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ABSTRACT Aiming at themany-to-onemission planning problem in the case ofUAV fault, a self-organizing
solving method is designed. This method organically combines the situation assessment of single UAV with
the collaborative optimization of multiple UAV. On the one hand, the situation assessment of single UAV
is carried out based on Bayesian network, and the striking probability of each UAV is obtained. On the
other hand, in order to solve the problem of multiple UAV cooperation, the improved discrete particle
swarm optimization based mixed strategy (MSDPSO) is proposed. The algorithm has been improved in the
following four aspects. Firstly, Sobol sequence is used to initialize the population to improve the coverage
of solution space. Then, a nonlinear time-varying strategy is proposed to accelerate the convergence of
the algorithm. Cauchy operator is also introduced to enhance the search space of discrete particle swarm
optimization. At the same time, an adaptive cross learning strategy is proposed to enrich the diversity
of the population, thereby improving the global optimization ability of the algorithm. In addition, the
cubic spline interpolation is used to plan trajectory of UAV. Finally, improved discrete particle swarm
optimization is used in three-dimensional space for simulation and comparison with both healthy and faulty
UAV involved. Results show that the designed algorithm has significant improvement on solution optimality
and convergence rate, which provides a theoretical basis for the application of multiple UAV collaborative
task planning.

INDEX TERMS Multi-UAV coordination, improved DPSO, Bayesian network, cubic spline interpolation.

I. INTRODUCTION
With the progress of technology, UAVs are widely used in
various industries [1]. In complex battlefield, multi-UAV
coordinated mission planning is a hot topic [2]. In particular,
multi-UAV cooperative execution of striking tasks is an
important part of UAV intelligence and diversification [3].

In current developed achievements, the main control
methods of UAV task allocation include centralized [4],
distributed [5] and hierarchical ways [6]. Peng et al.
designed two allocation models to apply to the dynamic
task allocation of targets on the ground, and compared
with contract net-based algorithm, intelligent optimization
algorithm and clustering algorithm, its advantages and
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disadvantages and research status were analyzed [7]. Due
to high-dimensional complex problems, a task allocation
method of discrete wolf colony algorithm was proposed and
the result proved that the discrete wolf colony algorithm had
good convergence [8]. In addition, the mixed integer linear
programming (MILP) [9], [10], [11] was used to plan the
coordinated tasks of multiple UAVs, which improved the
optimization ability. However, its computational complexity
also increased with the increasing of tasks, which made the
computing time longer, so the method was not suitable for
large cluster collaborative task allocation. Besides, by design-
ing a new nonlinear tube-based robust model predictive
control (TRMPC) algorithm, a double-loop cascade tracking
control framework is established. Chai et al. Conducted a
comparative study, the results show that compared with other
new development methods in this study, the proposed design
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can achieve better constraint processing and attitude tracking
performance [12]. Meanwhile, Chai et al proposed a new
integrated real-time trajectory planning and tracking control
framework to deal with the parking maneuver problem of
autonomous ground vehicles (AGV). By using the cyclic
network structure, this method further extends the new
idea of using depth neural network (DNN) to approach
the optimal parking trajectory. In addition, two transfer
learning strategies are applied to make the developed motion
planner adapt to all kinds of AGV. Through a number of
experimental studies and comparative analysis, the proposed
strategy can enable AGV to complete the parking task
while enhancing the performance of motion planning and
control [13]. Aiming at the problem of cooperative target
search of multi-UAV, a cooperative target search algorithm
based on cooperative pigeon-inspired optimisation (CPIO)
and two continuous parts of each UAV base return algorithm
based on artificial potential field (APF) are proposed,the
algorithm realizes the search for key areas and prevents
UAVs from flying into the no-fly zone, which has a certain
reference value for the collaborative planning of multiple
UAVs in complex environments. [14]. A system based on
embedded hardware and high-level communication protocol
was proposed as the basis for identifying, distributing and
assigning tasks, and then used by multi-UAV in a simple
and decentralized way [15]. Duan et al. proposed a dynamic
discrete pigeon swarm optimization algorithm, the algorithm
was used to deal with multi-UAV cooperative search-attack
task planning, which integrated task allocation and path
generation [16], [17]. Aiming at the problem of planning the
optimal maneuvering trajectory and guiding the mobile robot
to point to the target position in an uncertain environment,
Chai et al proposed a hierarchical control framework based on
deep learning. This method is based on the recently proposed
idea of using depth neural network (DNN) to approximate
the optimal motion trajectory so it can significantly reduce
the time required for the training process. At the same
time, a noise priority experience playback (PER) algorithm
is proposed to improve the exploration rate of the control
strategy. Through several groups of simulation experiments,
it is proved that the proposed strategy can complete the
independent exploration task with improved motion planning
performance, enhanced anti-collision ability and less training
time [18], [19]. To sum up, the current research onmulti-UAV
cooperative task allocation only considered the improvement
of the algorithm and one-to-one target allocation. However,
the problem of many-to-one task allocation after the fault of
UAV was not fully considered.

In addition, when task assignment is completed, in order
to ensure UAVs reach the target, it is also necessary to
design and plan the trajectory of UAV. In the current research
of UAV trajectory planning, most of achievements only
focused on trajectory for single UAV [20].While the coupling
with trajectory planning of multi-UAV and task assignment
had not been effectively studied. Some existing researches
used graph theory to carry out trajectory planning, such as

A∗ algorithm [21], hungarian algorithm [22], random tree
algorithm [23], voronoi graph algorithm [24] and so on.
Because these methods were all based on cost map, it was
necessary to store the cost map offline, which made these
methodsmore time-consuming.With the development of arti-
ficial intelligence technology, biomimetic swarm predation
algorithms were widely used in trajectory planning, such
as bee swarm algorithm [25], wolf swarm algorithm [26],
genetic algorithm [27] and particle swarm optimization [28].
Among them, particle swarm optimization algorithm (PSO)
was widely used because of its strong searching ability and
easy simulation operation. For example, a particle swarm
optimization algorithm for control variables was proposed to
carry out the cooperative trajectory planning between UAV
and underwater vehicles, the result could reach the theoretical
extreme value [29]. Xie et al. proposed a deep reinforcement
learning method for 3-D trajectory planning, which used
local information and relative distance instead of global
information so that the UAV could obtain environmental
information in actual battlefield with limited capability, so as
to achieve effective obstacle avoidance and feasible trajectory
planning of UAV in complex environment [30].

To sum up, for the planning of multi-UAV striking
missions, most of the current studies only considered the one-
to-one striking planning scenario, namely, a target was hit by
a UAV, and only the linear distance of mission assignment
was considered, which was not consistent with the trajectory
in actual combat environment, causing that the generated
paths may not effectively avoid obstacles. Meanwhile, the
current researches only involved the unilateral content of
task assignment or trajectory planning, and did not consider
the coupling of the two. On the other hand, when one of
UAVs broke down, the effectiveness of coordinated mission
implementation had not been effectively explored.

Based on above analysis, the many-to-one cooperative
striking mission planning in the event of UAV fault is
studied in this paper, and the mission assignment and
trajectory planning are effectively coupled. The main work
and innovations are as follows:

1) Considering the coupling of optimal performance of
single UAV and cooperative mission planning of multi-
UAV, a distributed self-organizing solving strategy is
proposed. In this method, the situation assessment of
single UAV is firstly carried out by using Bayesian
network, and then the result is input into the cooperative
mission planning of multi-UAV as a constraint index.

2) In order to solve the problem of multi-UAV cooperative
mission planning, an improved DPSO based mixed
strategy (MSDPSO) is proposed, which uses Sobol
sequence to initialize the population, updates high-
quality individuals based on Cauchy operator, and
introduces nonlinear time-varying mutation strategy
and adaptive cross-learning strategy to enrich the
diversity of the population. Comparing with traditional
DPSO, the proposed MSDPSO improves solution
optimality and convergence rate.
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3) Considering the problem of feasible trajectory in
mission planning, the algorithm is not based on the
distance of straight line between UAVs and targets,
but coupled with the actual flighting distance based on
trajectory generation.

The rest of the paper is organized as follows: Section II
describes the mission planning problem of multi-UAV.
Section III presents the solving strategy, the constraints
and Bayesian network. In section IV, simulations and
comparisons are carried out to verify the effectiveness of the
proposed algorithm. Finally, conclusion and future work are
given in Section V.

II. PROBLEM DESCRIPSION
It is defined that there are mUAVs and ttargets, and m > t ,
to carry out many-to-one striking tasks. Bayesian situation
assessment andMSDPSO are introduced to complete the task
assignment of different targets. If some UAVs malfunction
during the mission, healthy UAVs re-coordinate the maneu-
verability and flighting cost to complete the task assignment
under the condition of meeting various constraints. After the
completion of task assignment, each UAV uses the method of
cubic spline interpolation to carry out trajectory generation
according to the given waypoints, and accurately hit the
target.

The specific mathematical expressions are as follows:

Ubi(σbj)
∏
ri(q)

−→
(xj,yj,zj)

Uek (σej)

i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n, k = 1, 2, 3, . . . , t
(1)

where m represents the total number of UAV, t represents
the total number of target, n represents the total number
of waypoint, Ubi represents starting location of UAVs, Uek
represents location of targets, 5 represents threatening con-
straints, ri(q) represents the trajectory information, (x, y, z)
represents the location of waypoints in the flighting process
of UAVs, and σ represents the cooperative constraints for task
assignment.

III. SOLVING STRATEGY
In order to solve the problem of cooperative mission planning
of multi-UAV under fault, a distributed self-organizing
solving strategy is proposed in this paper. Bayesian network
is firstly used to evaluate the situation of single UAV, and the
probability of each UAV hitting each target is given. Then,
an improved discrete particle swarm optimization algorithm
based on mixed strategy (MSDPSO) is proposed for multi-
UAV cooperative mission planning. The evaluation of single
UAV is effectively coupled with the planning of multi-
UAV. PSO is used for trajectory pre-planning, and cubic
spline interpolation is introduced to smooth the trajectory.
Finally, the actual range of trajectory is introduced back to
mission planning to verify the effectiveness of the proposed
algorithm.

The algorithm structure diagram is shown in Fig. 1.

TABLE 1. Definition of input nodes.

TABLE 2. Definition of output nodes.

A. SITUATION ASSESSMENT BASED ON BAYESIAN
NETWORK
Bayesian network is used to evaluate the status of each
UAV, and the probability is added to multi-UAV cooperative
mission planning as an evaluation index.

The model of Bayesian network consists of input layer
and decision layer, a detailed description of each node is as
follows:

The input layer is composed of evidence nodes to detect
the battlefield environment in real time and provide evidence
for network input.

The evidence node is mainly composed of the following
aspects: distance, speed, height, engine, wing, residual fuel,
ammunition and communication. These nodes’ information
can be directly obtained by sensors and other detectable
equipment carried on UAV. In order to reduce the amount
of computation and improve the speed of decision-making,
the information is discretized and transmitted to Bayesian
network as node evidence, which is shown in Table 1.

The input nodes are analyzed concretely according to
the simulation scene, and the decision-making nodes of the
network is to provide guidance for actions of UAVs, as is
shown in Table 2.
As Bayesian situation assessment is an input of mission

planning, the corresponding cost function can be given as
follows

fB =

m∑
i=1

t∑
k=1

Dik

Dik =

{
DEi,k if DEi,k ≥ DEî,k and i ̸= î

DEî,k if DEi,k < DEî,k and i ̸= î

(2)
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FIGURE 1. Algorithm structure diagram.

where m represents the number of UAV and t represents the
number of target, DE is a decision variable, which represents
the probability of the ith UAV hitting the kth target, through
the comparison of the striking probability of different UAVs
hitting the same target, the maximum striking probability is
obtained, which is represented by Dik and brought into the
function of assessable index as a substitute value, which is
denoted by fB.
In addition, the multi-UAV cooperative mission planning

is an optimization problem under a variety of constraints.
In order to facilitate the modeling and solving of the
algorithm, some constraints are set in the following.

B. CONSTRAINT CONDITION
1) STRIKING NUMBER CONSTRAINT
Assuming that when UAV performs task assignment, the
number of striking on a certain target k is expressed as
MAttack (k), k ∈ t . The striking number constraint can be
expressed as

MAttack (k) =

{
A1 k = even number
A2 k=odd number

(3)

when the target label is even number, the UAV will strike A1
sorties, when the target label is odd number, A2 sorties will
be hit. The specific number of strikes will be set according to
the simulation.

The corresponding cost function of this constraint is
f2 =

m∑
i=1

t∑
k=1

Bik

Bik =

{
pbik if MAttack (k) ̸= A1orA2
0 if MAttack (k) = A1orA2

(4)

where f2 is the punitive value of the striking number, pbik
represents the cost value of the corresponding striking times
when the ith UAV carries out the striking mission for the
kth target, and the specific value is set according to the
simulation, the Bik is the value of the price after judgment
and comparison.

2) SPATIAL COOPERATIVE CONSTRAINT
When multiple UAVs cooperate to carry out a mission, if a
UAV fails to perform the mission or there are obstacles
in performing the task, other UAVs can quickly make
adjustments to replace or help the malfunctioning UAV to
complete the task. Therefore, the constraint with spatial
cooperative ability is established, it is assumed that the
distance between UAVs is set to d . In order to avoid collision,
d should meet

d > dmin (5)

where dmin represents the minimum safe distance between
UAVs.

The corresponding cost function is
f3 =

n∑
j=1

Cj

Cj =

{
pcj if d ≤ dmin

0 if d > dmin

(6)

where f3 is the punitive value of the spatial cooperative
constraint, pcj is expressed as the punitive value of distance
after comparison between waypoint and the set minimum
safe distance, the specific value is set according to the
simulation, and Cj is the value of generation after judgment
and comparison.
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3) SHORTEST RANGE CONSTRAINT
In the current research on mission assignment of multi-UAV,
the constraint of range is only based on the planning of
straight-line distance, which is not consistent with the actual
flighting trajectory of UAVs, that is, the task assignment
based on straight-line distance does not necessarily meet the
optimal allocation results in the flighting environment with
obstacles. Therefore, the proposed constraint of the shortest
voyage takes the actual flighting ranges of UAVs into account.

Supposing that S1 represents the cost that the UAV has
to pay from the starting point to the target. In order to
more intuitively show the change of fitness of objective
function, the normalized cost function for voyage is given as
follows

min S1 =

n−1∑
j=1

li

 /lstr (7)

li = sqrt
[(
xj+1 − xj

)2
+

(
yj+1 − yj

)2
+

(
zj+1 − zj

)2] (8)

where n represents the total number of waypoint, j represents
a certain waypoint and (x, y, z) separately represents the
coordinates on the horizontal plane and the vertical height of
the waypoint, and lstr represents the straight distance between
the starting point and the target. The result of trajectory
planning is that in the mission space, by searching a series
of waypoints, these waypoints that meet the total constraints
of the shortest range are obtained by iterative optimization,
so as to form a flighting trajectory.

In addition, there are threats of radars and peaks in the
actual environment, when UAVs perform trajectory planning,
these threats need to be taken into account, so the following
constraints will be introduced.

4) THREATENING CONSTRAINTS OF RADARS
When multi-UAV is on the mission, it is necessary to avoid
being detected by radars. Assuming that the areas detected
by radars are expressed as a hemispherical sphere and will
not be covered by the surrounding terrain, then in the course
of trajectory planning for the mission, the model of radar is
set as

Lradar = (xr , yr , zr , rr ) (9)

where (xr , yr , zr ) indicate the central position of the radar,
and rr indicates its monitoring radius, the distance between
each waypoint and the radar is calculated as

dRjr =

√
(xj − xr )2 + (yj − yr )2 + (zj − zr )2. (10)

The corresponding cost function for this constraint is
fR =

n∑
j=1

L∑
L=1

Bjr

Bjr =

{
prjr if dRjr ≤ rr
0 if dRjr > rr

(11)

where (xj, yj, zj) indicate the coordinate of the waypoint j(j =
1, 2, . . . , n).prjr is the punitive value of the j(j = 1, 2, . . . , n)
at the L(L = 1, 2, . . . ,L) radar, and Bjr is the cost of threats
after comparison, dRjr is the distance between the waypoint
and the center of radars, fR is the total punitive value of threats
of radars.

5) THREATENING CONSTRAINTS OF PEAKS
In the actual environment, when multi-UAV cooperate to
carry out task, it is also necessary to avoid peaks in the
flighting area. Therefore, the UAV fleet should maintain a
certain distance from peaks, the modeling of peaks are as
follows

xu = a+ u
yu = b+ u
zu = c ∗ exp[(a− x)/d]2 − [(b− y/d)]2

(12)

where xu, yu and zu represent the 3D coordinate positions of
peaks, a and b represent the starting position of the peak, c
represents the height of the peak, d represents the adjustable
coefficient, and u represents the span of the peak.
The cost function of this constraint is

fM =

n∑
j=1

E∑
e=1

Cje

Cje =

{
pmje if zj ≤ zu, yj ≤ yu, xj ≤ xu
0 if zj > zu, yj ≤ yu, xj ≤ xu

(13)

where (xj, yj, zj) is the positional coordinate of waypoint, and
fM is the total punitive value of the constraints of peaks, pmje
is the threatening value of the e(e = 1, 2, . . . ,E) of peaks
corresponding to the j(j = 1, 2, . . . , n) waypoint, and Cje is
the threatening cost after comparison.

C. FUNCTION OF THE EVALUATION INDEX
The cooperative mission planning of multi-UAV needs to
meet above constraints to optimize the performance of each
UAV. Therefore, the objective function is expressed as

S = c1S1 + c2f2 + c3f3 + c4fR + c5fM + c6fB (14)

where S represents the total cost value, S1 represents the
cost value of the shortest voyage, f2 represents the cost value
of the number of striking, f3 represents the cost value of
spatial cooperative constraint, fR represents the cost value
of the threat of radars, fM represents the cost value of the
threat of peaks, fB represents the cost value of situation
assessment of Bayesian networks. In addition, c represents
the weighted value of each constraint, which meets the
following conditions:

c1 + c2 + c3 + c4 + c5 + c6 = 1 (15)

The sum of the weighted values of all constraints
is 1, which indicates that when the algorithm is used for
optimization, the solution is the optimal value of balancing
each index. Considering that all kinds of constraints in the
actual environment are accidental, and in order to get a more
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convincing optimal solution, the average values of all weights
are taken in this study.

D. IMPROVED DISCRETE PARTICLE SWARM
OPTIMIZATION BASED ON MIXED STRATEGY (MSDPSO)
Based on the idea of genetic algorithm (GA), discrete particle
swarm optimization algorithm (DPSO) designs crossover and
mutation strategies in discrete space, and redefines the update
rules of particle position, as shown below.

X∂ (te+ 1)

= γ2 ⊗ F3(γ1 ⊗ F2(ω ⊗ F1(X∂ (te),Pp(te)),Pg(te))) (16)

where te represents the number of iteration in the current
stage, and ω represents mutation factor, γ1 and γ2 represent
crossover factors. X∂ (te) represents position of the ∂ th
particle in teth iteration, Pp(te) represents the individual
extreme value in teth iteration, Pg(te) represents the global
extreme value.

Due to slow solving efficiency and poor applicability of
DPSO, the improved discrete particle swarm optimization
algorithm based on mixed strategy (MSDPSO) is proposed,
which effectively improves the optimality and convergence
speed of the algorithm. The specific improvements are shown
below.

1) INITIALIZATION STRATEGY BASED ON SOBOL SEQUENCE
Because DPSO initializes the population by generating
pseudo-random number between 0 and 1, the organization
and ergodicity are poor, and the individual distribution is
uneven, which leads to low optimization. Thus, the Sobol
sequence is proposed for initialization, which makes the
distribution of population more standardized and the space
of solution covers higher, so the optimization accuracy is
promoted. Fig.2 shows a comparison between initialization
by pseudo-random and Sobol sequence.

From the comparison of Fig. 2, it shows that spatial
coverage of solution with the Sobol sequence is higher than
that of traditional initialization, and the distribution is more
standardized. The convergence speed for mission planning
under Sobol sequence would be improved.

2) NONLINEAR TIME-VARYING STRATEGY
Drawing lessons from the idea of genetic algorithm (GA),
DPSO discretized the position and speed of PSO and updated
it into strategy of crossover and mutation, but its mutation
cannot be adjusted in time according to the change of
position, which led to deterioration of optimization. In order
to solve this problem, a nonlinear time-varying strategy is
introduced.

ω = 1 + cos
(

π ×
te
Te

)
te ≤ αTe

ω = cos
(

π ×
te− 0.5Te

Te

)
αTe < te ≤ βTe

ω = 0.9 − 0.5 ×

(
te
Te

)
te ≥ βTe

(17)

FIGURE 2. Comparison of initialization methods.

As shown in Equation (17), the mutation is divided into
three stages, in which Te represents the maximum number
of iteration and te represents the number of iteration in the
current stage. When the mutation is in the later stage, the
optimality of the solution is poor. Therefore, the first two
stages of designing a nonlinear and time-varying mutation
factor can enhance the mutated ability of particles, so as to
get rid of local search in time and improve the optimization
ability of the solution. The value of fitness tends to be
optimal, and the factor of mutation adds to the linear link
of the third stage, so as to accelerate the convergence
speed of the algorithm. α and β represent the coefficient
factors of different stages respectively, and the specific values
are set according to simulation. In addition, the factors of
crossover γ1 and γ2 also affect the regenerative speed and
optimization ability of particles. In order to further improve
the convergence speed and global optimization ability of
the algorithm, the factor of crossover is linearly improved,
as shown below:

γ1 = 0.25 + 0.8 × (te/Te) (18)

γ2 = 0.75 − 0.8 × (te/Te) (19)

where the cross factor γ1 increases with the progress of
the iteration, and γ2 decreases with the accumulation of the
iteration. This makes the algorithm actively carry out global
search at the beginning of the iteration, and then improves
the convergence speed. At the end of the iteration, the
strengthening of individual learning ability makes it difficult
for the population to fall into local optimum. Meanwhile, the
sum of γ1 and γ2 is 1, indicating that the particles take into
account both optimization ability and convergence speed.

3) MUTABLE STRATEGY OF CAUCHY
In view of the fact that DPSO is easy to fall into local
optimization, the introduction of Cauchy operator can
effectively improve the ability of global optimization and
enhance the searchable space. Because the step size of
Cauchy is smaller at the midpoint and larger at both ends,
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it has a greater disturbance to the individual particles, so that
the particles can adjust their positions in time to avoid falling
into local optimization. At the same time, the peak of Cauchy
distribution decreases slowly and the peak is smaller, so that
the particles spend less time on searching after mutation,
and then spend more time on global optimization, so the
convergence speed of the improved algorithm is improved.

The discretized algorithm uses the following improved
Cauchy mutated formula to update the optimal position of
the current individual and improve the global optimization
ability.

Ẋnew(te) = ceil(Ẋnew(te) × (1 + cauchy(−1, 0))) (20)

where Ẋnew(te) represents the optimal value updated by
Cauchy mutation, cauchy(−1, 0) represents the Cauchy
operator, and the integer instruction is used to discretize the
optimal position. As a result, the global optimization ability
is enhanced and the convergence speed is also improved.

4) ADAPTIVE CROSS LEARNING STRATEGY
In view of the poor global optimization of DPSO, an adaptive
cross-learning strategy is added in the early and later stage
of the iteration to fit the cross-replacement between particles
into a way of communication and learning between people.
Particles continue to search for individual optimization in
order to improve their own states, as shown below.

Xnew =

{
ceil(x + rand × (x − xp)) f (xp) < f (x)
ceil(x + rand × (xp − x)) f (xp) ≥ f (x)

(21)

where x represents random particles, xp represents adjacent
particles, and rand indicates the random number between
0 and 1, which is used to enlarge the learning process
between individuals, individual optimization is updated
through continuous iteration, enriching the diversity of the
population, and improving the global optimization of the
improved algorithm.

E. UAV TRAJECTORY PLANNING
1) PARTICLE SWARM OPTIMIZATION ALGORITHM (PSO)
In order to ensure the rationality of mission assignment, it is
necessary to make a reasonable flighting trajectory for UAVs
to reach targets. Therefore, the trajectory planning is carried
out based on basic particle swarm optimization algorithm
(PSO). Its mathematical model is shown in the following
formula.

vte+1
i = λvtei + ε1rand1(p

te
b − xtei ) + ε2rand2(p

te
g − xtei ) (22)

x te+1
i = x tei + vte+1

i (23)

whereλ represents inertia weighted coefficient, ε1 and ε2 are
learning factors, Pb and Pg are individual optimal value and
global optimal value respectively, rand is a random number
between 0 and 1, te is the current number of iterations.

2) CUBIC SPLINE INTERPOLATION
Compared with the task assignment based on straight-line
distance, feasible trajectory generation can ensure better
rationality of mission, but the trajectory obtained by PSO is a
series of relatively rough waypoints, which lead to unsmooth
trajectory of UAV. Therefore, the cubic spline interpolation is
used to smooth the pre-planned trajectory of PSO, so as to get
a smoother trajectory.

Supposing that τ = n0 < n1 < · · · < nn = υ, where
n denotes total waypoint, the segmented function p(n) on the
interval [nj−1, nj] is a polynomial less than or equal to cubic
and second-order derivable. The details are as follows:

p(n) =
{
pj (n), n ∈ [nj−1, nj], j = 1, . . . , n

}
(24)

pj(n) = φj · n3 + ϕj · n2 + oj · n+ ςj · n3 (25)

where φj, ϕj, oj, ςj represents the undetermined coefficient,
and its sum is 4n. In general, in order to obtain the undeter-
mined coefficient of cubic spline interpolation function p(x),
the natural boundary condition is adopted, that is:

p
′′

j (xj) = p
′′

j (xn) = 0 (26)

To sum up, a set of simultaneous equations is used to
determine the value of undetermined coefficient.

F. PROCEDURE OF MULTI-UAV COOPERATIVE TASK
PLANNING
Till now, the overall procedure of solving the task planning for
multi-UAV is shown in Algorithm 1. The detailed procedures
are introduced as follows:

IV. SIMULATIONS AND COMPARISONS
In this section, a variety of simulative experiments are carried
out to verify the effectiveness and feasibility of theMSDPSO.
These experiments are carried out in the environment of
MATLAB and run on a computer configured with intel 5,
1.19GHz.

A. PARAMETER SETTING
The number of iteration Te = 200, the number of population
N = 400, the number of waypoint n = 10, the number of
striking A1 = 3,A2 = 2, the safe distance of UAV dmin =

20m, and the nonlinear time-varying value α = 0.3, β = 0.6.
The simulative environment of 3D is set as 250 × 250 ×

70 km, including 5 monitoring areas of radars and 2 areas
of peaks. Radars are drawn by hemispheres and peaks are
drawn by curved surfaces with different ups and downs. The
parameter settings are shown in Table 3.
UAVs are modeled as particles and the relevant dynamic

models are ignored. Assuming that in the initial situation,
there is no faulty UAVs, the simulative experiment is carried
out with 12 UAVs hitting 5 targets, the coordinate positions
are shown in Table 4, the locations of targets are shown in
Table 5.
In order to verify the optimization performance of the pro-

posed algorithm, several groups of simulation experiments
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Algorithm 1 Pseudo Code of the Proposed Method
1: Set starting position for UAV and destination position.
2: Set the swarm parameters, N ,Te, n,A1,A2, dmin, α, β.
3: Set the penalty values of constraint conditions.
4: Set a relative large value for fitness value.
5: Calculate particle fitness value and select Gbest and Pbest.
//Main Loop
6: Initialize particles using Sobol sequence.
7: For i = 1 : Te
8: the situation assessment of single UAV is carried

out by using Bayesian network according to (2).
9: Implement adaptive cross learning strategies

according to (21);
10: if i = i+ 1 = i+ 2 = · · · = i+ 10
11: Execute Cauchy mutation strategy by (20);
12: else if

Execute nonlinear time varying
strategies according to (17)∼(19).
13: end;
14: Generate new particle in the group by (21).
15: end;
16: Sort fitness value of all particles.
17: Trajectory pre-planning of based on PSO by

(22)∼(23).
18: Trajectory generation of with cubic spline

interpolation by (24)∼(26).
19: End
20: Output the planned trajectory for UAVs.

TABLE 3. Parameters of the threat.

are carried out between MSDPSO and DPSO with each
improved strategy. Then, in order to verify the application
effectiveness of the improved algorithm, the scenarios of
cooperative mission planning of multi-UAV in health state,
severe faulty state and minor faulty state are compared and
simulated respectively.

B. ANALYSIS OF SIMULATION RESULTS
1) RESULTS AND COMPARISONS IN 3-D ENVIRONMENT
In previous research, the mission planning of multi-UAV
only considers mission assignment based on linear distance,

TABLE 4. Starting position of UAVs.

TABLE 5. Locations of targets.

which does not meet the mission requirements of multi-
UAV in actual flighting. MSDPSO takes the actual trajectory
into account, which improves the applicable effectiveness
of the algorithm. Therefore, in order to obtain convincing
experimental results, the task assignment based on straight
line and actual trajectory are simulated and compared
respectively, the result is shown in Fig. 3.
Through the comparison of simulation, Fig. 3(a) shows

that the task assignment of multi-UAV based on straight
line cannot effectively avoid collision in 3D space, this will
cause damage to UAVs and be detected by radars, thus
leading to failure of the task. And the result of optimization
is not optimal by comparing the simulative result. While
MSDPSO considers the actual trajectory of UAVs, and
the flyable trajectory can avoid obstacles, as is shown
in Figs. 3(b)-(c).

Through the comparison of Fig. 3(b) and Fig. 3(c),
it can be seen that the trajectory obtained based on PSO is
discrete waypoints, but the trajectory of UAV optimized by
cubic spline interpolation is smoother, which proves that the
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FIGURE 3. (a) Task assignment based on straight line. (b) Task
assignment considering actual trajectory. (c) Trajectory smooth based on
cubic spline interpolation.

trajectory using cubic spline interpolation is more in line with
the actual flighting of UAV.

2) THE PERFORMANCE OF MSDPSO SIMULATION
According to the improved methods under different strate-
gies, DPSO is improved and optimized respectively, and the

following four kinds of improved DPSO with single strategy
are obtained: improved discrete particle swarm optimization
algorithm based on Sobol sequence initialization (SDPSO),
improved discrete particle swarm optimization algorithm
based on nonlinear time-varying mutation factor (NDPSO),
improved discrete particle swarm optimization algorithm
based on Cauchy mutation strategy (CDPSO), and improved
discrete particle swarm optimization algorithm based on
adaptive cross learning strategy (RDPSO).

In order to verify the effectiveness of the improved
algorithm, MSDPSO is compared with SDPSO, NDPSO,
CDPSO, RDPSO and DPSO. Meanwhile, Monte Carlo
simulations of 10 times, 30 times, 50 times and 100 times
are carried out separately, and the average value of
various algorithms are calculated to get the contrasting
diagrams of the fitness values of algorithms, as is shown
in Fig. 4.

After several groups of Monte Carlo experiments are
carried out to calculate the average value, it can be seen
that MSDPSO is superior to DPSO and other single strategy
improved algorithms in all iterations, and the effectiveness of
optimization is better.

The comparison of average running time of each algorithm
is shown in Fig. 5. It is verified that MSDPSO has shorter
running time, which shows the improvement on convergence
speed of the algorithm.

In addition, in order to verify that the optimization stability
and effectiveness of MSDPSO are better than that of DPSO,
the specific fitness curves under 100Monte Carlo simulations
are given, the results are shown in Fig. 6.

The results show that the fitness curves based onMSDPSO
are more stable and convergent than DPSO, indicating that
MSDPSO is more stable, and the optimal value is better
than DPSO, which verifies that MSDPSO has higher global
optimization ability and faster convergence speed.

3) MISSION PLANNING OF MULTIPLE UAVS IN
HEALTHY STATE
In order to compare with the results of mission planning after
fault. First of all, the situation assessment of each UAV is
carried out by using Bayesian network, and the probability of
each UAV hitting each target is obtained, as shown in Fig. 7,
which is added to the index of multi-UAV mission planning
as part of objective function.

Secondly, the cooperative task allocation of multiple UAVs
in healthy state is carried out based onMSDPSO, and then the
trajectory optimization of UAV is carried out by using cubic
spline interpolation. Under various constraints and com-
bined with relevant parameters, the simulations are shown
in Fig. 8.

According to Figs.7-8, the cooperative mission planning
of multi-UAV in the simulation scene basically accords with
the law of striking distribution under the situation assessment
of Bayesian network. It is verified that Bayesian network as
an evaluation index has a certain guiding effectiveness to the
objective function of mission planning.

VOLUME 11, 2023 52661



S. Shao et al.: New Method for Multi-UAV Cooperative Mission Planning Under Fault

FIGURE 4. (a) Comparing diagrams with 10 monte carlo simulations. (b) Comparing diagrams with 30 monte carlo simulations. (c) Comparing
diagrams with 50 monte carlo simulations. (d) Comparing diagrams with 100 monte carlo simulations.

FIGURE 5. Comparison of running time.

4) COOPERATIVE MISSION PLANNING OF MULTIPLE UAVS
UNDER SEVERE FAULT
It is assumed that during the striking mission of the 12 UAVs,
UAV No. 2 and No. 8 have a severe fault at the third
waypoint of the original trajectory planning, losing all
striking capability and cannot continue to carry out the

mission, so it is necessary to integrate each UAV to reassign
tasks.

As the two malfunctioning UAVs withdraw from the
combat sequence, in order to ensure the optimality of the
mission, it is necessary to readjust the number of striking for
healthy UAVs, so it is set that A1 = A2 = 2. Other constraints
remain unchanged, and each UAV takes the position at
the faulty moment as a new starting point to re-carry out
mission planning. Meanwhile, based on Bayesian network,
the situation assessment of the remaining 10 UAVs is carried
out under the condition of meeting various constraints, as is
shown in Fig. 9.

Taking the probability of situation assessment of after
the fault as a reference, the cooperative mission planning
of multi-UAV is carried out after the withdrawal of severe
faulty UAVs, as is shown in Fig. 10. The red stars represent
the starting locations of UAVs, the black stars indicate the
locations of the waypoints when UAVs break down.

Taking the locations of UAVs at the faulty moment as
new starting points, the remaining 10 UAVs re-execute the
mission planning, the specific simulative results are shown in
Fig. 11.
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FIGURE 6. (a) Fitness value of MSDPSO. (b) Fitness value of DPSO.

FIGURE 7. Evaluation of bayesian network in healthy state.

Fig. 11 shows that after malfunctioning UAVs withdraw
from the current locations, the healthy UAVs successfully
carried out mission planning, which verifies MSDPSO has
good effectiveness of optimization.

In addition, from the simulative results of UAV striking
allocation before and after the fault in Fig. 12, the red
triangles represent the task assignment result of the UAV

FIGURE 8. (a) 3D view of UAV cooperative mission planning in healthy
state. (b) X-Y view of UAV cooperative mission planning in healthy
state.

FIGURE 9. Evaluation of bayesian network under severe fault.

in the normal state, and the green circles indicate the task
assignment result of the UAV in the event of a severe fault.
it can be seen that MSDPSO can effectively adjust the change
of the constraint of the number of striking after fault, and
successfully complete the task. And the distance between
each UAV also satisfies the minimum safe distance, as shown
in Fig. 13.
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FIGURE 10. (a) 3D view of faulty location of UAVs. (b) X-Y view of faulty
location of UAVs.

5) COOPERATIVE MISSION PLANNING OF MULTIPLE UAVS
UNDER MINOR FAULT
It is assumed that during the striking mission of 12 UAVs,
UAV No. 2 and No. 8 have a minor fault at the third waypoint
of the original trajectory planning, losing part of striking
capability and cannot strike in accordance with the original
mission. Thus, it is necessary to integrate each UAV to replan
the mission.

Due to minor fault of two UAVs, in the case of not
withdrawing from the combat sequence, the flighting ability
of the UAV under the fault is limited, so it can only strike
the targets within the local range. In order to complete the
original mission planning, the healthy UAVs adjust their
status to assist the malfunctioning UAVs to re-complete the
task of hitting new targets. Therefore, in order to optimize
the results of mission planning, each UAV completes tasks
at the lowest cost under the preset constraints. At the same
time, based on Bayesian network, the situation assessment
of UAVs under minor fault is carried out, as shown
in Fig. 14.

Similarly, with reference of the probability of Bayesian
network, cooperative mission planning is carried out for
multi-UAV under minor faulty scenario, as is shown in
Fig. 15. The red stars represent starting points of UAVs,
and the black stars indicate locations of waypoints when the

FIGURE 11. (a) 3D view of UAV cooperative mission planning under
severe fault. (b) X-Y view of UAV cooperative mission planning under
severe fault.

TABLE 6. Comparison of voyages before and after fault.

second and eighth UAV break down. The blue lines represent
the trajectories of UAV No.2 and No.8 before fault.

According to the simulative information, before the fault,
the UAV No.2 and No.8 separately attacks the target No.1
and No.3, after the fault, the UAV No.2 and No.8 still retain
part of the striking capability, and the states of the healthy
UAVs are not affected. Therefore, by reducing the shortest
ranges on the faulty UAVs, the malfunctioning UAVs are
allowed to strike the nearest target first within the ranges of its
action, meanwhile, other constraints remain unchanged, and
based on MSDPSO, UAVs continue to complete the striking
mission, the results of simulation are shown in Fig. 16.
According to results of allocation, the comparison of

voyages before and after the fault of malfunctioning UAVs
is shown in Table 6, it can be seen that the malfunctioning
UAVs complete the striking mission with reduced voyages
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FIGURE 12. (a) Striking distribution under healthy state. (b) Striking
distribution under severe state.

FIGURE 13. UAV distance under severe state.

In Fig. 16, the rose lines represent the trajectory plannings
of the healthy UAVs, and the black lines represent trajectories
of faulty UAVs after mission rescheduling. Meanwhile,
in order to make an effective comparison, the trajectories of
malfunctioning UAVs before the fault are retained, as shown
by blue lines. And combined with Fig. 17, it can be seen that
before the fault, the UAV No.2 and No.8 hit the target No.1
and No.3 respectively. After the fault, UAV No.2 still strike
the target No.1, indicating that the target is still within the

FIGURE 14. Evaluation of bayesian network under minor fault.

FIGURE 15. (a) 3D view of the positions and original trajectories of the
malfunctioning UAVs. (b) X-Y view of the positions and original
trajectories of the malfunctioning UAVs.

limited voyage, the target No.1 is closest to the location of
faulty UAV No.2, but the UAV No.8 is converted to strike the
target No.4, indicating that healthy UAVs can give priority to
malfunctioning UAVs, so that malfunctioning UAVs can first
choose the target to strike according to the state of fault.

Similarly, as is shown in Fig. 18. The distance between
each UAV under minor fault also satisfies the minimum safe
distance. it can be seen that the minimum safety distance
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FIGURE 16. (a) 3D view of multi-UAV cooperative mission planning under
minor fault. (b) X-Y view of multi-UAV cooperative mission planning
under minor fault.

FIGURE 17. Striking distribution before and after minor fault.

between each UAV is set to 20km, and in the process of itera-
tive optimization, each UAV keeps no less than the minimum
safe distance in the trajectory planning of 10 track points.
Because all UAVs meet the spatial cooperative constraints,
the UAV with relatively close distance is intercepted as the
final simulation diagram. The distance information of UAV
with relatively large distance is ignored.

FIGURE 18. UAV distance under minor fault.

V. CONCLUSION
In order to solve the problem of cooperative mission planning
of multiple UAV under fault, the paper proposed a self-
organizing solving strategy. Firstly, the Bayesian network is
introduced to evaluate the situation of single UAV. Then,
an improved discrete particle swarm optimization based
mixed strategy (MSDPSO) is proposed to solve the problem
of multi-UAV cooperation, and four improvement strategies
are introduced in detail. Finally, according to different faulty
scenarios, several groups of simulative experiments are
carried out, the results verify that the proposed algorithm
has certain engineering applicability. The main results are
summarized as follows:

1) The situation assessment of single UAV based on
Bayesian network can be effectively coupled with the
cooperative mission planning of multi-UAV.

2) The improved discrete particle swarm optimization
based mixed strategy can obtain better optimal solution
than traditional discrete particle swarm optimization
and four single Strategy improved discrete particle
swarm optimization.

3) The convergence rate of improved discrete particle
swarm optimization based mixed strategy is faster than
that of each DPSO.

4) The MSDPSO can optimize to get a better allocation
scheme, thus reducing the cost of task planning, which
verifies the effectiveness of the proposed method.

In the future, the problem of one-to-many mission planning
of UAV under fault will be explored in depth.
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