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ABSTRACT Designing molecules that have desired properties is one of the challenging tasks of drug
design. Among the many molecular generative models, a generative adversarial network (GAN), is able
to generate molecule structures with desirable chemical properties via reinforcement learning. Generating
valid molecules is the foremost task of any molecular generative model, since invalid molecules cannot be
synthesized. We base our research on a molecular generative adversarial network (MolGAN) architecture to
investigate how the validity score is influenced in different scenarios. First, we verify that the Vanilla GAN
structure can produce valid molecules in measure, and that the reward network, along with Vanilla GAN,
can further increase the validity score in a reinforcement learning manner. Then, the procedure for solely
optimizing the validity score is tested, followed by an assessment of validity score maintenance while other
chemical properties are being optimized. We found that multiple aspects, including loss functions, hyper
parameters, and training sequences, must be carefully considered and optimized to raise the validity score
of molecular generation alone or in concurrence with the optimizing of other chemical property scores.

INDEX TERMS Drug design, molecular generation, generative adversarial network (GAN), molecular
generative adversarial network (MolGAN).

I. INTRODUCTION
In the drug design process, finding valid and synthesizable
molecules is a rather daunting task; it normally takes decades
and costs billions of dollars to bring new drugs to the mar-
ket [1], [2], [3], [4]. The reason behind this delay and expense
is that the realm of possible molecules is enormous, and it is
impractical to assess them all. To mitigate this challenge, a de
novo design is often adopted. One of the main approaches in
computer-aided drug design, de novo design uses generative
models to produce novel molecules with desired chemical
properties. In recent years, the use of deep learning models
to perform molecular generation and molecular optimization
has emerged at a fast pace. The deep learningmodels feature a
deep neural network architecture that usually possesses more
than three layers.

To utilize a deep molecular generation model, the
molecules must be represented in an encoding that the model
can recognize. Furthermore, an encoding scheme should
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capture the essential structural information of the molecules.
One of the most popular ways to do this is called a sim-
plified molecular-input line-entry system (SMILES) string
representation [5], [6], which encodes the molecular graph
into a sequence of ASCII characters using a depth-first graph
traversal. However, there are some major flaws in using
SMILES representations for molecules: the molecule can
vary drastically with changes to the order of the string or
even to a single character, and the generative model can
generate invalid sequences based on the SMILES. Therefore,
researchers rely on molecular graphs [7], [8], [9], [10] to
strengthen the molecular generation so that all the generated
graphs can be valid graphs.

Several popular deep molecular generation models have
been proposed. A recurrent neural network (RNN) is one of
the fundamentals of deep molecular generation [11], [12].
It is inherently suitable for molecular generation due to its
capabilities of sequence modeling and generation and its
use of the SMILES representation of molecules. Another
popular deep molecular generative model type is the varia-
tional autoencoder (VAE) [13], [14]. However, it has been
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reported that the molecules generated by VAE-based models
suffer from low validity scores. The generative adversarial
network (GAN) is a promising deep molecular generative
model [15], [16], [17], [18], [19], [20]. It includes two major
components: a discriminator and a generator. The goal of a
GAN model is to generate samples with distributions that
approximate those of the training set. In molecular genera-
tion, the goal of the generator is to generate molecules that are
similar to those in the training set in order to fool the discrim-
inator, while the discriminator tries to distinguish between
generated and real molecules. They can be considered to be
like players in a minimax game. This process is very useful,
even when we do not know the real distribution.

MolGAN [21] applies GAN to the molecular genera-
tion problem, adapting GAN to operate on graph-structured
data. It combines a reinforcement learning objective to lead
the generation toward certain desired chemical properties.
This approach is the first to discard SMILES representa-
tion and embrace the proposed graph representation in GAN
molecule synthesis. It achieves significantly better validity
scores compared to those of several VAE-based generative
models, and higher chemical property scores than those of
several SMILE-based GAN models. However, the indispens-
able mandate of any molecular generative model is to pro-
duce chemically valid molecules. Only then can we discuss
other desired chemical properties. Therefore, how to generate
molecules that are as chemically valid as possible must be
investigated. Furthermore, the perfect discriminator problem
and themode collapse problem,which also hinder the training
of a GAN model, must be solved.

An improved version of MolGAN, called L-MolGAN, was
proposed in [22] to address the problems of the original
MolGAN. With the original MolGAN model, in attempts to
generate molecules with more than nine atoms, the generated
graphs tend to be disconnected, resulting in invalidmolecules.
L-MolGAN introduces a graph expansion mechanism that
suppresses the generation of disconnected graphs by penaliz-
ing them, using depth-first searches to check the connectivity
of the generated graphs. However, L-MolGAN still need to
be optimized further. For simplicity, we based our research
on the original MolGAN model, but our ideas can also be
applied to L-MolGAN.

In this paper, multiple factors are studied to show how
the validity score can be improved based on the MolGAN
model. We first evaluate the model with only a discriminator
to train the generator (i.e., Vanilla GAN architecture), without
explicitly optimizing the validity score. Next, we incorporate
a reward network to output a validity score, and then train
the generator to generate more valid molecules, considering
multiple aspects, such as the loss functions, hyper parameters,
reward network architecture, and training sequences. Then,
we investigate how to improve the validity score, and then
how to maintain it. We assess parameters for maintaining
validity by concurrently optimizing other property scores,
because validity is a prerequisite for the optimization of other

FIGURE 1. Molecule representation in graph and matrix forms.

properties. Two reward networks are used simultaneously:
one reward network is for improving validity, and the other
is for improving other chemical properties. The conditions
in which the reward networks perform better in training the
generator are then evaluated. Next, the loss function is mod-
ified from the original MolGAN. Finally, the experimental
results are provided and discussed to show how validity can
be improved.

II. MOLGAN ARCHITECTURE
A. MOLECULES AS GRAPHS AND MATRIX
The first step when using MolGAN is to represent molecules
as graphs (Fig. 1). A molecule graph is an undirected graph
with nodes V and edges E . The nodes represent the atoms,
and the edges represent the atomic bonds between different
atoms in a molecule. A node feature matrix X (annotation
matrix) is used that aggregates one-hot vectors from each
atom in a molecule to indicate the different types of atoms.
In this study, the maximum number of atoms, atomic types,
and atomic bonding types in a molecule are restricted to 9, 5,
and 4, respectively, for the sake of simplicity. This results in
one 9 × 5 node feature matrix X and one 4 × 9 × 9 adjacent
tensor A. In a node feature matrix X, the row indicates the
atomic node, and the column indicates the atomic type in
that atomic node. Similarly, an adjacent tensor A (adjacency
tensor), which stores information regarding the edges in the
graph, is used to indicate the atomic bond types, such as
single or double atomic bonding. In adjacency tensor A,
each 9× 9 adjacent matrix provides information on the bonds
between atomic nodes. If a node is bonded with another, the
corresponding element in the adjacent matrix is marked as
1; otherwise, 0 is placed. In our case, with four different
bonding types, there will be four 9 × 9 matrixes in the
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FIGURE 2. MolGAN architecture with molecule samples [21].

adjacent tensor A. The architecture of MolGAN, the chemical
structures of some molecules generated by MolGAN, and the
QM9 dataset are shown in Fig. 2.

B. GENERATOR ARCHITECTURE
The architecture of the generator in MolGAN is a multilayer
perceptron (MLP) with three layers that takes as an input a
32-dimensional noise vector z, sampled from a standard
normal distribution, and uses tanh as an activation function.

The numbers of hidden units in the MLP are 128, 256,
and 512, respectively. The output is a probabilistic complete
graph G̃ = (Ã, X̃ ), which includes an adjacency matrix Ã and
a node feature matrix X̃ . The generator in MolGAN is trained
by a linear combination of the Wasserstein GAN (WGAN)
loss and the reinforcement learning (RL) loss, as follows:

LG = λLG(WGAN ) + (1 − λ)LG(RL), (1)

LG(WGAN ) = −Lfake, (2)

where LG is the generator loss; LG(WGAN ) is the WGAN loss;
the mean value of the discriminator output for one batch
of the generated molecules, LG(RL), is the RL loss; and λ is
the parameter which determines the ratio between LG(WGAN )
and LG(RL). By minimizing LG, the generator is trying to
fool the discriminator and generate molecules with a similar
distribution as those in the true/real dataset. By minimizing
LG(WGAN ), Lfake will be maximized, and Lfake will be close
to Lreal .

C. DISCRIMINATOR ARCHITECTURE
The discriminator is used to discriminate the input molecules
as either real or fake; its task is to accept a molecule graph as
input, and output a scalar ranging within (−∞,+∞). To han-
dle the graph structure data as an input, the discriminator
and the reward network use a relational graph convolutional
network to support graphs with multiple edge types. This
architecture uses a relational graph convolution operation
to convolve the feature representation of nodes X̃ using the
adjacency tensor Ã, as follows:

h(l+1)
i = tan h(f (l)

s (h(l)
i , xi) +

∑N

j=1

∑Y

y=1

Ãijy
|Ni|

f (l)
y (h(l)

j , xi)),

(3)

where h(l)
i is the signal of the node i at layer l and f (l)

s

is a linear transformation function between layers and f (l)
y

is an edge type specific affinity function for each layer. Ni
denotes the set of neighbors for node i. After successive
graph convolution operations are applied, the node embed-
dings are aggregated into a graph-level representation vector,
as follows:

h′
G = tan h(

∑
v∈V

σ (i(hLv , xv))⊙tan(j(h
L
v , xv))), (4)

where σ is a logistic sigmoid function, i and j are MLPs with
a linear output layer and ⊙ denotes element-wise multipli-
cation. An MLP is then used to make the discriminator and
reward network output a scalar value.

In MolGAN, the discriminator is trained using the
WGAN- Gradient Penalty (GP) loss function, as shown in

LD = LD(WGAN ) = Lfake − Lreal + Lgp, (5)

where LD is the discriminator loss; Lfake is the mean value
of the discriminator output for one batch of the generated
molecules; Lreal is the mean value of the discriminator output
for one batch of the real molecules; and Lgp is the gradient
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FIGURE 3. Training loop for the first scenario.

penalty. The discriminator is trying to distinguish the gener-
ated molecules from the real ones by minimizing LD, which
will minimize Lfake and maximize Lreal , making Lfake and
Lreal as dissimilar as possible.

D. REINFOREMENT LEARNING WITH REWARD NETWORK
Vanilla GAN can be used to generate molecules. However,
the properties of the generated molecules are of the most
importance in drug design. Validity, novelty, uniqueness,
druglikeness, solubility, and synthesizability are some of
the desired objectives in drug discovery. If the generated
molecules are invalid and not synthesizable, they are com-
pletely useless. RL is adopted to optimize molecule gen-
eration toward desirable chemical properties. To assess the
chemical properties of the generated molecules, MolGAN
uses the external chemistry software RDKit to calculate a
molecule’s chemical properties, such as validity, druglike-
ness, solubility, and synthesizability. However, to provide
gradients for the GAN training process, the MolGAN archi-
tecture creatively incorporates a reward network into the
Vanilla GAN. The job of the reward network is to replace
RDKit and provide accurate chemical scores for the generated
molecules. Thus, the reward network should be trained to
accept a molecule as input and output a chemical score that
is close to RDKit’s professional evaluation Conveniently, the
reward network is designed to have the same architecture as
the discriminator network. However, the reward network’s
output score ranges within (0, 1) instead of (−∞, +∞) to
match the output score from the external chemistry software.
The discriminator and reward network work independently;
they do not share parameters.

By minimizing the root-mean-square error (RMS error)
between the score obtained from the reward network and
the score calculated from RDKit, the reward network can be
trained to match the score from RDKit. Therefore, the RMS
error is used as the loss to train the reward network, as shown
in:

LR =

∑
(sR − sRDKit)2

B
, (6)

where LR is the loss for the reward network; sR is the output
of the reward network; sRDKit is the score provided by RDKit;
and B is the batch size.

III. PROPOSED VALIDITY IMPROVEMENT
The most important task of a molecular generative model is
to output valid molecules. Only valid molecules are valuable
for further discussion: A molecule must be valid to allow the

FIGURE 4. Training loop for the second and third scenarios.

molecular generative model to be trained for other chemical
properties.

Several scenarios were considered to improve the valid-
ity score. The first scenario uses Vanilla GAN to generate
molecules, as shown in Fig. 3. In this case, the only tutor
for the generator is a discriminator. The generated molecules
are likely to be valid because only real molecules are used
in the training set. The role of the discriminator is to teach
the generator to produce valid molecules. While the accuracy
of the discriminator determines the validity score, it only
indirectly guides the generator.

In the second scenario, as shown in Fig. 4, the reward
network is added in a reinforcement learning manner because
the discriminator was not sufficient enough to produce a high
validity score in the first scenario. Therefore, adopting an
idea proposed in the original MolGAN paper [21], a reward
network is added for validity. It will directly guide/teach the
generator on top of the first scenario. In addition to the first
tutor (the discriminator), a second tutor (the reward network)
is used to ensure a higher validity score.

The third scenario (Fig. 4) is used in the original MolGAN
paper. The authors came up with a smart way to improve
validity further: By optimizing several chemical property
scores, they use the product of multiple scores (synthesiz-
ability score, solubility score, etc.) as the expected value in
the loss function. A zero score is given to invalid molecules.
Thus, the validity score is indirectly optimized when optimiz-
ing other chemical properties.

In the fourth scenario, shown in Fig. 4, the original
MolGAN is modified. In the original MolGAN method,
the generator and the reward network are jointly trained by
adding the WGAN loss (for the generator) and the RMS
error loss (for the reward network), as shown in (7). At first
glance, the training of the model seems compact. However,
the generator will collapse the reward network, or vice versa;
thus, neither will be trained properly.

LG+R = LG(WGAN ) + LR (7)

In the fifth scenario (Fig. 5), validity score improvement is
studied using cases where the other chemical property scores
are optimized. In these cases, the validity score is inherently
maintained at a high level, otherwise the optimizing of the
other scores would not occur. The loss function is formulated
in (8), where sR is the output of the reward network (i.e.,
the solubility score), and B is the batch size. The solubility
score is averaged over all the generated molecules, whether
or not they are valid. It should be noted that invalid molecules
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are also counted when calculating the solubility score, even
though their scores are all zeros. We use (8) (divided by batch
size) instead of (9) (divided by the number of valid generated
molecules nvalid only) because the latter only improves the
solubility score, but the former improves both the validity
score and the solubility score.

LG(RL) = −

∑
sR
B

(8)

LG(RL) = −

∑
sR

nvalid
(9)

In the sixth scenario (Fig. 6), to prevent the validity
score collapse problem from occurring while optimizing
another chemical property (e.g., solubility), we incorporate
two reward networks in parallel. One reward network is for
solubility, and the other reward network is used to penalize
situations that cause the validity score to decrease. The two
reward networks share exactly the same architecture, and the
loss function for both of these reward networks is (6). In the
original MolGAN paper, first, a given molecule is fed into
RDKit to obtain the molecule’s validity score sRDKit(validity)
and solubility score sRDKit(solubility). These two scores are then
multiplied to yield a joint score, sjoint , with which the reward
net is trained. However, it is problematic that, whether or
not the molecule is valid, sjoint becomes dependent only on
sRDKit(solubility), and there is no effect at all from introducing
the validity score from RDKit to train the reward network.
To solve this problem, a separate reward network for the
validity score is used. We first calculate the average score for
each reward network and then multiply these average scores
to construct the RL loss batch by batch, as shown in (10). The
benefit of using the average score

∑
sR2(solubility)

B is that it can
capture both the solubility and validity scores, as explained
in the fifth scenario. The average score

∑
sR1(validity)
B is used to

penalize the low validity score without losing the effect of the
reward network for validity.

LG(RL) = −

∑
sR1(validity)
B

×

∑
sR2(solubility)

B
(10)

The training loops and the corresponding loss functions for
the aforementioned scenarios are shown in Figs. 3–6.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The experiments were carried out on the QM9 dataset. This
dataset is a subset of the GDB-17 chemical database, which
enumerates 166.4 billion molecules of up to 17 atoms of
C, N, O, S, and halogens. GDB-17 covers a molecular size
range that is typical of many drugs and lead compounds. The
QM9 subset has become the golden standard for machine
learning predictions of various chemical properties. It con-
tains 133,885 organic compounds and up to nine heavy
atoms [23], [24].

(Experiment 1) Vanilla GAN (Fig. 3) was tested using the
hypermeters in Table 2. The best validity score was 73.8,
which was slightly lower than expected. It was concluded that
indirect instruction by the discriminator is not enough, and

FIGURE 5. Training loop for the fourth and fifth scenarios.

FIGURE 6. Training loop for the sixth scenario.

that additional direct instructions are necessary to guide the
generator. Therefore, one reward network was added on top
of Vanilla GAN in a reinforcement learning manner.

(Experiment 2) The original MolGAN model (Fig. 4) was
adopted for this experiment. The best validity score obtained
was 90.0, clearly indicating that an additional reward network
can increase the validity score. The reward networkmust cope
with any changes that occur in the model. Thus, the accuracy
of the pretrained reward network worsens as the iteration
progresses, eventually resulting in a low validity score.

(Experiment 3) Instead of using the pretrained reward net-
work from Experiment 2, we renewed the reward network
in every iteration. Then, a universal setup for the training of
the reward network was tested, i.e., with a fixed learning rate
and a fixed iteration number. A number of possible setups
for the reward network were tested, as shown in Table 1.
A learning rate of 0.005 and an iteration number of 5 were
chosen because they provided comparable accuracies to those
obtained using RDKit and the training time can be reduced
by a higher learning rate and a lower iteration number.
The reward network was incorporated into the Vanilla GAN
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TABLE 1. Validity error using different learning rates and numbers of iterations.

TABLE 2. Comparison of different experiments.

FIGURE 7. Validity score as a function of iteration. It is destroyed while
optimizing druglikeness.

model to allow the generator to be jointly but sequentially
trained by the discriminator and the reward network, as shown
in Fig. 5. The reward network was optimized in this case. The
best validity score obtained was 99.6, which outperformed
the Vanilla GAN and the original MolGAN methods used in
Experiments 1 and 2, respectively.We believe that optimizing
the reward network increases the validity score further, poten-
tially achieving state-of-the-art results, but compromises the
training time for the reward network.

(Experiment 4) Based on the model introduced in
Scenario 3, where the reward network was not optimized, this

FIGURE 8. Validity score as a function of iteration. It is destroyed while
optimizing synthesizability.

model was trained in a loop, as shown in Fig. 5, with the
added hyperparameters shown in Table 2. The best validity
score was 15.1, which suggests that the reward network was
optimized.

(Experiments 5 and 6) These two experiments used the
training loop described in Fig. 5 and the hyperparameters
in Table 2. They revealed the phenomena that the validity
score could not maintain while optimizing druglikeness and
synthesizability, as shown in Fig. 7 and Fig. 8, respectively.
It is observed in Fig. 7 that the validity was maintained for
only the first 3000 iterations before a cliff-like drop occurred
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FIGURE 9. Validity and solubility score using the proposed method as a
function of iteration.

in the scores. This dropwas due to themutual interference and
destruction in themodel that occurred during the optimization
of the other chemical property scores. Similarly, as seen
in Fig. 8, the model was trained for a different target, i.e.,
synthesizability, and the validity score collapsing problem
occurred again. To solve the validity score collapsing problem
seen in Experiments 5 and 6, we propose using the model
from the sixth scenario.

(Experiment 7) The validity improvement method shown
in Fig. 6 was tested here. The main target was to optimize
solubility and maintain a high validity score. In this model,
two reward networks were trained, one for the validity score
and the other for the solubility score. The results are shown in
Fig. 9. The best solubility score was 0.91, while the validity
score was 93.6. The way we solved the validity score collapse
problem was explained in the previous section.

V. CONCLUSION
In this paper, potential ways to improve the validity score
of the generated molecules based on MolGAN were investi-
gated. It was found that Vanilla GAN can produce molecules
with a moderate validity score of 73.8. This score was
obtained by only using valid molecules in the training set and
implicitly optimizing the validity score. Then, a reward net-
work was added to the Vanilla GAN in a reinforcement learn-
ing manner. It was forced to be optimized at every iteration
rather than being pretrained to explicitly improve the validity
score to 99.6. It outperformed Vanilla GAN (73.8) and the
original MolGANmethod (90.0). Multiple aspects, including
loss function, hyperparameters, and training sequences, were
evaluated and optimized to further raise the validity score.
We also investigated the validity score collapsing problem
that occurs during the optimization of other chemical prop-
erty scores. It was found that two separate reward networks
in parallel could postpone the validity score collapsing prob-
lem. A good validity score of 93.6 and a moderate chemical
property score of 0.91 were obtained.

APPENDIX
See Tables 1 and 2.
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