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ABSTRACT A scheduling model was developed to optimize the maximum completion time, total machine
load, and maximum machine load for the fuzzy flexible job shop problem with uncertain processing times.
To solve this problem, a multi-strategy dynamic evolution-based improved multi-objective evolutionary
algorithm based on decomposition(IMOEA/D) was proposed. In order to enhance the quality of the
non-dominated solution set and improve the algorithm efficiency. The algorithm firstly employs a strategy
based on minimum processing time and workload, along with a non-dominated solution prioritization
mechanism to generate the initial population. Secondly, three evolutionary strategies are incorporated, and
their probabilities are dynamically adjusted with the increase of evolution generations. Finally, a variable
neighborhood search method is introduced to improve the search performance of the algorithm. The
effectiveness of the proposed algorithm was demonstrated through experimental validation.

INDEX TERMS Fuzzy flexible job shop scheduling, evolutionary algorithm, multi-objective optimization,
dynamic evolution, variable neighborhood search.

I. INTRODUCTION
With the fierce competition in the global market, as well as
the growing concerns over energy consumption and environ-
mental sustainability, modern manufacturing enterprises are
increasingly paying attention to various performance indi-
cators throughout the production process. Efficient schedul-
ing methods play a key role in enhancing the productivity
of manufacturing enterprises, both in decision-making for
production and in the allocation of resources for intelligent
manufacturing. In recent years, due to the widespread appli-
cation of multi-objective production scheduling problems,
the research on multi-objective flexible job shop schedul-
ing problems (MOFJSP) has attracted increasing atten-
tion from scholars. Due to the widespread application of

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

multi-objective production scheduling problems, the research
on MOFJSP has received increasing attention from scholars.

In recent years, there has been a growing body of
research by domestic and foreign scholars on MOFJSP.
Devi et al. [1] introduced a hybrid adaptive firefly algorithm
that employs two adaptive strategies and targets completion
time, maximum machine load, and total workload as opti-
mization objectives. This algorithm demonstrated favorable
performance in multi-objective optimization. Wen et al. [2]
considered the green manufacturing paradigm and devel-
oped a green multi-objective flexible job shop scheduling
model. They also designed a two-stage solving frame-
work based on NSGA-II to generate scheduling plans.
Baykasoğlu and Madenoğlu [3] proposed a construction
algorithm for MOFJSP with machine capacity constraints
and sequence-dependent setup times. The algorithm uti-
lizes a greedy randomized adaptive search algorithm.
Geng et al. [4] proposed an improved multi-objective ant
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colony optimization algorithm (IMOALO) for the reentrant
hybrid flow shop scheduling problem, with the goal of
minimizing both makespan and energy consumption costs.
Jiang et al. [5] formulated a batch division scheduling model
with the objectives of minimizing total energy consumption,
manufacturing span, and processing cost, based on a real case
of energy-saving scheduling problem for complex aerospace
components. They also proposed a novel and improved
crossover artificial bee colony algorithm. Gao et al. [6] intro-
duced a meta-heuristic algorithm, namely the Jaya algorithm,
to address the rescheduling problem in a flexible job shop
with the addition of new jobs. The objective of the algorithm
is to optimize the completion time, machine workload, and
overall processing time.

In the above-mentioned research, the machine processing
time is considered as a constant value. However, in actual
production, there are many dynamic and uncertain factors
in the manufacturing process, such as unexpected machine
breakdowns and maintenance, rework of defective products,
varying worker skill levels, and changes in order demand,
so the start and completion times of processes often fluctuate
within a certain time interval. Therefore, the fuzzy theory,
which is based on fuzzy set theory, can be used in actual man-
ufacturing workshop production to represent the uncertain
processing time. Based on fuzzy flexible job shop schedul-
ing problem (FFJSP), it can reduce the impact of uncertain
events in the production process and better meet the needs of
actual production scheduling. Gnanavelbabu et al. [7] inves-
tigated the the FFJSP with worker flexibility and uncertain
processing times. Their objective was to minimize both the
makespan and the standard deviation of the makespan, and
they integratedMonte Carlo simulation into a multi-objective
improved backtracking search algorithm framework. Zhu
and Zhou [8] investigated the FFJSP with job priority con-
straints and proposed a multi-objective hierarchical optimiza-
tion algorithm based on interval grey degree, total workload
of interval grey degree, and average lateness index. Lei [9]
proposed a cooperative coevolutionary algorithm (CGA) to
minimize the fuzzy maximum completion time. The pop-
ulations of job sequencing and machine assignment evolve
independently and cooperate to converge to the optimal solu-
tion of the problem. Liu et al. [10] nvestigated the dynamic
flexible job shop scheduling problem with fuzzy processing
times. They simplified the original dynamic shop to a tradi-
tional static fuzzy flexible job shop problem and employed
an estimation of distribution algorithm (EDA) to solve the
transformed problem.. The FFJSP meets the demands of
practical applications, but obtaining near-optimal solutions is
challenging and further research is required.

Efficient optimization algorithms can help enterprises
improve production efficiency, and intelligent optimization
algorithms have always been the main solution for scheduling
problems. Multi-objective evolutionary algorithm based on
decompositions can decompose a multi-objective problem
into multiple sub-problems for solution. They have strong

search capabilities, efficient fitness evaluation, and good con-
vergence speed, making them a hot topic in the research
of workshop scheduling in recent years. Li et al. [11] pro-
posed a MOEA/D algorithm based on reinforcement learn-
ing and designed a parameter adaptation strategy based
on Q-learning to guide the population to select the best
parameters and increase diversity. Yang et al. [12] consid-
ered the problem of minimizing both manufacturing time
and energy consumption under strong transportation con-
straints. They applied two methods, namely non-dominated
sorting genetic algorithm-II and decomposition-based multi-
objective evolutionary algorithm, to solve the problem in
a real-world case study. Wang and Peng [13] studied the
distributed job shop scheduling problem and proposed an
improved decomposed multi-objective evolutionary algo-
rithm (MMOEA/D). They achieved good results by using
collaborative search. Zhou and Liao [14] proposed a subpopu-
lation hybrid decomposed multi-objective evolutionary algo-
rithm based on MOEA/D and particle swarm optimization
for the green scheduling problem in flexible job shop with
crane transportation. Xixing et al. [15] described a flexible
job shop scheduling problem with dual resource constraints
and proposed a decomposition-based multi-objective evolu-
tionary algorithm to simplify the solution process. From the
current research results achieved domestically and abroad,
there are relatively few achievements in effectively solv-
ing the multi-objective fuzzy flexible job shop scheduling
problem (MOFFJSP). Indeed, the standard MOEA/D algo-
rithm works well for low-dimensional and simple Pareto
front multi-objective optimization problems, but for complex
Pareto front problems and high-dimensional multi-objective
optimization problems, its distribution performance will be
greatly compromised.

Improving the distribution and convergence of the
non-dominated solution set by enhancing classical algo-
rithms has become an important direction in the research
of multi-objective evolutionary algorithms. Crossing and
mutation are the main drivers of evolution, and appropriate
crossing and mutation strategies can effectively improve evo-
lutionary efficiency. Local search methods can strengthen the
concentrated exploration of the solution space and improve
the quality of solutions. Applying local search strategies
to evolutionary algorithms can effectively improve the con-
vergence of the algorithm. Inspired by the above ideas,
to efficiently solve the MOFFJSP. This article proposes
an improved MOEA/D algorithm that changes its single
crossover and mutation strategy by using a multi-strategy
approach to generate new solutions, and allows each strat-
egy to perform crossover and mutation within its suitable
range. Additionally, a variable neighborhood search strategy
is embedded into the MOEA/D algorithm. On one hand, the
algorithm uses the neighborhood search strategy to improve
the convergence of the non-dominated solution set. On the
other hand, by using a multi-strategy crossover and muta-
tion approach, the algorithm improves the global search
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capability and enhances the uniformity of the distribution of
the non-dominated solution set.

The main contributions of this paper go in four directions.
(1) Using three strategies based on local minimum process-

ing time, globalminimummachine load, and randomly gener-
ated chromosomes to generate an excellent initial population
using the non-dominated solution priority selection principle.

(2) Changing the traditional single crossover and mutation
strategy, we propose three crossover strategies. This involves
performing crossover and mutation for each strategy within
its suitable range, and dynamically adjusting the probabilities
of the three crossover strategies based on the evolutionary
generation. Simultaneously enhancing the algorithm’s global
search ability while improving its local search capability.

(3) We designed a variable neighborhood search combined
with four local search strategies to further enhance the search
ability of the algorithm.

(4) The proposed algorithm is compared and analyzed
with two other optimization algorithms to demonstrate its
superiority.

II. PROBLEM DESCRIPTION
The MOFFJSP can be described as follows: the job
shop consists of n jobs (J1, J2, . . . , Jn) and m machines
(M1,M2, . . . ,Mm), where each job Ji comprises one or more
operations Oij, j :∈ (1, 2, . . . , ni), resulting in a total num-
ber of ni operations for job Ji. The processing of the job’s
operations follows a given routing, and operation Oij can be
optionally processed on machine Mk :∈ M . The processing
time of the j operation of job Ji on machineMk is represented
by a triangular fuzzy number ˜Tijk = (t1, t2, t3). t1 represents
the minimum processing time of the operation, t2 represents
the most probable processing time, and t3 represents the
maximum processing time of the operation.

The scheduling objective is to assign a suitable machine to
each operation, and sequence all operations assigned to each
machine to determine their start time, in order to achieve the
optimal optimization objective.

In addition, the following assumptions are also considered:
All machines are assumed to be independent of each other and
available at time zero. At any given time, each machine can
process only one operation at a time. An operation cannot be
interrupted once it has started processing. Precedence con-
straints exist between operations of the same job, while there
are no precedence constraints between operations of different
jobs. All jobs have the same priority. Machine breakdown and
setup time are not considered.

III. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELING
A. TRIANGULAR FUZZY NUMBER OPERATION RULES
This paper uses triangular fuzzy numbers [16] to represent
operation processing time.

T̃ = (t1, t2, t3) (1)

In the formula, t1 represents the optimistic operation pro-
cessing time, which is the shortest processing time of the
operation; t2 represents the most likely processing time,
which is assumed to be the median of the historical process-
ing time distribution; t3 represents the pessimistic operation
processing time, which is the longest processing time of the
operation. The membership function of the triangular fuzzy
number is given by:

µ(x) =



0, x < t1
t − t1
t2 − t1

, t1 ≤ t ≤ t2

t3 − t
t3 − t2

, t2 < t ≤ t3

0, x > t3

(2)

For two triangular fuzzy numbers X̃ (x1, x2, x3) and
Ỹ (y1, y2, y3), their arithmetic operations are defined as
follows:

Addition operation: X̃ + Ỹ = (x1 + y1, x2 + y2, x3 + y3)
Comparison operation: F(X̃ ) = (x1+2x2+x3)/4, F(Ỹ ) =

(y1 + 2y2 + y3)/4.
if F(X̃ ) > F(Ỹ ), thenX̃ > Ỹ . on the contrary X̃ < Ỹ .
if F(X̃ ) = F(Ỹ ), then compare x2 with y2. if x2 > y2, then

X̃ > Ỹ . on the contrary X̃ < Ỹ .
if F(X̃ ) = F(Ỹ ), then compare x2 with y2. if x2 > y2, then

X̃ > Ỹ . on the contrary X̃ < Ỹ .
Max operation: if X̃ > Ỹ , then X̃ ∨ Ỹ = X̃ . on the contrary

X̃ ∨ Ỹ = Ỹ
Fuzzy number addition operation is used to determine the

fuzzy completion time of the operation, fuzzy number com-
parison operation is used to compare the fuzzy completion
times of all jobs to obtain the maximum fuzzy completion
time of the entire schedule, and fuzzy number maximum
operation is used to determine the fuzzy start time of each
operation.

B. THE MATHEMATICAL MODEL OF THE MOFFJSP

minF1 = maxT̃i, 1 ≤ i ≤ n (3)

minF2 =

M∑
k=1

Wk , 1 ≤ k ≤ m (4)

minF3 = maxWk , 1 ≤ k ≤ m (5)

T̃i represents the fuzzy completion time of job i, while
Wk denotes the load on machine k . Eqs. (3), (4), and (5)
are three objective functions, Eq. (3), is the maximum fuzzy
completion time of all operations, Eq. (4) is the total machine
load and Eq.(5) is the maximum machine load.

T̃ij − ˜Ti(j+1) ≥ ˜Pi(j+1)k ,

1 ≤ i ≤ n, 1 ≤ j < hi, 1 ≤ k ≤ m (6)

( ˜Ti1j1 − ˜Pi1j1k − ˜Ti2j2)X̃i1j1k X̃i2j2k ≥ 0,

1 ≤ i1, i2 ≤ n, 1 ≤ j1 ≤ hi1, 1 ≤ j2 ≤ hi2, 1 ≤ k ≤ m

(7)
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Wk =

n∑
i=1

hi∑
j=1

˜Pijk X̃ijk , (8)

1 ≤ i ≤ n, 1 ≤ j < hj, 1 ≤ k ≤ mTi = Tihi , 1 ≤ i ≤ n

(9)

T̃ij represents the fuzzy completion time of the j-th process
of job i. ˜Pijk is the fuzzy processing time of the j-th operation
of Job i on Machine k . hi represents the total number of
operations for job i, and Xijk represents a binary variable that
takes on values of 0 or 1. When the j-th operation of job i
is processed on machine k , X is equal to 1; otherwise, it is
equal to 0. Eq. (6) indicates that the subsequent operation of
a job cannot start until the previous operation of the same job
is completed. Eq. (7) indicates that no machine can process
more than one job at any given time. Eq. (8) represents the
total workload of machine k , and Eq. (9) represents the fuzzy
completion time of job i.

IV. PROPOSED ALGORITHM
A. IMPROVEMENT STRATEGY
For the solution of the MOFFJSP, previous research has
mostly used local search strategies to improve the conver-
gence of the algorithms. However, after several rounds of
local search, the algorithm will concentrate the population
around a few points, greatly reducing the diversity of the
generated non-dominated solution set. Some algorithms have
proposed crowding strategies to address this issue, but the
results are not satisfactory. MOEA/D uses weight vectors
and Tchybecheff function, which produce solutions that are
distributed in the weight vector space, while simultaneously
balancing convergence and diversity. In order to improve the
convergence and distribution of the Pareto-optimal set and
enhance the performance of the algorithm, this paper pro-
poses an improved MOEA/D (IMOEA/D) algorithm based
on the previous work. Firstly, three strategies based on local
minimum processing time, global minimum machine load,
and random chromosome generation are used to generate
the initial population. The non-dominated sorting principle
is employed to optimize the initial population and ensure its
quality and randomness. Then, three evolutionary strategies
are selected with emphasis on the early, middle, and late
stages of iteration, and the probability of each strategy being
selected is dynamically adjusted by calculating their evolu-
tion rates, to adapt to the different requirements of evolution-
ary strategies during different evolutionary periods. Finally,
four variable neighborhood search strategies combined with
local search strategies were designed to further enhance the
search capability of the algorithm.

B. ENCODING AND DECODING
The MOFFJSP involves the selection of multiple jobs,
multiple operations, and multiple machines, which belongs
to a typical discrete problem. The chromosome adopts a
double-layer encoding form, consisting of the machine selec-
tion part (MS) and the operation sequencing part (OS),

FIGURE 1. Encoding representation.

and the chromosome length is equal to the total number
of machining operations. The MS part of the chromosome
represents the selection of the processing machine for each
operation, and each bit corresponds to a specific operation.
The OS part of the chromosome represents the processing
order of the jobs, with each number indicating a specific job
and the frequency of appearance of each number in the chro-
mosome representing the sequence of processing for each job.

Fig.1 displays an encoded solution. The first digit repre-
sents the processing of operation O31 on machine 1, and the
second digit represents the processing of operation O11 on
machine 1. Therefore, the processing sequence of all opera-
tions is O31 → O11 → O21 → O12 → O22 → O23 → O32.
This encoding method ensures the feasibility of the chromo-
some solutions generated in subsequent operations, and has
no requirements on the length of the workpiece’s process and
the number of workpieces, thus avoiding subsequent complex
corrective operations and achieving simplicity and flexibility.

C. INITIALIZATION STRATEGY
Population initialization is one of the crucial steps in an
algorithm, and the quality of the initial solutions can signifi-
cantly affect the speed and quality of the genetic algorithm’s
solution.

We propose to use three strategies: local minimum pro-
cessing time strategy, global minimumworkload strategy, and
random strategy.

(1)The local minimum processing time strategy selects
the machine with the minimum processing time from the
candidate set for each operation to generate chromosomes,
aiming to reduce the fuzzy completion time.

(2)The global minimum workload strategy selects the
available machine with the minimum workload from the
candidate set for each operation, aiming to reduce the total
workload of the machines.

(3)The random strategy has a simple rule and can ensure
that the initial population has a high degree of diversity.
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After applying the local minimum processing time strategy
and the global minimum workload strategy, two populations
P1 and P2 with size N are generated respectively, and then
these two populations are merged. The merged population
is sorted using the fast nondominated sorting algorithm and
dominated solutions are eliminated. If the population size
after the operation is greater than N, the top N individuals
are selected as the initial population. If it is less than N, the
random strategy is used to add individuals to make up the
population.

D. CROSSOVER AND MUTATION
To enhance the search capability and avoid premature
convergence of the IMOEA/D algorithm, we adopt three
chromosome crossing-over strategies during the crossover
process.

a. Selecting a random individual from the population as
a reference individual, and then generate new individuals
by recombining this individual with two other randomly
selected individuals. This approach has the advantages of
a higher global search capability, good global convergence
performance, and a reduced likelihood of getting stuck in
local optima. However, it has the disadvantage of slower
convergence speed.

b. Selecting the best-performing individual in the contem-
porary population as a reference individual, and recombining
it with a stochastic differential vector to generate new indi-
viduals is a strategy that exhibits a noteworthy ability to opti-
mize locally, leading to rapid convergence rates. Additionally,
it facilitates the effective inheritance of the most successful
individuals from each generation. However, the strategy’s
ability to explore the global search space is relatively limited,
rendering the algorithm vulnerable to becoming trapped in
local optima.

c. Selecting a random individual from the population as a
reference individual, then generating a fixed vector by com-
bining this individual with the best-performing individual
from the current population. This vector is then recombined
with two vectors generated by randomly selected individuals
to create new individuals. This strategy has the advantage
of effectively balancing global search capability and local
optimization ability, but has a relatively weaker robustness.

Based on the above analysis, although different evolution-
ary strategies have differences in search ability and search
range, their ways of generating new individuals are basically
the same, which is to produce new candidate individuals
through a linear combination of a base individual and differ-
ential vectors. Due to the commonality in structure and evo-
lutionary patterns among different mutation strategies, they
can complement and cooperate with each other to improve
the search performance.

In the early stages of evolution, strategy a is more likely
to be selected, as the population has sufficient evolutionary
momentum and is in a fast-evolving phase that emphasizes
convergence, but with a slight lack of diversity. Strategy a
enhances diversity under the condition of rapid convergence.

In the middle stage of evolution, both mutation rate a and
strategy c are more likely to be selected, but the probability
of strategy c being selected is higher. At this stage, the evo-
lutionary momentum of the population is weak and it is in a
slow evolution phase. It is difficult to converge to the ideal
Pareto front. Strategy a and c provide evolutionary momen-
tum and enhance its convergence to prevent the population
from getting stuck in a stagnant state. In the later stages of
evolution, strategy b is more likely to be selected. At this time,
the population gradually converges to the Pareto front, and the
algorithm enters the stage of local tuning. It is important to
focus on improving the algorithm’s diversity and its ability in
local search, optimization, and replacement, in order to make
the distribution of solutions more uniform when converging
to the Pareto front. Therefore, the probabilities of the three
strategies need to be dynamically adjusted with the evolution
generation. The evolution probabilities of the three strategies
are P1,P2,P3, and initially P1 = P2 = P3 = 1/3. Dur-
ing each generation of the evolutionary process, the success
rate of using each evolutionary strategy to update the parent
population is calculated. This involves counting the number
of individuals in the current population that have used each
of the three strategies (n1, n2, n3), as well as the number of
individuals that were successfully updated using each strat-
egy (m1, m2, m3). The probabilities of selecting each strategy
(p1, p2, p3) are then dynamically adjusted according to the
following formula:

P1 =
m1/n1

m1/n1 + m2/n2 + m3/n3
(10)

P2 =
m2/n2

m1/n1 + m2/n2 + m3/n3
(11)

P3 =
m3/n3

m1/n1 + m2/n2 + m3/n3
(12)

After each generation, the algorithm can automatically
adjust the mutation strategy that is suitable for the current
stage based on the success rate of evolution. For the muta-
tion strategy that is suitable for this stage, we will increase
the proportion of its implementation in the algorithm, while
for the mutation strategy that is not suitable for this stage,
we will reduce its proportion in the algorithm. By adopting a
dynamic population evolutionmodel, we are able to adjust the
probabilities of different strategies in real-time based on their
impact on the current population evolution, thus avoiding the
stagnation of population evolution and effectively improving
the convergence and evolution efficiency of the algorithm.
In addition, since the three evolution mutation strategies par-
ticipate simultaneously and cooperate with each other, this
model can ensure that the algorithm has diversity.

Mutation operations can play a role in expanding ran-
domness and increasing the search ability of the algorithm.
In the initial stage of evolution, a small mutation probability
is needed, and as many good genes as possible should be
preserved. In the later stages, it is necessary to increase the
mutation probability appropriately to generate gene diversity
and avoid premature convergence. Therefore, dynamic and
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adaptive mutation probability is used in the iterative process.
The formula for calculating the mutation probability is as
follows:

PN = P0 + ρ(
GEN

MAXGEN
) (13)

Eq. (13) P0 is the initial mutation probability, ρ is the
maximum rate of change, GEN is the current evolutionary
generation, andMAXGEN is the total evolutionary generation.

E. VARIABLE NEIGHBORHOOD SEARCH
We have chosen to embed the variable neighborhood algo-
rithm in MOEA/D to enhance the local search capability of
the algorithm. A total of four key-path-based neighborhood
search structures have been designed as follows:

N1 (minimum processing time): Select any operation and
choose the machine with the shortest processing time for the
current operation from its available machine set.

N2 (Insertion): Randomly select two positions of opera-
tions and insert the later operation to the position before the
earlier operation.

N3 (Swap): Randomly select two positions of operations
and swap the positions of these two operations in the sequence
of operations.

N4 (Permutation): Select two positions randomly in the
feasible sequence of operations, and reverse the order of
operations in between.

During the variable neighborhood search, the aforemen-
tioned operations are applied in sequence. If the new solution
generated by the neighborhood structure N1 is better than the
current solution, the new solution is accepted and replaces
the current solution, and then the N1 neighborhood structure
is continued to be used. If the current solution cannot be
improved, the algorithm moves to the next neighborhood
structure for searching, and this process continues until the
stopping iteration is reached.

F. ALGORITHM DESCRIPTIONS
The improved decomposition-based multi-objective evolu-
tionary algorithm (IMOEA/D) is proposed by integrating the
MOEA/D algorithm with population initialization, crossover
and mutation strategies, and variable neighborhood search
discussed in the previous section. The specific steps are as
follows:

Step 1: Set the algorithm parameters, including population
size and maximum iteration number.

Step 2: Initialize the weight vectors uniformly distributed
in the solution space. Initialize neighborhood size and refer-
ence points based on the weight vectors.

Step 3: Generate the initial population using the initializa-
tion strategy and non-dominated sorting.

Step 4: Check if the algorithm termination criteria are met.
If yes, proceed to Step 8. If not, proceed to Step 5.

Step 5: For each individual in the current population, select
a crossover strategy and perform mutation operation based
on the evolutionary generation to generate new solutions.

Calculate the fitness of the new solutions and update the
reference points.

Step 6: Perform a variable neighborhood search strat-
egy, calculate the fitness of the neighborhood solutions, and
replace the original chromosome with a superior solution.

Step 7: Evaluate the updated individuals, update the neigh-
borhood and reference points using non-dominated sorting,
then return to Step 4.

Step 8: The algorithm terminates, and the non-dominated
solution set is outputted.

G. COMPLEXITY ANALYSIS
Suppose there are L total operations for given job, and the
algorithm has a maximum iteration number of MAXGEN ,
a population size of N , and a neighborhood size of T . The
iteration process mainly consists of four parts:

The first part involves calculating the fitness of the new
solutions generated through crossover and mutation and
updating the reference points, with a time complexity of
O(MAXGENN + MAXGENNZ ), where Z is the number of
reference points.

The second part involves updating the population with a
time complexity of O(MAXGENNL).

The third part involves variable neighborhood search with
a time complexity of O(MAXGENLK ), where K is the maxi-
mum iteration number for variable neighborhood search.

The fourth part involves updating the non-dominated solu-
tion set. In each iteration of the first generation, dominated
solutions are removed from the solution set, with a time
complexity of O(MAXGENEpN ), where Ep is the size of the
non-dominated solution set.

Based on this, the overall time complexity of the algorithm
can be determined to be T (n) = MAXGEN (N + NZ + NL +

LK + EpN ), indicating that the main parameters affecting
algorithm performance are the population size and total num-
ber of operations.

V. EXPERIMENTAL RESULTS AND COMPARISONS
A. EXPERIMENTAL DESIGN
The test dataset used in this study was obtained from [17]
and [18], comprising a total of 10 questions. The job process-
ing rangewas between 10-20, themachine rangewas between
6-20, and the total number of operations ranged from 50-255.

The performance of the algorithm was evaluated using the
ratio and distance metrics proposed in [19] and [20].

(1)The ratio metric ξa is defined as the proportion of
non-dominated solutions provided by the non-dominated
solution set Sa obtained by algorithm a, in the entire reference
set S∗, as below:

ξa =
|Sr ∩ S∗|

|Sr |
(14)

Here, S∗ represents the non-dominated solution set obtained
by merging the non-dominated solution sets of all algorithms.
Therefore, the larger the value of ξa, the more non-dominated
solutions the algorithm can obtain.
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TABLE 1. Parameter level.

(2) Distance metric IGDa: refers to the distance between
the elements in the non-dominated solution set Sa obtained
by algorithm a and the reference set S∗. It can be calculated
using the following formula:

IGDa =
1

|S∗|

∑
Y∈S∗

min{dxy|X ∈ Sa} (15)

where

dxy = [(F ′

1(X ) − F ′

1(Y ))
2
+ . . . + (F ′

D(X ) − F ′
D(Y ))

2](1/2)

(16)

where D represents the number of targets. To account for the
disparate magnitudes of maximum completion time, maxi-
mum machine load, and total load, we normalize Fz into F ′

z
prior to calculation. The normalization formula is as follows

Fz =
Fz − Fzmin

Fzmax − Fzmin
(17)

where Fzmin and Fzmax represent the maximum and mini-
mum values of the z-th objective among all non-dominated
solutions in the reference set S∗, respectively. It is evident
that the smaller the value of IGDa, the better the algorithm’s
performance.

B. PARAMETERS SETTING
The key parameters of IMOEA/D include population sizeNP,
number of generations MAXGEN , and neighborhood size T .
In this section, an experimental design method is used to set
these three parameters, by constructing a three-factor four-
level orthogonal table L16(43). (1)
Table.(2) exhibits the outcomes derived from performing

10 independent iterations of algorithms M1 and M6 for each
parameter configuration, with X serving as the performance
evaluationmetric for data acquisition. The values presented in
table.(2) correspond to the average results obtained from the
aforementioned runs. Table.(3) presents the response values
of the various parameters, indicating that the range of param-
eter MAXGEN is the largest among all, thereby exerting the
most significant impact on algorithm performance, followed
by NP, while parameter T has the least influence. Based
on a comprehensive analysis of the outcomes, the optimal
parameter configuration for IMOEA/D is determined to be:
population size NP = 200, evolution generation MAXGEN =

200, and neighborhood size T = 15.

TABLE 2. Orthogonal tables and distance indices.

TABLE 3. The response value of each parameter.

C. COMPARISON AND DISCUSSION
In order to further substantiate the convergence and distri-
bution performance of the improved MOEA/D, the follow-
ing algorithms were employed as comparative benchmarks:
an evolutionary taboo search algorithm (EATS) proposed
in [21], and an improved hybrid particle swarm optimiza-
tion algorithm (IH-PSO) proposed in [22]. The effectiveness
of the proposed algorithm was verified through simulation
experiments. Reference [21] focuses on the multi-objective
fuzzy flexible job shop problem, with a main emphasis on
the satisfaction level of due dates, while [22] addresses the
multi-objective flexible job shop scheduling problem. Both
algorithms’ optimization objectives were modified to align
with the optimization goals of this paper, resulting in an
improved evolutionary taboo search algorithm (EATS) and
a hybrid particle swarm optimization algorithm (IH-PSO)
that share the same optimization objectives as the proposed
algorithm in this study. All algorithms were set with the
following parameters for comparison: population size was
200 and the maximum number of iterations was 200. Each
comparative algorithm was independently run 30 times on
the test set to obtain the average IGDa and ξ . Tables (4)
and (5) show the average values of x and y for the 10 groups
obtained by the three algorithms. The best performing metric
is indicated in bold and italic.

According to the results shown in (4) and (5), the
IMOEA/D algorithm achieved the best performance in all
test cases. The average values of the three algorithms for this
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TABLE 4. ξ values obtained by IMOEAD/D, EATS and IH-PSO.

TABLE 5. IGD values obtained by IMOEAD/D, EATS and IH-PSO.

FIGURE 2. Solution space of instance M3.

metric in the 10 groups of test cases were 0.4645, 0.2569, and
0.2791, indicating that the IMOEA/D algorithm has a certain
advantage in terms of distribution compared to the other
two algorithms. Further comparison between IMOEA/D
algorithm and EATS algorithm shows that the number of
non-dominated solutions obtained by both algorithms is close
when the problem size is small (such as problem instances
M1, M2, and M3). However, as the problem size increases
(such as problem instances M9 and M10), IMOEA/D algo-
rithm has a significant advantage over EATS algorithm in

FIGURE 3. Three views of solution space of instance M3.

FIGURE 4. Solution space of instance M9.

FIGURE 5. Three views of solution space of instance M9.

terms of the number of non-dominated solutions obtained.
Compared with the IH-PSO algorithm, the IMOEA/D algo-
rithm has a significant advantage in small-scale examples
(such as M1, M3, M4). It can be seen that regardless of small
or large-scale examples, IMOEA/D has good performance
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FIGURE 6. Convergence curve of instance 2.

in the distribution of non-dominated solutions. The superior
performance of IMOEA/D in terms of distribution diversity
may be attributed to several factors. Firstly, the algorithm
utilizes multiple strategies in the crossover process to update
the population, ensuring individual diversity and balancing
global and local search capabilities. Secondly, the evolution
of the population is adjusted based on the success rate of the
evolution, resulting in improved population diversity. Finally,
the algorithm employs a neighborhood search strategy to
further enhance local search capabilities and improve the
uniformity of the distribution of the non-dominated solution
set.

The results in Table (5) show that IMOEA/D algo-
rithm obtained the best performance in 8 instances, while
EATS algorithm obtained the best performance in one test
case, and IH-PSO algorithm obtained the best performance
in one instance as well. Compared with the EATS algo-
rithm, IMOEA/D algorithm significantly outperformed it in
4 instances (M1, M3, M6, and M9) and showed no signifi-
cant difference in the other 6 instances. Compared with the
IH-PSO algorithm, IMOEA/D algorithm significantly out-
performed it in 5 instances (M1, M2, M4, M5, and M6) and
showed no significant difference in the other 5 instances.
Moreover, for instances 9 and 10, IMOEA/D algorithm
obtained the smallest indicators, indicating that IMOEA/D
has good convergence performance in solving large-scale
problems. For small-scale problems, such as instances 1,
2, and 4, IMOEA/D also has certain advantages. Although
IMOEA/D did not achieve the best performance in instances

5 and 8, there was no significant difference compared to
the other two algorithms. The average value of the indicator
for these three algorithms in all 10 instances were 0.0056,
0.0098, and 0.0122, respectively, which further indicates that
IMOEA/D is competitive in terms of convergence.

There are several possible reasons why IMOEA/D per-
forms well in terms of convergence. Firstly, the multiple
crossover strategies used during the evolutionary process,
particularly strategies b and c, ensure a high inheritance rate
for the optimal individuals, thereby preserving the superior
genetic information within the population and maintaining
the quality of the solution set. Secondly, the four neigh-
borhood search strategies utilized by the algorithm provide
a means for further exploring the search space and dis-
covering better solutions. The use of weight vectors for
single-objective evaluation and greedy search also enhances
the quality of the non-dominated solution set in multi-
objective problems. Lastly, the use of an excellent initial
population can increase the efficiency of the algorithm and
contribute to improving the final solution set.

As shown in Figures (2), (3), (4) and (5), the distribution
and three-dimensional views of the obtained non-dominated
solutions by the three algorithms are presented for test
instances M3 and M9, respectively. For case M3, IMOEA/D
obtains a non-dominated solution set with good distribution
and convergence. The non-dominated solution set obtained
by EATS exhibits acceptable distribution and convergence,
while IH-PSO performs relatively poorly in convergence
but has good distribution of the obtained non-dominated
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solution set. EATS algorithm has a slight advantage over
IH-PSO in both distribution and convergence of the obtained
non-dominated solution set. For case M9, IMOEA/D has
a certain advantage in both distribution and quality of the
obtained non-dominated solution set compared to the other
two algorithms. The non-dominated solution set obtained by
EATS has good distribution but relatively poor convergence,
while IH-PSO exhibits acceptable distribution and conver-
gence in the obtained non-dominated solution set. Overall,
the three optimization objectives interact with each other, and
IMOEA/D algorithm has advantages in both distribution and
convergence of the obtained solutions.

To further compare the performance of the algorithms,
Figure (6) shows the convergence curves of the three algo-
rithms for Instance 2.

The convergence curves of makespan, total machine load,
and maximum machine load with respect to the evolution
generations for case 2 are presented in Figure (6), which
further demonstrates the competitiveness of IMOEA/D algo-
rithm in terms of convergence performance. IMOEA/D algo-
rithm converges faster than the other two algorithms in terms
of maximum machine load and completion time, with signif-
icant advantages in completion time and maximum machine
load. The completion time converges to the optimal solu-
tion and becomes stable around 100 generations, while the
maximum load converges to the optimal solution around
120 generations. It can be seen from the above figure that the
initial values of IMOEA/D are lower than those of the other
two algorithms, indicating that the population initialization
strategy proposed in this paper can effectively improve the
quality of the initial population and has a certain effect on
improving the convergence of the algorithm. In summary, the
IMOEA/D algorithm demonstrates good performance on the
job shop scheduling problem studied in this paper.

VI. CONCLUSION AND FUTURE WORKS
This study addresses the MOFFJSP by formulating a mathe-
matical model that optimizes for maximum completion time,
maximummachine load, and total machine load. To solve this
problem, an improved decomposition-based multi-objective
evolutionary algorithm is proposed. The algorithm proposed
in this study employs a dual-level encoding scheme. It gen-
erates the initial population using a minimum processing
time and workload strategy, as well as a non-dominated
solution priority selection mechanism. To ensure diversity
in the search process, three strategies are introduced in
the crossover operation. Moreover, a variable neighborhood
search algorithm is integrated into the search process, which
comprises four distinct neighborhood structures. The experi-
mental results of algorithm simulation testing on 10 standard
datasets demonstrate the effectiveness of IMOEA/D in solv-
ing the MOFFJSP proposed in this paper.

The future research directions are as follows: (1) Extend
the scheduling problem addressed in this paper to more
complex production environments, such as dynamic pro-
duction workshops and distributed production workshops.

(2) Combine the improved decomposition-based multi-
objective evolutionary algorithm with other heuristic
algorithms to leverage their respective strengths and achieve
better algorithm performance. (3) Consider adding intelligent
agents in the algorithm and using multi-agent search to obtain
better scheduling solutions.
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