still far from satisfying for real-world applica-
tions. For the former approach, more effective blocks and
structures should be developed to learn discriminative ME
features with fewer parameters in the future. For the latter
approach, considering the appearance difference between
MEs and MakEs, transfer learning methods should be fur-
ther studied to solve the domain shift problem. Lever-
aging information from other related tasks, such as age
estimation and identity classification, could be considered.
In addition, unsupervised learning and semisupervised
learning [182] [183] are promising future directions for
MER, as they could leverage the massive unlabeled images.

E. ME-AU Detection

ME analysis is a relatively new topic. Currently, most
research focused on ME spotting and recognition [186],
[187], [188], [189]. The study of facial expression recog-
nition indicates that AU detection is able to facilitate
complex facial expression analysis, and developing facial
expression recognition with AU analysis simultaneously
could boost the facial expression recognition performance
[190], [191].

Inspired by the AU contribution to facial behavior
analysis, researchers started to study AU detection in MEs.
However, compared to MaEs, AU detection becomes more
challenging due to the low intensity of MEs and small-scale
ME datasets. AU detection is a fine-grained facial analysis
that is complicated. Common facial AU datasets contain
a large number of facial samples and identity diver-
sity [192], e.g., Aff-Wild2 [193] (564 videos/2 800000
frames of hundreds of subjects). In contrast, an ME dataset
may only contain thousands of images, e.g., CASME con-
taining around 2500 images of 19 subjects. Moreover,
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Method Year Liesprocessing Input Network architecture pre-training | Protocol SMIC G SMEJIL B
Mag TIM Cate. Fl ACC | Cate. F1 ACC | Cate. Fl1 ACC
ELRCN [184] 2018 = v OF 4S-CNN+LSTM v LOSO = = = 5 0.5 52.44 = =
OFF-ApexNet [148] 2019 - OF 2S-CNN - LOSO 3 0.6709 | 67.68 3 0.8697 | 88.28 3 0.5423 | 68.18
TSCNN [97] 2019 ' OF+Apex 3S-CNN ' LOSO 3 0.7236 | 72.74 5 0.807 | 80.97 5 0.6942 | 71.76
LEARNet [78] 2019 - DI CNN LOSO 3 81.60 7 76.57
3D-FCNN [85] 2019 - v OF 3S-CNN LOSO 3 - 55.49 5 - 59.11 - - -
STSTNet [165] 2019 ' OF 3S-3DCNN LOSO 3 0.6801 | 70.13 3 0.8382 | 86.86 3 0.6588 | 68.10
3D-CNN+LSTM [154] | 2019 - Video 3DCNN+LSTM LOSO 5 - 62.5 - - -
Graph-TCN [65] 2020 v Apex TCN+GCN LOSO 5 0.7246 | 73.98 5 0.6985 | 75.00
AU-GACN [83] 2020 - - Video 3DCNN+GCN - LOSO 3 0.355 71.2 3 0.433 70.2
CBAMNet [137] 2020 ' v Video 3DCNN ' 10-fold - - - 3 - 69.92 - -
DIKD [70] 2020 - Apex CNN+KD+SVM LOSO 3 0.71 76.06 4 0.67 72.61 4 0.83 86.74
AffectiveNet [185] 2020 v DI 4S-CNN LOSO 4 - 68.74 - - -
GEME [76] 2021 DI 2S-CNN+ML LOSO 5 0.7354 | 75.20 5 0.4538 | 55.88
LR-GACNN [73] 2021 ' OF+Landmark 2S-GACNN LOSO 5 0.7090 | 81.30 5 0.8279 | 83.24
GRAPH-AU [177] 2021 v Apex 2S-CNN+GCN LOSO 5 0.7047 | 74.27 5 0.7045 | 74.26
DSTAN [175] 2021 = v OF+Video 2S-CNN+LSTM+SVM LOSO = = = 5 0.73 75 = = o
KFC [172] 2021 - - OF 2S-CNN - LOSO 3 0.78 71 5 0.7375 | 72.76 5 0.5709 | 63.24
AMAN [173] 2022 ' v Video CNN ' LOSO 3 0.77 79.87 5 0.71 75.40 5 0.67 68.85
1 Mag: Magnification; TIM: Temporal Interpolation Model.
2 OF: Optical flow; DI: Dynamic image.
3 nS-CNN: n-stream CNN; ML: Multi-task learning; DA: Domain adaption; KD: Knowledge distillation.
4 Cate: Category; F1: Fl-score; ACC: Accuracy.

the AUs in MEs have imbalanced distribution, e.g., there
are 129 AU4, while only 13 AU4 are in CASME II. Exist-
ing ME-AU detection research proposed to utilize the
MaEs [194] or specific ME characteristics, such as subtle
local facial movements [66], [195], [196], which are dis-
cussed in more detail in the following, to overcome these
issues.

In order to overcome the lack of ME data, Li et al. [194]
proposed a dual-view attentive similarity-preserving
(DVASP) knowledge distillation to utilize the facial images
in the wild to achieve robust ME-AU detection. Considering
that one of the key factors for successful knowledge dis-
tillation is a generalized teacher network, DVASP utilized
a semisupervised dual-view cotraining approach [197],
[198] to construct a generalized teacher network by
exploiting the massive labeled and unlabeled facial images
in the wild. To address the appearance gap between the
MEs and MaEs, an attentive similarity-preserving distil-
lation method was proposed to break the domain shift
problem by transferring the correlation of important acti-
vations instead of directly mimicking the features. In order
to overcome the lack of ME data, Li et al. [194] proposed a
DVASP to utilize facial images in the wild to achieve robust
ME-AU detection. Considering that a generalized teacher
network is one of the key factors for successful knowledge
distillation, DVASP utilized a semisupervised dual-view
cotraining approach [197], [198] to build a generalized
teacher network by exploiting the massive unannotated
facial images in the wild. To address the appearance
gap between the MEs and MaEs, an attentive similarity-
preserving distillation method was proposed to break the
domain shift problem by transferring the correlation of
important activations instead of directly mimicking the
features.

Other ME-AU research focuses on modeling subtle
AUs [66], [195] based on ME characteristics. An intra-
contrastive and intercontrastive learning method was pro-
posed to enlarge and utilize the contrastive information

between the onset and apex frames to obtain the dis-
criminative representation for low-intensity ME-AU detec-
tion [195]. To effectively learn local facial movement and
leverage relationship information between different facial
regions to enhance the robustness of ME-AU detection,
a spatial and channel attention module was designed
to capture subtle ME-AUs by exploring high-order statis-
tics [66]. On the other hand, Zhang et al. [196] proposed
a segmentation method based on AUs to extract features
on key facial regions and utilized multilabel classification
to classify the AUs.

The specific information on the abovementioned AU
detection methods is shown in Table. 6. We can see that
the work and performance of ME-AU detection are limited.
AU detection is a fine-grained detection identifying differ-
ent facial movements. The low intensity of MEs increases
the difficulty of AU detection. Moreover, the ME-AU detec-
tion suffers from small-scale and extremely unbalanced
datasets as some AUs coexist and the occurrence of some
AUs is very low. In the future, more effective AU detection
approaches should be explored to better study MEs.

E ME Generation

As the discussion in Section IV implies, it is challeng-
ing to collect MEs compared to ordinary facial expres-
sions. Also, annotating MEs needs certified FACS coders
to check videos frame by frame several times, which is
time-consuming and labor-intensive. These issues lead to
limited samples and imbalanced distribution in ME analy-
sis. Synthesizing MEs is an option to solve these problems.
Recently, with the development of generative adversarial
network (GAN) [138], [200], [201], image and video
generations have been widely applied for data augmen-
tation and image translation [202], [203] and achieved
distinctly improved performance in various fields, such
as face generation [204], [205] and style transfer [206],
[207]. Recently, the ME researchers started to explore
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Table 6 AU Detection on CASME Il and SAMM

Method Pre-processing Input Method Protocol CASME II SAMM
Mag TIM Num F1 Num F1
LKEFS [196] - - Video LBP-TOP on key regions 5-fold 26 0.535 26 0.513
SCA [66] - v Video 3D-CNN 4-fold 0.668 4 0.505
DVASP [194] v - Apex 2S-CNN+KD 4-fold 0.726 4 0.520
IICL [195] v - Onset-Apex 3S-CNN 4-fold 8 0.708 4 0.516
! Mag: Magnification; TIM: Temporal interpolation model.
2 nS-CNN: n-stream CNN; DA: Domain adaption; KD: Knowledge distillation.
3 Num: the number of AUs ; F1: Fl-score.

utilizing GAN to generate facial images. However, the
MEs are subtle and rapid, and straightforwardly utilizing
GANs cannot generate satisfying MEs. The workshop about
MEGC 2021 started to include ME generation task [208],
leading to increased interest in ME generation. Current
ME generation methods mainly leverage AUs or facial key
points.

Since facial expressions are constituted by AUs [209],
[210], AU-ICGAN [83], FAMGAN [211], and MiE-X [199]
introduced GANs based on AUs to generate MEs.
Xie et al. [83] proposed the AU Intensity Controllable
GAN (AU-ICGAN) to synthesize subtle MEs. Considering
that the ME has rapid change and temporal information
plays an important role, AU-ICGAN simultaneously eval-
uated the image quality and video quality to generate
nearly indistinguishable ME sequences, which effectively
improves the MER performance. Xu et al. designed fine-
grained AU modulation (FAMGAN) to eliminate the noise
and deal with the asymmetrical AUs. Super-resolution
was incorporated into FAMGAN to enhance the quality of
the generated ME images. In addition, Liu et al. [199]
synthesized a large-scale and trainable ME dataset (MiE-
X, which includes 5000 identities and 45000 samples
in total) based on the relationship between AUs and
expression categories. The experiments demonstrated that
generated MEs could help improve the MER performance.
As shown in Fig. 7, the performance of ApexME [62] and
Branches [159] pretrained on MiE-X is improved by 3.1%
and 3.2% on MMEW and 5.4% and 3.0% on SAMM in
terms of accuracy compared to pretrained on ImageNet.

ACC(%)
64
62
60
58
56
54
52
50
48

MMEW
w ApexME  ® ApexME+MiE-X

SAMM
Branches ® Branches + MiE-X

Fig. 7. Comparisons with the methods pretrained with ImageNet or
MIE-X established by ME generation method [199]. The ApexME and
Branches are pretrained on ImageNet, while ApexME + MiE-X and
Branches + MIE-X are pretrained on the synchronized dataset MiIE-X.
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Other works estimated facial motion using key points
to generate ME images [212], [213]. Specifically,
Fan et al. [212] developed a deep motion retargeting
(DMR) network to capture subtle ME variants by learning
key points. Zhang et al. [213] combined the motion model
based on key points and local affine transformations with
facial prior knowledge and achieved first place in MEGC
2021. Besides, Yu et al. [214] proposed an Identity-aware
and Capsule-Enhanced GAN (ICE-GAN) to synthesize MEs
with the discriminator detecting the image authenticity
and expression categories. Moreover, instead of generating
ME images, Liong et al. [215] synthesized optical-flow
images of MEs to improve the MER performance based on
computed optical flow.

ME generation is a new direction in ME analysis. The
subtle and rapid facial movements make ME challenging.
Currently, the quality of the generated MEs is not realistic
enough. However, with further investigation, it is expected
that they could be not only helpful in other ME analyses,
such as MER, ME spotting, and ME AU detection, but also
in ME synthesis for augmented reality, HCI, and so on.

VI. OPEN CHALLENGES AND FUTURE
DIRECTIONS

Knowing how others feel is an important element in
social interactions, but it is not always an easy task. Some-
times, people may intentionally express their emotions in
the form of, e.g., facial MaEs in order to deliver mes-
sages or attitudes, and sometimes, people may hide their
true feelings for different reasons. Computational methods
developed for ME analysis, including spotting, recognition,
and generation, could help in multiple use cases e.g.,
convert emotion understanding and expert training.

Covert Emotion Understanding: ME analysis tools can
aid doctors and therapists in better understanding people’s
covert emotions for emotion well-beings. Just as how the
ME phenomenon was first found, an important application
case is a mental assessment and tutoring, especially for
young and disordered people. About one in ten young peo-
ple is affected by mental health problems [216], which can
cause wide-ranging effects. They can be long-lasting, and
there are well-identified increased physical health prob-
lems associated with mental health [217]. Therapists often
check recorded videos to examine and review patients’



conditions, which is very time-consuming, and ME analysis
methods can be implemented as a tool aiding the process,
e.g., to locate and tag suspect moments for review. Such
fine-level video analysis can also help doctors find covert
emotions in assessments, which are valuable for diagnosis
and treatment. Also, the technique can also be applied in
other scenarios, such as law enforcement for investiga-
tions, online education, and intelligent human—computer
interaction, in which MEs should be concerned for fine-
level, accurate emotion interpretation.

Expert Training: Besides working as a tool aiding experts
in multiple scenarios, ME analysis tools (especially ME gen-
eration) can also help in training experts to improve their
abilities to read covert emotions. One thing worth noticing
is that sample diversity in terms of age, gender, and race
should be considered and balanced in designing such tools
to insure fair usage of the technology. The ability to read
others’ emotions is essential for some occupations, such
as medical, security, and others. A law enforcement officer
or a doctor interacts with a large number of people daily,
and they must give judgments and decisions depending on
observations within a few minutes. Training tools that can
improve their ability to read people’s emotions (even the
covert ones) will benefit their performance at work. One
study illustrated that medical students’ communication
skills were significantly improved after being trained with
the ME training tool METT [218]. However, as mentioned
in Section II, METT is composed of “man-made” ME clips
that are different from real MEs. Using real spontaneous
MEs would have better training effects but is not possible
to achieve a large number of real samples on all categories
and designated identities, as required for developing a
training tool. The technique of ME generation could pro-
vide another option. Robust generation models can learn
characteristics from real ME samples and generate a large
number of MEs on designated model faces, which could
provide better and richer training materials.

Even though MEs have been a hot topic with great
potential in multiple application scenarios, there are note-
worthy challenges from both technological and ethical
perspectives, which need to be addressed in future studies.

A. Challenges From the Technological Perspective

1) Small-Scale and Imbalanced Data: Data are the central
part of ME research. Although multiple datasets have been
collected and released, the scale of most current datasets is
still limited, i.e., a few hundred samples. Data annotation
is one key issue that hinders the development of large-scale
ME datasets as it requires certified expertise and is very
time-consuming. Moreover, some emotion, such as fear,
is difficult to be evoked, which causes data imbalance
issues. Data-driven methods tend to classify test samples
to the majority class leading to poor classification per-
formance. Thus, lacking large-scale, well-annotated, and
balanced ME data is still a big barrier to ME research.
Since it is challenging to induce and label MEs from
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scratch, leveraging vast online videos with computer—
human-cooperated annotations and synthesizing ME sam-
ples for imbalanced categories could be possible solutions
for the data issues [219].

2) Compound MEs: Many MER studies are built on
the assumption of a simplified scenario that each ME
appearing at one single time window corresponds to one
emotion, e.g., happiness, anger, surprise, sadness, fear, and
disgust. However, that is not always the case in practice.
Psychological studies [220], [221] show that people can
produce mixed expressions in their daily life when two or
more “basic” emotions are felt. For instance, surprise can
occur with either happiness or fear at the same time and
expressed on the face as “happily surprised” or “fearfully
surprised.” Such mixed expressions are referred to as com-
pound expressions; 17 compound expressions had been
identified in [221], suggesting that MaEs and emotions are
more complex than previously believed. It is reasonable to
assume that there could also be compound MEs, as MEs
are initiated the same way as MaEs driven by people’s felt
emotions. So far, only a few works [222] have concerned
compound emotions for ME analysis. Compound MEs
could be rare and more challenging to study, but, as they
reflect the specific emotional states that practically exist,
they should be considered and not ignored in future ME
studies. On the other side, one should always be cautious
when inferring complex status as compound emotions
based on the observation of such a short time window of
an ME, as there are open discussions [223] about whether
recognizing emotions without context is reliable.

3) Multimodal MER: Psychological research illustrates
that there are various ways to express emotions. Visual
scenes, voices, bodies, other faces, cultural orientation,
and even words shape how emotions are perceived in a
face [223]. Leveraging complementary information from
multiple modalities can also enhance ME analysis for a
better understanding of human’s covert emotions. With the
rapid development of social media, a large amount of data
including texts, videos, and audio is shared online, which
could be employed for multimodality research. Moreover,
videos recorded from various sensors provide different
forms of visual information, such RGB, depth, thermal,
and 3-D meshes, which might contribute to the task of
ME analysis in different ways. Two lasted ME datasets
(i.e., 4DME and CAS(ME)®) have already considered this
in their data building. It would be interesting and valuable
to explore integrating multichannels and multimodalities
for ME analysis in the future.

4) MEs and MaEs: Most previous facial expression stud-
ies explored MaEs and MEs separately, i.e., when exploring
the MER task, concerning ME clips and ignoring MaE cases.
However, in practice, it is natural and often that MaEs
and MEs coexist and even overlap [23] with each other.
In the MEGC challenges (MEGC 2019 and MEGC 2020),
the organizers posed one track to spot both MEs and MaEs
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in long video clips. So far, the challenge data only consider
a simpler situation where MaEs and MEs coexist but occur
separately. Future studies should dig deeper to explore
more challenging situations where MaEs and MEs overlap
with each other, which would be a substantial step toward
the accurate understanding of human emotion in realistic
situations.

5) MEs in Realistic Situations: So far, most existing ME
studies are still restricted to analyzing MEs collected in
lab environments. They usually concern frontal view facial
images without big head movements, illumination varia-
tions, or occlusion. However, in realistic situations, it is
impossible to avoid these noises. ME analysis methods built
on the basis of constrained settings might not generalize
well to wild environments. Effective algorithms for analyz-
ing MEs in unconstrained settings with pose changes and
illumination variations must be developed in the future.

Moreover, considering the facts that: 1) there is too
little training data and 2) numerous “handcrafted” tra-
ditional features and “handcrafted” neural architectures
have been proposed, more research could be dedicated
to specific applications (e.g., in the medical field, HCI,
security, and business), in which application-dependent
constraints dealing, e.g., with illumination, viewing angles,
and types of facial expression, can be used to simplify the
problem. Collecting enough training samples and use of
multimodal data are also well-motivated and natural.

B. Ethical Issues

1) Privacy and Data Protection: Data are one of the most
valuable assets in ME studies. ME data contain facial videos
that are sensitive data that must be considered for privacy
protection to avoid potential leakage of the participants’
personal information. Data protection laws, such as the EU
General Data Protection Regulation (GDPR) [224] and the
California Consumer Privacy Act (CCPA) [225], have been
established to protect the privacy of personal data, refer-
ring to international data protection agreements, transfer
of participant names, record data, and so on.

In data collection for research purposes, participants are
usually gathered in a voluntary way, and they will sign a
consent form before any data are collected. The consent
form explains issues related to data collection procedure,
data processing, and data sharing, and lists all rights and
options that participants have. For example, a participant
has the right to withdraw his/her own data at any time.
Moreover, since people’s faces include sensitive biomet-
ric information, a consent form should also concern and
specify proper usage in various application scenes. Besides
defining rules to regulate data usage, another aspect worth
attention is privacy-preserving data sharing protocols and
techniques, e.g., to remove sensitive information (e.g., the
identity), while preserving facial movement properties for
ME analysis [226].

2) Fairness and Diversity Among General Population: New
technology should consider its fairness and validity among

1230 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023

the general population with diverse ages, gender, culture,
ethnicity, and so on. For ME studies, this issue needs to be
addressed from four aspects.

First, ME datasets should be more diverse. Most existing
ME datasets contain samples from young college students
of 18-35 years old from Asia and/or Europe due to the
sites of research and availability of participant recruitment,
while data from older people or Africans or Latinos are
lacking.

Second, the fairness and reliability of ME data labeling
should be considered. MEs (and AUs) are difficult to label.
The current standard for labeling is that two or more
professional annotators will work together and cross-check
their labels, and the FACS system plays an important role
as one annotator should pass the FACS test to get his/her
certificate to become a qualified annotator. The FACS test
helps improve the reliability among different annotators,
but more factors need to be considered. One is the cultural
background of the annotators (e.g., Asian or Caucasian)
that might impact their judgment. It is hard to tackle as
the overall number of certified FACS annotators is very
few, and it is already hard for a research group to gather
two or more for cross-checking. The other issue might be
addressed or improved in the future, i.e., the FACS training
materials only contain face images from a few Caucasians
but not from other ethnicities. It is not known whether
this impacts the labeling of Asian or African faces, but
this could be addressed with helps from psychologists and
the FACS developers by adding more diverse faces to the
training materials.

Third, the fairness of the MiX models should be con-
cerned in terms of outputs on different populations. As cur-
rent data are biased toward young Caucasian and Asian
people, it is not known whether the trained models can
generalize well to other population groups, or whether the
outputs might be significantly biased on a diverse sample
set.

Fourth, ME generation methods could be a helpful tool
for improving the diversity of samples. As the generation
models can synthesize ME movements with any given face,
we can select and generate samples on a balanced face
set covering multiple age, gender, and ethnical groups.
Such a balanced and diverse set of synthesized ME samples
could serve better in applications, e.g., training experts for
recognizing covert emotions.

3) Regulated Usage of ME Technology: MEs provide
important clues to people’s true feelings and, thus, are
useful in many potential applications. Meanwhile, there
are risks if such technologies [227], [228], [229] are mis-
used for malicious purposes. In both research communities
and practical applications, the right-to-privacy and right-
to-know should be respected, and consent agreements
should be made in any scenario where human participants
are involved. People have the right to know that such
technology is applied when they are entering a certain
area, and they should also have the right to opt-out unless



in law-enforced scenarios. Legislation should be further
developed to define specific rules to regulate the use of
ME data and technologies.

VII. CONCLUSION

In conclusion, micro-expressions, being involuntary, subtle,
and rapid facial expressions, possess the ability to unveil
individuals’ genuine emotions. The field of computer vision
holds significant promise for automatic micro-expression
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micro-expression detection and recognition, this overview
encompasses the exploration of micro-expression analy-
sis from its roots in psychology and early endeavors in
computer vision to the diverse range of contemporary
computational methods. The survey not only addresses the
current state of the field but also highlights open chal-
lenges and outlines future directions, aiming to provide a
tutorial-like reference point to anyone with an interest in
micro-expressions.

analysis, presenting numerous potential applications and
impacting our daily lives. This article offers a comprehen-

sive review of the development of micro-expressions within
the realm of computer vision. Instead of solely focusing
on the introduction of machine-learning techniques for
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