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Abstract— The target of reducing travel time only is insufficient
to support the development of future smart transportation sys-
tems. To align with the United Nations Sustainable Development
Goals (UN-SDG), a further reduction of fuel and emissions,
improvements of traffic safety, and the ease of infrastructure
deployment and maintenance should also be considered. Different
from existing work focusing on optimizing the control in either
traffic light signal (to improve the intersection throughput),
or vehicle speed (to stabilize the traffic), this paper presents a
multi-agent Deep Reinforcement Learning (DRL) system called
CoTV, which Cooperatively controls both Traffic light signals and
Connected Autonomous Vehicles (CAV). Therefore, our CoTV
can well balance the reduction of travel time, fuel, and emissions.
CoTV is also scalable to complex urban scenarios by cooperating
with only one CAV that is nearest to the traffic light controller
on each incoming road. This avoids costly coordination between
traffic light controllers and all possible CAVs, thus leading to
the stable convergence of training CoTV under the large-scale
multi-agent scenario. We describe the system design of CoTV
and demonstrate its effectiveness in a simulation study using
SUMO under various grid maps and realistic urban scenarios
with mixed-autonomy traffic.

Index Terms— Deep reinforcement learning, multi-agent sys-
tem, connected autonomous vehicles, mixed-autonomy traffic.

I. INTRODUCTION

DEVELOPING the next generation Intelligent Transporta-
tion Systems (ITS) is one of the key ways to achieve

the United Nations Sustainable Development Goals (UN-SDG)
[1]. In particular, firstly, sustainable traffic requires higher
efficiency to reduce enormous monetary losses caused by
excessive traffic delays. Secondly, more eco-friendly driving
should be encouraged to decrease fuel consumption and gas
emissions (mainly CO2). Thirdly, traffic safety is one of the
key indicators for sustainable traffic, inherently, which should
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be enhanced by avoiding potential collisions to save lives. Last
but not least, to achieve those sustainable traffic goals, easy-
to-deploy ITS infrastructure is critical.

Most existing research in sustainable urban traffic control
adjusts either traffic light signals or vehicle speed. Traffic
light signal controllers dynamically select the best timing plan
according to the real-time traffic. As shown in Fig.1, this can
directly increase the intersection throughput, thus reducing
travel time as well as energy consumption and emissions. CAV
can proactively control vehicles’ acceleration, as shown in
Fig. 1, to achieve more stable traffic nearby with relatively
higher driving velocity (i.e., lower fuel consumption and gas
emissions) and keep a safe distance [2] from the surrounding
traffic (i.e., longer time-to-collision). Recent research from
the transportation domain attempts to explore the potential of
joint control for both traffic light signals and vehicle speed.
Methodologies used in such research include mixed-integer
linear programming [3], the enumeration method and the
pseudo-spectral method [4]. However, these methods may
not perform well in realistic traffic scenarios because their
deterministic traffic control decisions are insufficient to deal
with a fast-changing urban environment [5].

Unlike the aforementioned traditional methods, many
researchers nowadays have demonstrated the great potential of
DRL in solving traffic control challenges under complex urban
scenarios. For instance, inspired by the traditional traffic signal
control method MaxPressure [6], PressLight [7] can achieve
even better traffic efficiency improvements under various
urban scenarios using DRL. Moreover, the DRL-based traffic
signal control can also reduce the waiting time of specific
vehicles in emergency situations in which traffic condition
varies quickly [8]. On the other hand, efficient and effective
CAV speed control can stabilize traffic in many complex and
changing road scenarios using DRL [9], which is traditionally
difficult using optimization-based controllers. However, there
is a lack of research using DRL for the joint control of both
urban intersection signals and vehicle speed. This DRL-based
joint control is challenging due to the difficulty of designing
a proper cooperation scheme for two different agent types
(i.e., traffic light controllers and CAV). Moreover, the high
unpredictability of urban mixed-autonomy traffic makes it even
harder to converge within a reasonable number of training
iterations.
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Fig. 1. The illustration of the motivation and goals of our proposed system
CoTV. Traditionally, traffic light controllers can increase the intersection
throughput, thus reducing the travel time and fuel. While CAV adjusts its
speed to reduce the fuel, thus maintaining a safe time gap to its surrounding
traffic. Our CoTV coordinates these two different types of agents to achieve
a more comprehensive set of the goals of sustainable traffic.

To overcome the limitations mentioned above, we propose
CoTV: a multi-agent DRL-based system that can cooperatively
control traffic light signals and CAV, which is also open-
sourced here.1 CoTV well balances the advantages of both
traffic light controllers and CAV to achieve more sustainable
traffic, as shown in Fig.1. Concretely, the contributions of our
work are as follows:

• Effective cooperation schemes between CAVs and
traffic light controllers. Different from the method-
ology in the literature on Multi-Agent Reinforcement
Learning (MARL) for traffic control, instead of using
action-dependent design [10] (i.e., the action of one
agent depends on the action of other agents in the
shared environment), our cooperation schemes rely on
the exchange of states between agents within the range of
one intersection, including the traffic light controller and
approaching CAVs. This so-called “action-independent
MARL” [11] can work in our CoTV as the objective of
traffic light controller and CAV for the traffic improve-
ment are inherently complementary (i.e., rather than
overlapping: all improving travel time or reducing fuel).
Thus, CoTV takes advantage of the simplicity of “action-
independent MARL” design on DRL training and keeps
the effectiveness of CoTV in improving traffic under
various scenarios. The cooperation schemes of CoTV
are shown to facilitate training convergence, which is
challenging for independent MARL that does not include
any cooperation (either state or action). Specifically, our
CoTV using Proximal Policy Optimization (PPO) [12]
obtains up to 30% reduction in both travel time and
fuel consumption & CO2 emissions under varying CAV
penetration rates.

• Scalable to complex urban scenarios by avoiding
cooperation with excessive CAV agents. Compared with
controlling all possible CAVs using MARL, the traffic
light controller in our CoTV selects the closest CAV to
the intersection on each incoming road as the CAV agent.

1https://github.com/Guojyjy/CoTV

This idea is inspired by platooning can increase intersec-
tion throughput [13], as the leading vehicle in a certain
road has the great potential to form a platoon with the
rest vehicles on the same road. We also demonstrate that
compared with coordinating all CAVs (CoTV*), CoTV
does not compromise efficiency improvement while sig-
nificantly reducing the training time and resources used.

• Efficient communication exchange schemes between
CAV and traffic light controllers. The amount of
state information exchanged between CAV and traffic
light controllers of CoTV is small. As shown in Fig.2,
the communication schemes between two agents are
designed to exchange the speed, acceleration, and loca-
tion of CAVs and the current signal phase of traffic
light controllers. The information exchanged requires less
than 100 Kbps transmission rate, which can be well
handled using Vehicle-To-Vehicle (V2V) and Vehicle-
To-Infrastructure (V2I) communication infrastructure,
as their IEEE 802.11p standard supports a bandwidth
of 3 Mbps to 20 Mbps [14].

This paper extends our previous work [15] with the follow-
ing improvements: 1) CoTV is more scalable as the number
of its controlled CAVs is significantly reduced. 2) The state
and reward of CoTV DRL agents are simplified, thus leading
to more efficient agent communication for easy deployment.
3) CoTV is validated on more realistic urban scenarios under
different CAV penetration rates. 4) Traffic safety of CoTV
is also evaluated using the metric time-to-collision [16]. 5)
Action-dependent and independent MARL approaches are
compared to demonstrate the advance of CoTV in policy
training and traffic improvements.

II. RELATED WORKS

A. Control for Either Traffic Light Signals or Vehicle Speed

Most existing research in sustainable urban traffic control
adjusts either traffic light signals or vehicle speed. Sydney
Coordinated Adaptive Traffic System (SCATS) [17] is one
of the earliest and most widely applied traffic light signal
control systems. It can dynamically select the best signal plan
from pre-defined candidates that can achieve better intersection
throughput. Varaiya [6] proposed a traffic light signal control
scheme named MaxPressure, which was proven to maximize
the throughput of the entire road network, with each traffic
light controller receiving local traffic information. On the other
hand, the field experiments in [18] prove that a well-designed
speed control of CAV can stabilize traffic and is beneficial
to reduce braking times and fuel consumption. Green Light
Optimal Speed Advisory (GLOSA) system guides CAV to
adjust its speed according to the current traffic signal phase
and the distance to its approaching intersection [19]. However,
these traffic control optimization approaches rely on determin-
istic formulations, which are not flexible enough to improve
ever-changing realistic traffic.

DRL has been used to cope with complex traffic envi-
ronments, promising better urban traffic. PressLight [7] is a
DRL-based model using Deep Q-learning (DQN). It collects
local real-time traffic information inspired by the traditional
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Fig. 2. The DRL design of CoTV. Two types of agents, traffic light controllers and CAV interact with the environment according to the state information
exchanged via V2X communications.

method MaxPressure [6] while achieving more improvement
on traffic efficiency than MaxPressure. Wu et al. [9] extended
the field experiments in [18] using the Trust Region Policy
Optimization (TRPO) method for training CAVs in a simulated
experiment. The used DRL-based vehicle speed controller sur-
passes traditional optimization controllers on traffic improve-
ment. Various scenarios using CAV had been tested in [20],
including road merging and unsignalized intersections. The
DRL-based speed control of CAV can optimize the vehicle
trajectory of the whole trip and reduce the risk of collision all
the time. Compared to traditional optimization methods with
deterministic solutions, DRL methods, which are used in our
proposed CoTV, learn from trial-and-error in the interaction
with the dynamic environment, which is more capable of
performing adaptive traffic control under fast-changing urban
road scenarios.

B. Joint Control for Traffic Light Signals and Vehicle Speed

Traditional optimization-based methods have been
attempted to jointly control traffic light signals and
vehicle speed. Yu et al. [3] developed mixed-integer linear
programming for optimizing vehicle trajectories and traffic
signals simultaneously at isolated intersections. The phase
sequence and duration of traffic light signals are coordinated
with vehicle arriving time to the intersections. A two-level
model for traffic light controllers and CAV was proposed
using the enumeration method and the pseudo-spectral
method [4]. The first level is applied to coordinate CAV
and traffic light controllers to minimize travel time, and the
second level is used to regulate CAV trajectory to reduce
fuel consumption. The same system targets were adopted
in the cooperative optimization model [21]. The model
uses a mixed-integer non-linear program, which has a high
computational complexity.

To the best of our knowledge, DRL methods for the joint
control of traffic light signals and CAV have not been well-
studied. The joint control using DRL suffers many chal-
lenges, commonly in multi-agent systems [22]: (1) Traffic light
controller or CAV agents proactively interact with the same

environment simultaneously, which makes it challenging for
a stable training convergence. (2) A large number of agents
(particularly CAV agents) cause scalability issues due to an
excessive computational cost of joint action. (3) It is uncertain
to which level should the reward of agents be assessed: individ-
ual junctions, regional areas, or global networks. For example,
traffic light controllers explicitly coordinate traffic around
intersections, and each CAV mainly affects its surrounding
traffic. The proposed model in this paper attempts to overcome
these difficulties and utilize the advantage of DRL methods to
control traffic light signals and CAV cooperatively.

C. Efficiency and Safety for Mixed-Autonomy Traffic

The development of CAV is thriving in both academia and
industry, which is expected to improve traffic. However, the
deployment must experience a gradual mixed transition from
introductory, established, to prevalent [23] with the growth
of CAV penetration rate. Existing work presents that CAV
mixing in traffic still brings uncertainty. Mixed-autonomy
experiments on motorways were conducted in [24], simplified
from intersections with conflicting traffic movements. Similar
work was tested in single-lane facilities, where CAV can
enhance traffic safety by keeping a larger gap from the
surrounding vehicles [25]. However, a low penetration rate
(less than 10%) causes more conflicts in urban scenarios [26].
Reference [27] conducted experiments in a ring scenario,
showing that the CAV penetration rate greater than 20% allows
all vehicles to reach higher speeds and stabilize the flow.
The penetration rate in 20% to 40% is possible to result
in the near-maximum improvements [26]. Overall, a high
penetration rate of CAV can bring traffic efficiency and safety
improvement on mixed-autonomy traffic in various scenarios.

This work advances the state-of-the-art in assessing DRL-
based mix-autonomy control under dynamic urban road sce-
narios with multiple intersections. Moreover, our system
CoTV chooses only a small fraction of CAVs that cooperate
with traffic light controllers, which have great potential to
guide the rest of the vehicles. This makes the deployment of
CoTV practical and easy-to-scale.
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Fig. 3. V2X communication schemes in CoTV showing how traffic light
controllers and CAVs use V2I and V2V. This implements state exchange and
cooperative control. CAV agents of CoTV are highlighted in blue.

III. SYSTEM OVERVIEW

A. System Design Goals

The proposed model CoTV aims to achieve the following
goals, which are also shown in Fig.1:

• Reduced travel time: Travel time is the metric that end
road users care about the most. Our system should reduce
the travel time of a vehicle without changing its given
route. This goal is traditionally achieved by traffic light
signal control that can increase intersection throughput.

• Lower fuel consumption and CO2 emissions: Sustain-
able traffic goals encourage eco-friendly driving behav-
iors. This goal is traditionally achieved by the speed
control of CAV that can stabilize traffic flow. Smart traffic
light control can also partly contribute to achieving this
goal by reducing the number of stop-and-gos.

• Longer time-to-collision: Safety is a crucial consider-
ation in sustainable traffic system design. Reducing the
risk of collision can be achieved by maintaining a longer
time-to-collision [16], with sufficient time to moderately
decelerate. CAV can proactively keep a safe distance from
the surrounding traffic. Thus, ITS using CAV has the
potential to achieve higher traffic safety.

• Easy to deploy: Our system CoTV requires a V2X
communication infrastructure to support information
exchange over the cooperative control. Meanwhile, scal-
ability issues should be addressed with the increasing
number of agents (especially CAV agents). Efficient com-
munication schemes among traffic light controllers and
reduced CAV agents are the key to achieving this goal.

B. System Components

Our proposed system assumes that all vehicles are con-
nected, including CAV and Human-Driven Vehicles (HDV)
(details can be found in Table II). The V2X communication
is also assumed perfect without no packet loss and no latency.
The main components of CoTV: traffic light controllers and
CAV, as shown in Fig.2. The design of action, state, and
reward for them are described as follows, while the V2X
communication schemes involved are shown in Fig.3:

1) Traffic Light Controller Agents:
• Action: We limit the action of traffic light controller

to a binary set, where “1” represents switching to the
next phase for the next time interval while “0” means to
keep the current phase unchanged. As opposed to other

common action definitions in the literature, such as phase
selection [11], the phase switch [28] we choose is more
manageable for the DRL model training.

• State: The state of traffic light controller involves three
parts: the current signal phase, traffic on the roads that this
traffic light controller coordinates, and the status of the
closest vehicle to the intersection on each incoming road.
As shown in Fig.2, of all three parts of the traffic light
controller’s state, the information of the last two parts is
acquired by using the V2I communications infrastructure
illustrated in Fig.3. The road traffic is presented by the
number of vehicles on each road coordinated by the traffic
light controller. These roads are divided into incoming
roads and outgoing roads. The last part of the state
includes speed, acceleration, distance to the intersection,
and the road name where it is located for the closest
vehicle to the intersection on each incoming road.

• Reward: The reward is the penalty of intersection pres-
sure inspired by [7] and [6]. Intersection pressure is
defined as the difference between the sum of the number
of vehicles on the incoming roads Nin and the sum of the
number of vehicles on the outgoing roads Nout . Then the
intersection pressure is normalized by the maximum road
capacity c to facilitate DRL training. The maximum road
capacity c indicates the maximum number of vehicles on
a single road in the given road network. It is calculated by
dividing the length of the longest road by the minimum
space required for a vehicle (i.e., the length of a single
vehicle plus the minimum distance between two adjacent
vehicles). The reward of a certain traffic light controller
rm , Eq.(1) becomes

rm = −
Nin − Nout

c
(1)

We also illustrate the above reward in Fig.4. The reward
function is formulated to reduce travel time, one of the
system goals, by increasing intersection throughput. Min-
imizing intersection pressure encourages vehicles to pass
through the intersection quickly while considering the
remaining capacity in the outgoing roads, thus improv-
ing green light efficiency and throughput [6]. We also
simplify the calculation of intersection pressure without
considering traffic movements (correspondence between
incoming and outgoing roads) compared with [6] and [7].
Therefore, CoTV can be easily applied in various urban
scenarios with multi-directional roads. Besides, we avoid
using other common reward definitions in the current lit-
erature, such as queue length and waiting time [10], [28],
which is precarious in different traffic flow conditions
even without the influence of traffic lights.

2) CAV Agents:
• Action: The action is set to be consistent with the litera-

ture [29], which is a continuous action space to represent
the CAV acceleration in the range of [−3m/s2, 3m/s2

].
• State: The state explicitly includes speed and acceleration

for itself and the vehicle preceding the CAV immediately,
the distances to the preceding vehicle and the approaching
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Fig. 4. The illustration of the reward of a traffic light controller rm , assuming
the maximum road capacity c = 40.

intersection, and the current signal status of the approach-
ing traffic light controller. The CAV agent can receive
state information from the vehicles on the same road and
the approaching traffic light controller using V2V and
V2I communication, as shown in Fig.3.

• Reward: The reward is penalized by the deviation of
average speed v from the maximum speed limit v∗,
plus the Euclidean norm of acceleration a after the
normalization using the vehicle’s maximum acceleration
a∗, as shown in Fig.5. Speeds and accelerations in the
reward are that of all vehicles K located on the same
road as the CAV agent. The reward of certain CAV agent
rn , Eq.(2) becomes

rn = r1 + r2,

r1 = −

∑
j∈K (v∗

− v j )

v∗ × |K |
, v j ≤ v∗,

r2 = −

√∑
j∈K (

a j
a∗ )2

|K |2
, a j =

{
0, a j < 0
a j , a j ≥ 0

(2)

The first term of the reward function r1 encourages a
higher average vehicle velocity but keeps it within the
maximum speed limit. In this speed range, higher speed
increases fuel economy, and potential collisions due to
excessive speed can be avoided. The second term of
the reward function r2 stabilizes acceleration to reduce
fuel consumption, while also inducing a large time gap
between adjacent vehicles [25] for enabling high-speed
collision-free driving. Our reward function of CAV agents
encourages better speed control, thus facilitating cooper-
ative control of CoTV to achieve the reduction of fuel
consumption and CO2 emissions and the improvement of
traffic safety.

C. DRL Training Process

Algorithm 1 presents the training process of CoTV, and
the outcome is the policy functions for traffic light agents M
and CAV agents N , πT L and πC AV . The trained policy π

is expected to guide agents to select one appropriate action
a given a certain state s for maximizing the accumulated

Fig. 5. Illustration of the CAV reward rn , assuming the maximum speed
limit v∗

= 15m/s, and the vehicle’s maximum acceleration a∗
= 9m/s2.

CAV agents of CoTV are highlighted in blue.

value of reward r . We predefine the termination condition as
the number of training iterations I . In each iteration, there
are E episodes running in parallel, and each episode lasts H
timesteps. DRL trajectory data τ is collected per simulation
timestep in each episode to extend the training batch B, and
then sampled K times to update the traffic light and CAV
policy parameter θT L and θC AV through gradient descent.
Specifically, the traffic light controllers of CoTV select the
closest CAV to the intersection on each incoming road as
the CAV agent, as in Line 10 of Algorithm 1. These CAV
agents have the potential to increase intersection throughput by
forming a platoon with the rest vehicles on the same road [13].
The communication scheme of CoTV occur when the agent
starts receiving state, in Line 13 of Algorithm 1.

We choose PPO algorithm [12] for the following reasons.
The PPO algorithm has the advantage of being easy to imple-
ment and achieving monotonic reward improvement. DQN is
a widely used algorithm to train traffic light controllers [7],
[28], as it is efficient in the discrete actions (e.g., a binary set
of signal phase adjustment). However, DQN does not perform
well on continuous actions (e.g., vehicle acceleration of any
real number within a certain range) [30]. In contrast, PPO can
perform well for scenarios with discrete actions or continuous
actions. On the other hand, compared with traffic light signals
that have a pre-defined phase sequence, the initial driving
behavior of DRL-controlled CAV has lots of unreasonable
stop-and-go and standstill. The constrained policy update of
PPO aims to improve reward monotonically, which is more
stable to train CAV and better than Asynchronous Advantage
Actor-Critic used in [11]. Although TRPO can also constraint
the policy update, PPO is easy to implement and simpler
to sample data, which helps the cooperation of traffic light
controllers and CAV.

When interacting with the environment, CoTV applies
parameter sharing [9] to all agents of the same type in the
multi-agent DRL system, which can converge the training
process faster and benefit from shared experience, especially
in large-scale applications [31].

D. Considerations for “Easy-to-Deploy”

Firstly, CoTV is designed to be deployed in the existing
adaptive traffic light systems (e.g., SCATS, SCOOTS, etc.),
which are based on major junctions of urban scenarios. This
deployment strategy covers broader arterial roads that carry
the majority of traffic by not installing controllers for all
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Algorithm 1 Training Process of CoTV using PPO
Require:

1: Obtain the set of traffic light agents to control, M
2: Set the number of episodes in parallel to E , and the time

horizon for each episode to H
3: Initialize the policy parameter for one type of agent, θT L

for traffic light controllers and θC AV for CAV, through
parameter sharing

4: Initialize sample batch B = ∅

5: Set the number of epochs for mini-batch updates in one
iteration as K

Ensure:
6: for iteration = 1,2,. . . ,I do
7: for episode = 1,2,. . . ,E do in parallel
8: for timestep h = 0,1,. . . ,H do
9: for each traffic light agent m in M do

10: Add the closest CAV n to the intersection on
each incoming road to the CAV agent set N

11: end for
12: for each agent i in M + N do
13: Run policy πT L or πC AV in the environment
14: Collect trajectories τ = (sh−1i , ahi , shi , rhi )

15: Extend B with τ

16: end for
17: end for
18: Compute advantage estimates Â1, . . . ÂH
19: end for
20: Update θT L and θC AV in the policy πT L , πC AV using

advantage estimates Â, with K epochs to sample
mini- batches from B, and then reset B = ∅

21: end for

intersections. Lane-changing operations are not considered
in the action space of CoTV agent but permitted in the
evaluation of CoTV shown in Section V. Secondly, compared
with controlling all possible CAVs with DRL, the traffic
light controller of CoTV selects only the closest CAV to
the intersection on each incoming road to cooperate, which
can significantly reduce training time and resources used in
the process thus alleviating scalability issues. Meanwhile,
the cooperation schemes among agents (i.e., the traffic light
controller and the approaching CAV agents) only rely on
the information exchange of states, not actions. This means
the action for a certain agent is selected independently from
other agents’ actions. Therefore, CoTV avoids the expo-
nentially increased complexity of joint actions for MARL
using action-dependent design [22]. Besides, the amount of
information exchanged in CoTV is small enough compared
with high-dimensional transmission data (i.e., image repre-
sentations to describe traffic features) [28], [32]. Specifically,
as shown in Fig.3, the information of CAV involves speed,
acceleration, and location. Their size is estimated to be approx-
imately 40 Bytes if encoded using floating point numbers.
While traffic light controllers send their current signal phase,
which is about 8 Bytes if using integer numbers for encoding.
This information plus headers will still be less than 100 Kbps.
This transmission demand is met by the V2I and V2V

TABLE I
TRAFFIC SETTINGS IN THE THREE TEST SCENARIOS

communications infrastructure [14] using IEEE 802.11p which
is between 3 and 20 Mbps. Additionally, all the information
exchanged using the vehicular network occurs within the range
of a single intersection (i.e., the single-hop range that is about
300 meters), which can improve the robustness of CoTV
instead of heavily relying on a large scale (i.e., using multi-hop
transmission) of network conditions [11].

IV. EVALUATION METHODOLOGY

A. Simulation Scenarios

The simulation platform used in this work is Simulation
of Urban MObility (SUMO),2 which is one of the most
widely used open-source microscopic traffic simulators. Our
model design and implementation are based on FLOW,3 which
provides DRL-related API to work with SUMO dynamically.

We clarify some concepts relating to the time horizons.
We set 1 simulation timestep equal to 1 simulation second.
One episode refers to a full run of a single simulation scenario,
which is set to 720 simulation timesteps. At the end of each
iteration, CoTV starts to update the parameters of the PPO
algorithm used, after 18 episodes run in parallel. All numerical
experiment results shown in the next section are averaged from
these 18 episodes. In total, we terminate the training process
of CoTV after 150 iterations.

For testing scenarios, firstly, we demonstrate the effective-
ness of CoTV under a simple 1 × 1 grid map with a single
intersection. Then, we show CoTV can be scalable to more
consecutive intersections under a 1 × 6 grid map. Lastly,
we validate the effectiveness of CoTV using a subset of
the realistic urban scenario of Dublin city, Ireland. Table I
summarizes the settings of traffic in each scenario.

1) 1 × 1 Grid Map: In our 1 × 1 grid map, each edge has
two roads in opposite directions. To make this map closer to
the real urban scenario, we set the road length as 300 meters
and the maximum speed limit as 15 m/s (=54km/h). As shown
in Fig.6, we generate different go-straight traffic flows in four
directions: N→S (from north to south), S→N, W→E (from
west to east), and E→W. This traffic generation method is
inspired from [11]. The origin and destination of each vehicle
are at the end of the road at the perimeter of the network.
The vehicle generation duration for each flow is approximately
300 seconds. The traffic flows N→S and W→E are relatively
heavier than the other two. Specifically, the traffic flow rates
in the number of vehicles per hour per road are: 288 (N→S),

2https://www.eclipse.org/sumo/
3https://flow-project.github.io
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Fig. 6. The settings of traffic generation for 1×1 grid scenario. For example,
W→E (#20, 1st sec) means there are 20 vehicles sequentially generated from
the first simulation second.

Fig. 7. The settings of traffic generation for 1 × 6 grid scenario. The same
settings (the number of vehicles generated, the simulation time to start traffic
generation) apply for the traffic flow in the same direction.

240 (W→E), 192 (E→W), and 120 (S→N), respectively.
The two traffic flows, S→N and W→E, are generated at the
beginning of each episode. Then, the N→S flow vehicles start
to enter the network sequentially on the 45th second. After one
minute, the traffic flow of E→W appears. The speed of each
vehicle when entering the network is random. Thus, the total
number of vehicles is 70 in the scenario.

2) 1 × 6 Grid Map: The 1 × 6 grid scenario is shown in
Fig.7, which contains six intersections extending the 1×1 grid
map with 5 more consecutive intersections. The road setting
and traffic flow configurations are similar to the settings of the
1 × 1 grid scenario. The increased vertical (N→S and S→N)
roads are allocated the corresponding traffic flow. A total of
240 vehicles are generated in this scenario.

3) Dublin Map: Fig.8 illustrates the selected six signal-
ized intersections area in the city of Dublin. These inter-
sections are the main ones connected by arterial roads,
maximizing traffic improvement while considering “easy-to-
deploy” with minimized infrastructure upgrades as mentioned
in Section III-D. A variety of roads are introduced, including
exclusive go-straight, exclusive turn, and multi-directional
roads. Meanwhile, intersections come in different shapes and
sizes, including one three-leg with four signal phases (the
rightmost one in Fig.8); the four-leg intersection is the major-
ity, three have four phases, and the other has six phases; the
most complex intersection is 5-leg with 6 phases (the third
one from the left of Fig.8). The scenario is extracted from the

Fig. 8. The selected six signalized intersections area in the city of Dublin (a
regional road, R111, in South Dublin). The highlighted roads are our selected
testing scenario (six intersections are highlighted using red circles).

open data in [26] to simulate the real-world traffic in Dublin
city. We extracted dynamic traffic generated from 10 AM
for 400 seconds, consisting of 275 vehicles allowed to drive
straight, turn left or right at intersections. Each vehicle has a
dedicated trip.

B. Evaluation Metrics

We evaluate the sustainable traffic improvements of each
scenario using the following metrics:

• Travel time (seconds): Travel time of each vehicle is
the time cost in the road network until finishing the
designated trip. The average travel time is calculated on
vehicles completing their trips in a scenario, which is the
common measure to evaluate traffic efficiency [10].

• Delay (seconds): Delay is the difference between the
actual travel time and the ideal travel time (i.e., time spent
when driving at the maximum permitted speed) for each
trip. This value indicates the space in which the traffic
efficiency can be further optimized to its upper-bound.
This metric could be more noticeable than travel time to
reflect the improvement of traffic efficiency [24].

• Fuel consumption (l/100km): Fuel consumption is the
average amount of fuel consumed in liters every 100 kilo-
meters traveled. Low fuel consumption can be generally
achieved by high vehicle speed and gentle change of
acceleration [33]. In our experiments, fuel consumption,
as well as the CO2 emission described later, is calcu-
lated using HBEFA3/PC_G_EU4 model (i.e., a gasoline-
powered Euro norm 4-passenger car modeled using the
HBEFA3 [34]), which is the default vehicle emission
model in SUMO.4 This model mainly considers the
instantaneous speed and acceleration of a vehicle.

• CO2 emissions (g/km): CO2 emissions are measured by
the average amount of carbon dioxide emitted in grams
per kilometer traveled by all vehicles. As the primary
component of greenhouse gas emissions, CO2 emissions
are required to be reduced to achieve sustainable traffic.

• Time-To-Collision (TTC): TTC is a widely-used safety
indicator [16], estimating the time required for a car to hit
its preceding one. We use the default threshold of TTC in
SUMO, 3 seconds,5 which means a possible collision is

4https://sumo.dlr.de/docs/Models/Emissions.html
5https://sumo.dlr.de/docs/Simulation/Output/SSM_Device.html
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TABLE II
SIMULATION SETTINGS OF DIFFERENT VEHICLE TYPES

recognised when the time gap between the two adjacent
cars is less than 3 seconds. The value of TTC is literally
the total number of such possible rear-end collisions for
a given time horizon.

C. Compared Methods

To evaluate the effectiveness of our system CoTV, the
compared methods are described as follows:

• Baseline: The Baseline traffic light signals have a static
timing plan that does not change with the varying traffic,
thus does not require V2X communications to collect
vehicle information. All vehicles are HDV that are sim-
ulated by IDM car-following model [35] as shown in
Table II, which is also used for simulating HDV in [29].
The Baseline scenario simulates most existing urban
scenarios, which do not have any traffic light controllers
and CAVs controlled by DRL. A cycle of the static traffic
light signal plan contains four phases in order: Green-NS
(green light for the flow N→S and S→N), Yellow-NS,
Green-WE, and Yellow-WE. The duration of the green
light is 40 seconds (default value in SUMO). The yellow
light duration typically lasts from 3 to 6 seconds [10],
so we set 3 seconds as the yellow light duration, which
is also the default setting in SUMO. Thus, the length of a
cycle is 86 seconds (40+3+40+3). The traffic light signal
plans of the Dublin scenario dataset vary by different
intersections with green light phase duration ranging
from 37 to 42 seconds, and yellow light phase lasts
3 seconds. Some intersections have a short green light
for turn-right with 6 seconds.

• FlowCAV: FlowCAV [29] is a state-of-the-art DRL-based
model to control the speed of a CAV to improve fuel
efficiency and reduce emissions. Each CAV observes
its preceding vehicle and then regulates its speed. The
reward of a single CAV is evaluated globally by the
average speed and acceleration of all vehicles in the given
network. In this scenario, all traffic light signals are static.
There is only one CAV agent per road, which leads the
following vehicles on the same road.

• PressLight: PressLight [7] is a state-of-the-art DRL-
based model to control traffic light signals to improve
intersection throughput. Its state includes the number
of vehicles on the incoming roads and outgoing roads.
The reward design utilizes the “pressure” to improve
intersection throughput, which is inspired by [6]. All

vehicles are HDV and connected, as shown in Table II,
which are periodically broadcast their up-to-date status
(e.g., location, speed, acceleration), any agents within the
communication range can aggregate them as the real-time
traffic information.

• GLOSA: This is a non-DRL method for jointly control-
ling traffic light signals and CAVs. The GLOSA system6

can adjust CAV speed considering the current traffic light
phase and the current status of CAV. In our experiment,
we integrate it with adaptive traffic light controllers7 to
achieve joint control. Thus, phase switching is actuated
after detecting a sufficient time gap between successive
vehicles, resulting in dynamic phase durations. All vehi-
cles in this scenario are CAVs.

• I-CoTV: I-CoTV combines independent policy training
on the two types of agents as a common and straight-
forward way to develop MARL. There is no cooperation
design between agents in either state or action, distinct
from CoTV (action-independent MARL with cooperation
schemes in the state exchange). Hence, the state of traffic
light controllers involves two parts: its current signal
phase and traffic on the roads it coordinates. It does not
include any instantaneous vehicle information compared
to CoTV. Correspondingly, the state of CAV agent only
consists of the speed, acceleration, and location of itself
and its preceding vehicle, without the current signal of
the approaching traffic light from agent communication.
Introducing I-CoTV aims to demonstrate that the efficient
cooperation schemes of CoTV facilitate training conver-
gence.

• M-CoTV: M-CoTV is the action-dependent MARL ver-
sion of CoTV that trains the policies of traffic light con-
trollers and CAVs considering both the action and state of
another agent type within the range of one intersection.
Introducing M-CoTV aims to demonstrate that CoTV
takes advantage of the simplicity of action-independent
MARL on policy training while efficiently achieving
traffic improvements.

• CoTV*: CoTV* has all features of CoTV, except that the
traffic light controller of CoTV* interacts with all CAVs
instead of only the closest one to the intersection on each
incoming road. Introducing CoTV* aims to demonstrate
the improvement of CoTV in alleviating scalability issues.

V. EVALUATION RESULTS

A. Traffic Efficiency & Safety

1) Comparison With State-of-the-Art Methods: Table III
shows the traffic improvements of CoTV under 100% CAV
penetration rate, the same for FlowCAV and GLOSA (while
0% CAV penetration rate for PressLight and Baseline scenario
as no need for vehicle speed control).

• Travel time & delay: As shown in Table III, CoTV
achieves the shortest travel time with up to 30% reduction
compared to Baseline. PressLight and GLOSA achieve
over 24% and 23% reduction, respectively. However,

6https://sumo.dlr.de/docs/Simulation/GLOSA.html
7https://sumo.dlr.de/docs/Simulation/Traffic_Lights.html#type_actuated
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TABLE III
COMPARISON OF COTV AGAINST BASELINE AND STATE-OF-THE-ART

METHODS. PERCENTAGE CHANGES SHOWN ARE COMPARED TO BASE-
LINE. THE BEST ACHIEVED MEASUREMENTS ARE IN BOLD

FlowCAV does not reduce travel time due to its static
traffic light plan and the fact that CAV agents do not
consider current traffic light signals. The results of Flow-
CAV in grid road maps are much worse than Baseline.
The further improvement of CoTV demonstrates the
advantages of cooperative traffic control compared with
controlling traffic light signals only, meanwhile indicating
that DRL-based approaches provide better adaptive traf-
fic control than traditional approaches. Moreover, Fig.9
illustrates travel time of all vehicles can be reduced
significantly and more densely distributed around a lower
value under the three scenarios using CoTV, compared
with other methods. The results in delay from Table III
shows that CoTV reduces the travel time very close to its
minimum possible value. Compared with other methods,
CoTV can achieve up to about 74% reduction in delay.

• Environmental indicators: CoTV brings the best results
of fuel consumption and CO2 emissions, both achieving
over 27% reduction shown in Table III. The reduced

Fig. 9. Travel time distributions for four compared methods under three test
scenarios. CoTV can reduce the travel time of all vehicles as all travel time
values are densely distributed around the lowest values compared with other
methods.

Fig. 10. The average travel time of CoTV under different penetration rates
under both grid and Dublin scenarios. Travel time tends to decrease as the
CAV penetration rate increases. Note that the travel time of CoTV shown in
Table III is when penetration rate is 100%.

travel time of PressLight results in less fuel consump-
tion. GLOSA obtains the second-best results due to the
jointly optimised traffic light timings and vehicle speed.
However, FlowCAV does not show any improvement on
the two environmental indicators due to the complexity
of urban scenarios containing intersections.

• Traffic safety: CoTV reduces TTC by over 96%,
as shown in Table III. PressLight and GLOSA improve
traffic safety as well. However, there is a great difference
in TTC between PressLight and CoTV under the 1×6 grid
scenario, and the result of CoTV under Dublin scenario
is much better than the other two methods. Conversely,
FlowCAV hurts traffic safety under the grid maps but
not in Dublin scenario. The more realistic urban scenario
brings explicit complexity to enhance safety. This also
highlights the advantages of CoTV using DRL-based
methods for the cooperative control.

2) Robustness to Varying CAV Penetration Rates: Fig.10
shows that the travel time of CoTV tends to decrease as the
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TABLE IV
COMPARISON BETWEEN I-COTV (INDEPENDENT, NO AGENT COOPER-

ATION), M-COTV (ACTION-DEPENDENT, AGENT COOPERATION IN
ACTION AND STATE), AND COTV, UNDER FULL-AUTONOMY TRAF-

FIC UNDER DUBLIN SCENARIO

CAV penetration rate increases under 1 × 1 and 1 × 6 grid
maps and Dublin scenarios. Specifically, CoTV with 0% CAV
penetration rate implicates no vehicle speed control, which
can still be way better than the Baseline and PressLight
shown in Table III. Therefore, CoTV with CAV speed control
can get better results, which demonstrates the effectiveness
of cooperative traffic control between two types of agents.
Similar results are shown in other traffic metrics (e.g., delay,
fuel consumption, etc). This demonstrates the practicability of
CoTV when deployed in a realistic mixed-autonomy scenario.

3) Comparison With Other MARL Methods: To further
demonstrate the effectiveness of our CoTV system design
on cooperative control, we compare CoTV with two other
common MARL methods, I-CoTV (independent, without any
cooperation schemes) and M-CoTV (action-dependent, with
cooperation schemes in action and state). Results under Dublin
scenario with full-autonomy traffic are shown in Table.IV.
CoTV achieves the best results, while I-CoTV suffers from
convergence issues, resulting in the worst traffic perfor-
mance. M-CoTV fails to overcome high complexity from
consideration of other agents’ actions, which affects traffic
improvements. In particular, the performance changes in fuel
consumption and travel time are inconsistent in M-CoTV
compared to I-CoTV. The training time of M-CoTV is also
increased by about 50%. In addition, referring to Table.III, M-
CoTV and I-CoTV perform better than Baseline and FlowCAV
but do not surpass PressLight and GLOSA.

In summary, CoTV achieves the first three system goals,
including reduced travel time, lower fuel consumption and
CO2 emissions, and longer time-to-collision. The cooperation
schemes between CAV and traffic light controllers, which
is the first contribution of this paper, can overcome the
difficulties of DRL-based joint control in complex urban traffic
scenarios.

B. Improved Scalability by Reducing the CAVs Agents

The second contribution of CoTV is the improvement of
the multi-agent system scalability by reducing the number of
CAV agents controlled. Compared with CoTV* that trains all
possible CAVs, results from Table V indicate that CoTV can
reduce the training time by up to 44%, while still having
comparable (sometimes slightly better) improvement in both
traffic efficiency and safety under Dublin scenario. Although
CoTV* obtains better results under the two grid maps than

TABLE V
COMPARISON BETWEEN COTV AND COTV* (CONTROL ALL POSSIBLE

CAVS) UNDER FULL-AUTONOMY TRAFFIC

Fig. 11. Evolution of the average episode reward for traffic light controllers
(TL) and CAV agent of CoTV under Dublin scenario. The shade represents the
standard deviation value. After DRL training on CoTV, the rewards for both
types of agents can converge to higher values and smaller standard deviations
than in the initial stage.

CoTV, it is worth reminding that CoTV achieves this by
only cooperating with the closest CAV on each incoming
road for the traffic light controller. The closest CAV has the
great potential to increase intersection throughput, which is
similar to controlling the leading vehicle only for improving
the traffic efficiency of a platoon [13]. The CAV as the leading
vehicle is well controlled by CoTV, all its following vehicles
are subsequently self-adjusted. Moreover, Fig.11 indicates that
two agent types of CoTV, traffic light controllers and CAVs,
can be converged at a higher reward with a small standard
deviation than the start after about 60 training iterations.
Thus, CoTV can alleviate scalability issues, while also not
compromise traffic improvement. The last goal of system
design, easier to deploy, is achieved.

C. Discussion: When CoTV Meets More Complicated Urban
Scenarios

To further explore the deployment options of CoTV, we con-
duct experiments under a relatively large and dense urban
scenario in Dublin city centre, which traditionally requires
sophisticated coordination between adjacent traffic light con-
trollers. The selected area covers nearly 1 km2 with 31 signal-
ized intersections, as shown in Fig.12. These intersections with
different road shapes and traffic light signal cycles/phases are
all controlled by CoTV. Table.VI shows the traffic performance
under this dense Dublin scenario at 100% CAV penetration
rate. Although CoTV can get converged and obtain the best
results in all evaluation metrics, which shows that CoTV can
be deployed in both major and minor junctions, we still need
further studies to find the optimal selection of key intersections
to control to avoid costly deployment on all urban junctions.
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Fig. 12. The selected dense urban scenario in the city centre of Dublin.
There are 119 intersections in total, including 31 signalized intersections.
321 vehicles are generated from 10 AM in 400 seconds.

TABLE VI
TRAFFIC PERFORMANCE UNDER A DENSE DUBLIN SCENARIO. PERCENT-

AGE CHANGES SHOWN ARE COMPARED TO BASELINE. THE BEST
ACHIEVED MEASUREMENTS ARE IN BOLD

VI. CONCLUSION AND FUTURE WORK

This paper proposes a multi-agent DRL system, CoTV,
to control traffic light signals and CAV cooperatively for
achieving sustainable urban traffic goals. CoTV can sig-
nificantly improve traffic efficiency (i.e., travel time, fuel
consumption, and CO2 emissions) as well as traffic safety
(i.e., time-to-collision), which outperforms other DRL-based
systems that control either traffic light signal or vehicle
speed, and non-DRL joint control method based on GLOSA.
Moreover, the traffic light controllers in our CoTV utilize
V2I communications infrastructure to only cooperate with the
closest CAV (i.e., as the leader of a platoon) on each incoming
road for alleviating the scalability issue of multi-agent DRL
systems. This also eases the deployment and achieves the
training process to converge within a moderate number of
iterations. Experiments in various grid maps and realistic urban
scenarios demonstrate the effectiveness of CoTV. Compared
to the Baseline, CoTV can save up to 28% in fuel con-
sumption and CO2 while reducing travel time by up to 30%.
The robustness of CoTV is also validated under different
penetration rates of CAV. In the future, we plan to investi-
gate further how to efficiently integrate the action-dependent
MARL for CoTV.
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