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Abstract—Driving style recognition provides an effective way
to understand human driving behaviors and thereby plays an
important role in the automotive sector. However, most works fail
to consider the influence of deploying the recognition results on the
vehicle side, which requires real-time recognition performance. To
facilitate the application of driving styles in automotive, we survey
related advances in driving style recognition along short- and
long-term pipelines. We first defined short- and long-term driving
styles and then described the input data used by the recognition
models and related data-processing techniques. Furthermore, we
also revisited existing evaluation metrics for different recognition
algorithms. Finally, we discussed the potential applications of driv-
ing style recognition in intelligent vehicles.

Index Terms—Driving style recognition, short-term and long-
term, intelligent vehicles, evaluation metric.

I. INTRODUCTION

A S A commodity, intelligent vehicles must cater to con-
sumers for better sales. A potential but clear direction for

intelligent vehicles is from the original faster, more fuel-efficient
direction to a more human-like and personalized direction [1]
because drivers are apt to use the vehicle that behaves similarly
to their operation, i.e., the more human-like, the more humans
like [2], [3]. The prerequisite of making vehicles more human-
like is understanding the driver’s driving style. Many human-like
or personalized functions can be created and added to intelligent
vehicle systems by using learned driving styles [4].
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From the perspective of functionality, driving style is criti-
cal for autopilot systems, driving safety, energy conservation,
emissions reduction, and driving assessment [5], [6], [7], [8],
[9]. However, the data duration on which these applications
are based is inconsistent. For example, human-like autonomous
driving systems requires collecting a long period of driving
data, and driver behaviour monitoring usually requires a short
period of driving data. Thus, we divide driving style recognition
into short-term and long-term driving styles towards various
applications. Short-term driving style is mainly used to portray
the way a driver operates the vehicle in a short period of time
with a specific driving task. It is usually influenced by the
current driving task and scenario, and thus is mainly used for
driving behavior monitoring, correction [10], [11], and driver
intention prediction [7], [12]. Long-term driving style portrays
the way a driver operates the vehicle in a long period of time,
which is usually obtained by analyzing long-term driving data.
Long-term driving style does not depend on the driving scenario
and is more stable than the short-term driving style. Thus, a
long-term driving style is mainly used for the optimal design
of advanced automotive systems [13] and autonomous driving
systems to facilitate their promotion [14], [15].

From the perspective of hardware implementation, driving
style recognition can be classified into short-term for an in-
vehicle controller and long-term for a cloud computing platform.
The in-vehicle controller requires low computing power and
storage space [16] with a small amount of data but real-time
computing, which is suitable for the short-term driving style. The
cloud computing platform has a much more powerful computing
performance and storage space and is thus suitable for long-term
driving style [17], [18].

Some surveys or reviews focused on driving style recognition,
but they failed to cover the existing driving style recognition
algorithms, especially deep learning algorithms and implemen-
tation of driving style recognition. For example, Wang et al. [19]
summarized the applications of driving style recognition to
hybrid electrical vehicles (HEV) control strategies. Sagberg
et al. [20] divided the application of driving style recognition
into sevearal areas. Martinez et al. [5] systematically reviewed
the work on driving style characterization and the design process
of driving style recognition, and its application to intelligent
vehicle control. To facilitate the implementation of driving style
recognition, we review driving style recognition into short-
term and long-term types, which guides researchers to choose
a short- or long-term driving style recognition algorithm for
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Fig. 1. Differences in definition between short-term and long-term driving styles.

their application. The contributions are fourfold: 1) providing
the commons and differences between short- and long-term
driving style recognition methods; 2) more comprehensively
summarizing existing driving style recognition algorithms and
analyzing whether existing algorithms are suitable for short-term
or long-term driving style recognition; 3) summarizing existing
evaluation metrics to provide the possibility of performance
comparison between algorithms; and 4) discussing the short-
comings of existing algorithms and their relevant outlooks.

The remainder of the article is organized as follows. Section II
introduces the fundamentals of driving styles, including the
definition, influencing factors, and labels. Section III describes
data acquisition methods, processing approaches, and inputs for
driving style recognition algorithms. Section IV discusses differ-
ent driving style recognition algorithms and their applicability
for long-term and short-term driving styles. Section V shows
the metrics for performance evaluation. Section VI describes
the applications of driving style recognition in future works.

II. INFLUENCING FACTORS AND CLASSIFICATION OF

DRIVING STYLES

A. Definition

In summary, the driving style is a generalization of a driver’s
driving behavior and habits [21], [22], [23], which is influenced
by the driver’s habits, personality [21], [24], and external factors
such as the traffic flow, type of road, and time of day when driv-
ing [21], [25], [26]. Given the numerous factors, the definition
of driving style is currently inconclusive. Thus, we discuss the
driving styles from long-term and short-term views with separate
definitions, as shown in Fig. 1.
� Short-term driving style refers to a driver’s behavioural

characteristics in a driving scenario, and it reflects the
driver’s different tendency to make choices in different
driving scenarios. It usually changes when the current task
or scenario changes. It is obtained by analyzing short-term
driving data, such as the trajectory of the vehicle driving in
a lane-change scenario. The recognized short-term driving

style is only valid for the corresponding driving scenario. It
is influenced by the driver’s habits, personality, emotions,
and the current short-term traffic conditions. Accordingly,
it is unstable and prone to change. A driver may perform
different short-term driving styles at different times. For
example, when going to work in a traffic jam, a normal
driver may resort to more aggressive behavior than usual
to be on time.

� Long-term driving style refers to a driver’s behavioral
characteristics over a long period of time, rather than in
a specific driving scenario. It is obtained by analyzing
long-term driving data, such as total lane-change numbers
on a route. It is influenced by drivers’ habits, personali-
ties and the proficiency of their driving skills. Long-term
driving style is stable and may change slowly as driving
skills become proficient. For example, the way a bus driver
operates a bus on a route is usually consistent, and the
passenger experience of riding a bus driven by the same
driver is correspondingly consistent, in terms of the average
acceleration and deceleration and the average number of
lane changes over the route. Furthermore, passengers’ per-
ceptions of riding the same route with different bus drivers
may vary, due to the different long-term driving styles of
different drivers.

B. Influencing Factors

The abovementioned definitions suggest that the factors in-
fluencing driving styles can be divided into two groups: driver-
related and external environment-related.
� Driver-related factors include two categories: long-term

and short-term factors. Drivers’ proficiency, habits, and
personalities impact their long-term and short-term driv-
ing styles [24]. Drivers’ driving moods, states, lengths
of continuous driving and the task of current driving are
susceptible to change as they drive and will only impact
their short-term driving styles.
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� The factors from the external environment perspective
mainly include the type of road currently being driven on,
the traffic conditions, the driving behaviors of surrounding
drivers, and the weather. The influence of such a factor
on a driver exists only for a relatively small period. As
defined above, it mainly impacts short-term driving styles
and minimally affects long-term driving styles.

C. Driving Style Labels

For the purpose of application, the number of driving style
labels should be different for short-term and long-term driving
styles. Short-term driving style recognition is mainly used for
driver intention prediction and driving behavior analysis. Usu-
ally, drivers’ intentions and driving behaviors are diverse, and
the corresponding driving style should have multiple labels to
analyze them accurately. For example, researchers [26] analyzed
short-term driving styles by using multiple labels for accurate
analysis, such as drowsy, distracted, drunk, eco-friendly, or
aggressive labels. Long-term driving style recognition is mainly
used for risk assessment, driver habit simulation, and driving
skill evaluation, which usually require two or three driving style
labels. For instance, researchers [27] recognized bus drivers’
long-term driving styles with normal and aggressive styles.

III. DATA ACQUISITION METHODS, PREPROCESSING

APPROACHES AND INPUTS

Accurate driving style recognition performance requires high-
quality and sufficient data. We outline three perspectives as
follows: data acquisition, data preprocessing, and model inputs.
The different performance requirements of long-term and short-
term recognition algorithms are combined to analyze how data
should be selected. Fig. 2 shows the different stages from the
following three perspectives.

A. Data Acquisition

Data form the basis for achieving driving style recognition.
On the basis of the data source, data acquisition methods are
divided into two categories: driver data and driving data.

1) Driver Data Acquisition: Driver data can be obtained
from questionnaires about drivers or their physiological signals.

Questionnaire analysis about driver: The question set in the
Multidimensional Driving Style Inventory (MDSI) consists of
driver characteristics (e.g., gender, age, driving experience, etc.)
and driving behavior habits (e.g., errors, violations, and mistakes
that occur in driving behaviors) [28], [29]. The driving habit
questionnaire is somewhat justified [30], which is a basis for
the subjective classification of driving styles and the influence
analysis of different psychological and physiological factors on
driving styles [31].

Drivers’ physiological signals: The physiological state of
a driver is considered with devices such as cameras, elec-
trocardiogram instruments, and electroencephalogram (EEG)
instruments to capture physiological signals, such as drivers’
expressions, heart rates, and brain waves [32], [33], [34].

Fig. 2. Summary of each stage of data acquisition, preprocessing, and input.

2) Driving Data Acquisition: Driving data can be obtained
from experimental vehicles, drones, and driving simulators.

Experimental vehicle: The experimental vehicle driving data
are usually obtained from on-board diagnostics and controller
area networks [35], [36], [37], both of which can easily collect
driving data and driver handling data. However, the accuracy
of the acquired data is difficult to guarantee. More advanced
sensors (e.g., accelerometers, global positioning systems, radar,
cameras, and inertial measurement units) [38], [39], [40], [41]
are gradually being equipped in cars and can collect more driving
data at a high cost. Furthermore, smartphones have been used
as driving data collection devices [42], [43].

Drone-based: Drone-based data are obtained by extracting ve-
hicle trajectories from bird’s eye view videos. The extracted tra-
jectories and vehicle interactions are more comprehensive than
those collected from experimental data [44]. Thus, inter-vehicle
distance, an important feature in driving style recognition, is
easily preserved.

Driving simulators: Acquiring experimental vehicle and
drone-based data requires significant funds and manpower [45].
For safety reasons, these data cover a few corner cases. Driving
simulators can acquire driving data more safely, especially in
extreme situations. This setup requires building specific driv-
ing scenarios in driving simulators according to the needs of
research.

B. Data Preprocessing

Due to the potential inaccuracy, the high-dimensionality and
mismatched formats of raw data, we could not feed the raw
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data from different sensors to algorithms directly. This study
presents five commonly used data preprocessing methods for
driving style recognition: synchronization, outlier detection and
removal, filtering, feature extraction, and the sliding time win-
dow technique.

Synchronization: The sampling frequencies of different sen-
sors often vary. The different sampling frequencies usually need
to be synchronized, especially for driving style recognition
models with time-based inputs. The method can be divided
into two types, upsampling and downsampling. The choice of
upsampling and downsampling is usually based on factors such
as the volatility of the raw data and data volume. When the
amount of data is small, up-sampling to the highest sampling
frequency is usually used for synchronization to retain data
information and maintain data volume. For this purpose, Saleh
et al. [46] used up-sampling to synchronize the driving data
collected by smartphone-embeded sensors. However, due to the
volatility of row data, Ma et al. [47] downsampled the driving
data.

Outlier detection and removal: Outliers are data that depart
from the majority of sample points due to external disturbances,
sensor faults, etc. The accuracy of the recognition results will
be impacted by the outliers; thus, they must be detected and
removed at the data preprocessing stage. Statistical methods
such as the interquartile range (IQR) and Pauta criterion are often
used for outlier detection and removal. Ma et al. [47] employed
the Pauta criterion to detect and remove outliers from driving
data.

Filtering: A filter is a data processing technique that removes
the noise from the data collected by sensors, allowing the data
to be suitable for analysis. Typically, the noise recorded by
the sensor is high-frequency noise that can be removed with
a low-pass filter [48]. Butterworth filters are often used for data
preprocessing. Guyonvarch et al. [49] applied a Butterworth
low-pass filter to preprocess the acceleration and angular speed
signals acquired by inertial measuring units. Savitzky-Golay
filters are also often used for driving data preprocessing [50].

Feature extraction: Usually, the acquired raw data are com-
plex and coupling. Feature extraction can reduce the dimension
of the raw data and is a common data preprocessing method
in driving style recognition. It includes principal component
analysis (PCA) [29], the histogram method [19], and the Fourier
transform [51]. PCA is used to identify patterns in data and
represent them in a way that highlights similarities and differ-
ences in data. Once these patterns are found, the data can be
compressed by reducing the dimensions [52]. Constantinescu
et al. [53] proposed two alternative algorithms based on hierar-
chical cluster analysis and PCA. PCA was used to investigate the
correlation between variables and transform the original dataset
into a smaller dataset while retaining useful information.

Sliding time window: The sliding time window technique aims
to segment signals into fixed lengths. This technique is widely
used in driving style recognition. It can increase the size of
the dataset by overlapping segments [27], [54]. Therefore, the
accuracy of recognition can be improved using a larger dataset.
Khodairy et al. [54] segmented driving data under a specific
driving style by using the sliding time window technique.

C. Data Input Types

Data inputs can be broadly classified into driver features,
vehicle traveling data, and driver handling data. Driver features
include the frequency of certain driving behaviors, EEG signals,
heart rate, etc. Driver features consist of two parts of data
(questionnaire analysis and drivers’ physiological signals), as
mentioned in Section III-A. In contrast to the other two types
of inputs, these data from drivers can be used to recognize
drivers’ driving styles without providing driving scenarios [33].
Vehicle traveling data (vehicle status such as speed and accel-
eration) [27] reflect vehicle dynamics. Given the contribution
of vehicle dynamics to superior classification performance [54],
vehicle traveling data are widely used in driving style recog-
nition. Driver handling data (e.g., brake pedal and accelerator
pedal displacement and steering wheel angular velocity) [55]
record how the driver operates the vehicle, which can intuitively
reflect a driver’s driving behavior and in turn reflect the driver’s
driving style. Many other types of data are applicable for driving
style recognition input. For example, more than 62 features
were used to recognize driving styles in the literature [56].
However, constrained by computing power and limitations of
onboard sensors, appropriate data inputs must be selected while
considering the specific use case of driving style recognition.

D. Existing Datasets

Many existing datasets are available for driving style recog-
nition. With the help of publicly available datasets, we can save
considerable time and effort when conducting driving style re-
search. Driving style application scenarios that apply to different
datasets are discussed on basis of the characteristics of these
datasets.

1) NGSIM I80: The NGSIM dataset was collected by the
U.S. Federal Highway Administration (FHWA) in 2005 [57].
Montanino et al. [48] addressed the measurement errors in the
dataset and reconstructed the NGSIM I80 dataset. The dataset
collected 45 minutes of trajectory data (drone-based data) on a
segment of Interstate 80 located in Emeryville, California. These
data belong to vehicle traveling data. The dataset is widely used
in driving style recognition tasks, especially in car-following
situations. However, the dataset is unlabeled with the driving
style of each driver; thus, it does not apply to supervised learning.
The duration of each car following behavior is short, which
might be unsuitable for long-term driving style recognition.

2) HCRL: HCRL is a public dataset with a total driving time
of approximately 23 hours [35]. To collect the data, ten drivers
conducted round trips of approximately 46 km between Korea
University and Sangam World Cup Stadium twice. The data are
collected from the experimental vehicle. This dataset has more
data than NGSIM, but it is still unlabeled and unsuitable for
supervised learning.

3) UAH-Driveset: UAH-DriveSet is a public dataset created
for driving style recognition studies published by Alcala Uni-
versity [58]. The data were collected by a mobile phone app
called DriveSafe, which obtained data from smartphone sensors.
These data belong to the data gathered from experimental data.
The dataset collected data from 6 drivers who drove on two
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Fig. 3. Brief summary of existing driving style recognition algorithms.

types of roads (motorways and secondary roads). On each type
of road, the drivers simulated three different driving styles (nor-
mal, aggressive, and drowsy), which resulted in more than 500
minutes of naturalistic driving data. The dataset is labeled, which
gives it a significant advantage over unlabeled datasets such as
the NGSIM and HCRL datasets. However, the dataset contains
only over 500 minutes of driving data, which may seem small
when a deep learning approach is used for long-term driving
style recognition.

4) Others: In addition to the abovementioned datasets, many
other datasets can be used for driving style recognition [26]. The
Honda Research Institute Driving Dataset (HDD) contains up
to 104 hours of real human driving data [59]. The data were
collected using an instrumented vehicle equipped with many
sensors. The dataset has a large amount of data and contains
many data features. A multimodal dataset was provided by
another research [60]. The dataset includes data for 68 drivers
and includes many data features. The dataset also has a large data
volume and contains physiological features. HCIlab makes their
dataset publicly available [61]. The dataset contains approxi-
mately 300 minutes of driving data, GPS, brightness, accelera-
tion, physiological information, and video rating data. However,
the dataset has a small amount of data. Many other publicly
accessible drone-based datasets can be used for driving style
recognition, such as the Highway Drone Dataset (highD) [62]
and the Exits and Entries Drone Dataset (exiD) [63]. However,
none of the datasets mentioned above provide the driver’s driving
style and are unsuitable for supervised learning.

IV. DRIVING STYLE RECOGNITION ALGORITHMS

This section introduces the existing algorithms for driv-
ing style recognition and compares the applicability of each

algorithm for long-term and short-term driving style recogni-
tion to help researchers better design long-term and short-term
driving style recognition algorithms. Fig. 3 summarizes the
existing driving style recognition algorithms. TABLE I indicates
the different algorithms available for driving style recognition.

A. Nonmachine Learning Algorithms

For nonmachine-learning algorithms, artificially prescribed
rules (or thresholds) are used to classify driving styles. They
mainly include questionnaire analysis, rule-based algorithms,
and fuzzy logic1. These algorithms are often relatively simple,
have strong interpretability, and require minimal computing
power but demand high expertise from algorithm designers.
� Questionnaire Analyses

Self-reports of certain aspects of driver behavior can be
used as surrogates for observational measures [90]. Thus,
a questionnaire’s results can reflect drivers’ driving styles
to some extent. Lshibashi et al. [30], used PCA to compile
a questionnaire for recognizing drivers’ driving styles in
low-speed following scenarios and tested the validity of the
questionnaire by performing correlation analysis with be-
havioral indices. Wang et al. used the MDSI, the “Big Five”
inventory, the driver behavior questionnaire, and several
questions about socio demographic information to classify
drivers into four driving styles [24]. However, question-
naires are strongly influenced by respondents’ subjectivity.
Eboli et al. [64] showed that self-defined driving styles
might be unreliable and biased. Thus, it is necessary to
recognize driving styles based on objective data.

� Rule-Based Algorithms

1Whether fuzzy logic belongs to a machine learning algorithm is controversial.
Following the study [5], fuzzy logic is classified as a nonmachine learning
algorithm in this review.



4604 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 8, NO. 11, NOVEMBER 2023

TABLE I
EXISTING ALGORITHMS FOR DRIVING STYLE RECOGNITION

Rule-based or threshold-based algorithms are the simplest
class of algorithms for driving style recognition based on
objective data [5]. By using the collected data, with the
expertise of the algorithm designers, thresholds are set to
recognize drivers’ driving styles.
Murphev et al. [65] scored drivers based on the number
of aggressive maneuvers observed during driving, and a
driver’s final score was calculated as a percentage, with
a score below 50% judged as a calm driving style and a
score higher than 100% judged as an aggressive driving
style. Meanwhile, Rath et al. [67], classified driving styles
via the lateral jerk signal.
One of the simplest driving style recognition algorithms is
an algorithm based on one parameter. However, as only one
parameter is used, the selected parameter determines the
quality of the driving style recognition results. The choice
of the parameter requires a high level of expertise on the
part of the designer. Moreover, as only one parameter is
considered, the recognition accuracy and robustness are
low, and the application scenarios of such an algorithm are
relatively narrow.

� Fuzzy Logic
Given that the accuracy and robustness of driving style
recognition algorithms based on one parameter are limited,
driving styles can be recognized on the basis of multiple
parameters. Although large sets of variables produce un-
necessarily complex rules, fuzzy logic can alleviate this
problem. Fuzzy logic is also based on predefined thresholds
but can include more parameters while maintaining its
advantages of simplicity, ease of understanding, and low
computational effort [91].
Dörr et al. [68], built a real-time recognition algorithm
based on fuzzy logic. The authors used many data features,
such as speed, acceleration, time-interval vehicle spacing,
and road type, to recognize driving styles. This algorithm
was validated in a simulated environment involving urban

and rural roads without traffic disturbances, achieving a
68% correct classification rate and a 2% incorrect classifi-
cation rate. Castignani et al. [69], not only used in-vehicle
signals as fuzzy logic inputs but also considered different
driving events and external factors, such as weather and
time of day. Finally, they reported a model accuracy of up
to 90%.
One literature [70] attempted to improve the accuracy of
a fuzzy logic based driving style recognition model with
more inputs, but the experimental results showed that fuzzy
logic was less effective than the other two algorithms (time
series, Ar2p2) because it required the definition of a large
rule base to cover all possible situations.

Nonmachine-learning algorithms are relatively simple, easy
to implement, and highly interpretable. However, the level of
expertise of the algorithm designer can significantly impact the
algorithm’s recognition accuracy. Traffic conditions vary world-
wide, and nonmachine-learning algorithms must be redesigned
for different local conditions, giving them narrow application
scopes. The number of parameters that rule-based algorithms
can handle is limited. However, the accuracy and robustness of
algorithms can be further improved by utilizing a large amount
of data and input variables to cover all possible situations, as
shown in a previous work [70]. With the development of machine
learning, its ability to handle large amounts of data, self-learning
ability, and low dependence on the professional knowledge of
designers has led to increasing interest in the application of
machine learning for driving style recognition.

For the sake of accuracy and robustness, nonmachine-learning
algorithms require long-term data for recognition and may be
unsuitable for short-term driving style recognition.

2Algoritmo Recursivo de Reconocimiento de Patrones, for its acronym in
Spanish
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B. Machine Learning Algorithms

1) Unsupervised Learning: Unsupervised learning requires
less driving style recognition knowledge than nonmachine-
learning algorithms. It also does not require labeled data, and
unlabeled data are much easier to obtain. Clustering algorithms
are commonly used classes of unsupervised learning algorithms
that cluster data by statistical analysis.
� K-means

The K-means clustering algorithm is commonly used in
driving style recognition. It divides the given data into
k clusters such that the intercluster distance is as large
as possible and the intracluster distance is as small as
possible [92]. Van Ly et al. [36] modeled driving events
from driving data, which were then fed into the K-means
algorithm for driving style recognition. The number of
clusters in the model is two, and the authors reported ap-
proximately 60% accuracy. Other features extracted from
driving data are also used as inputs to the K-means al-
gorithm, such as temporal driving volatilities [71]. Some
studies feed driving data directly for driving style recogni-
tion without further feature extraction. de Zepeda et al. [72]
fed driving data directly into the K-means algorithm to
recognize short- and long-term driving styles and explored
the switches from short- to long-term driving styles.

� DBSCAN
The K-means algorithm requires the user to specify the
number of clusters in advance. The obtained clustering
results are sensitive to the selection of the initial cluster
centers and easily fall into local optima. In contrast, the
density-based spatial clustering of applications with noise
(DBSCAN) algorithm is a density-based clustering algo-
rithm that does not require the number of clusters to be
specified, and the initial cluster centers have less impact
on the clustering results. It can better identify and process
noisy data and outliers than other approaches [73]. In a
study [93], the DBSCAN algorithm was used to recognize
driving styles by determining the sensitivity of the model
parameters by using a genetic algorithm and reached 95%
accuracy when the input data duration was longer than 25 s.

� DP-means
The traditional DBSCAN algorithm requires a relatively
large number of parameters to be set in advance, and the
results are sensitive to the set thresholds, while the DP-
means algorithm is more robust to thresholds. As the DP-
means method depends on the order of the data, the order
of driving data is crucial when performing driving style
recognition. A study [74] emphasized it when applying
DP-means for driving style recognition.

� GMM
The Gaussian mixture model (GMM) is an expectation
maximization (EM) algorithm. In contrast to the above-
mentioned clustering algorithms, it employs soft cluster-
ing, a data point may be contained in different clusters with
different probabilities. Shakib et al. [75] holds that sudden
changes in driving style can damage system stability, as
each data point can only be associated with one driving

style in the case of hard clustering, which leads to difficulty
in monitoring abnormal driving behavior, i.e, short-term
abnormal driving style. Thus, he used a GMM-based clus-
tering algorithm to recognize short-term driving styles.

� SOM
A self-organizing map (SOM) is an artificial neural net-
work (ANN) that contains an input layer, and a com-
putational layer [94]. A study [77] indicated that SOMs
are effective clustering algorithms and that the workload
required for parameter adjustment is small. However, if
few neurons are contained in the computational layer of an
SOM, its recognition accuracy will be low. In the study, the
authors combined an SOM with the K-means algorithm to
recognize driving styles. They first used the SOM to obtain
preliminary clustering results and then used K-means to
cluster the preliminary results to recognize three driving
styles. SOMs also have the advantage of being highly inter-
pretable. Taking advantage of this fact, Lakshminarayanan
et al. [78] used an SOM model to recognize the driving
styles of bus drivers and interpreted the recognition results,
which helped to improve their subsequent study.

The features used in clustering algorithms are usually statis-
tical or frequency domain features, and the time dimension is
usually compressed. Clustering algorithms generally group data
according to their features. Thus, the classification results are
generally insensitive to the duration of the input data, and the
computational effort is roughly the same. Thus, clustering algo-
rithms, especially hard clustering algorithms, are appropriate for
both long-term and short-term driving style recognition. How-
ever, owing to the advantages of soft clustering algorithms such
as GMM in detecting changes in driving style, we recommend
them for short-term driving style recognition, which are more
likely to change.

The output results of unsupervised learning are easy to in-
terpret. The given data do not need to be labeled, thus this
strategy requires minimal expertise from the algorithm designer.
However, for many unsupervised learning algorithms, some
parameters need to be set manually in advance, and the choice
of these parameters greatly affects the quality of the driving
style recognition results. The classification performance of un-
supervised learning is worse than that of supervised learning.
Classifying data on the boundary between different driving
styles is particularly difficult.

2) Supervised Learning: Supervised learning requires algo-
rithm designers to master the basic knowledge of driving style
recognition to artificially add driving style labels to the rel-
evant data, but the recognition accuracy is high. Commonly
used supervised learning algorithms include k-nearest neighbors
(KNN), support vector machines (SVMs), random forests (RFs),
and ANNs.
� KNN

KNN is one of the simplest supervised learning algorithms.
The data categories are determined according to the K most
similar samples [95].
Utilizing this algorithm, Vaitkus et al. [27] extracted five
features from acceleration data and achieved a 100% clas-
sification success rate. However, the same route, season,
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and similar traffic circumstances were used to generate the
training and test data. Liu et al. [79] used in-vehicle signals
and physiological signals as inputs of a KNN model for
driving style recognition.
The KNN algorithm stores all the input training data and
has high memory requirements. Given the limited storage
space of the in-vehicle controller, it may be somewhat
unsuitable for short-term driving style recognition based
on the in-vehicle controller.

� SVM
An SVM [96] tries to find an optimal hyperplane that sep-
arates the training data perfectly into their classes. Zhang
et al. [80] developed a window-based SVM model to clas-
sify drivers with average accuracies of 75.83%, 85.83%,
and 86.67% on three different vehicles. The number of
aggressive driving styles in driving style recognition is al-
ways relatively small compared with normal driving styles.
However, an SVM does not work well when classifying un-
balanced datasets. A study [81] applied Random-SMOTE
to balance the number of positive and negative samples
and then used a cost-sensitive SVM to set different penalty
factors for the positive and negative samples, thus im-
proving the model’s ability to recognize dangerous driving
behaviors (i.e., dangerous short-term driving style).
The traditional SVM algorithm can only be used to solve
binary classification problems. The number of required
classifications for short-term driving style recognition is
large, as shown in Section II-C. Thus, more SVMs will be
utilized in the algorithm to recognize more driving styles,
which will cause the model to be more complex and require
higher demands on the in-vehicle controller’s computing
power. SVMs may be unsuitable for short-term driving
style recognition based on the in-vehicle controller.

� RFs
RFs [36] are sets of decision trees that vote together in
a classification task. RFs are known to be effective in
preventing overfitting.
A research [40] applied the RF algorithm to recognize ag-
gressive and safe driving styles by using data collected from
a 3-axis accelerometer (G-sensor) on a light vehicle and
finally obtained a high classification accuracy of 95.5%,
which was attributed to the RF algorithm not being eas-
ily overfitted. Several classification algorithms, including
discriminant analysis, decision trees, KNN, SVM, and RF,
were used to recognize driving styles, and their perfor-
mance was compared in a study [82]. The RF algorithm
with Bayesian parameter optimization obtained the high-
est accuracy for reasons such as overfitting difficulty and
automatic feature selection.
RFs can be used to solve multiclassification problems,
but many decision trees must be used to prevent over-
fitting and improve classification accuracy, resulting in
slow calculation speeds. However, short-term driving style
recognition based on the in-vehicle controller requires a
fast recognition speed with not much computing power,
which may lead to unsuitable for RFs.

� ANNs

ANNs are nonlinear statistical data modeling tools often
used to model complex relationships between inputs and
outputs or explore data patterns [97]. During naturalis-
tic driving trips, the data acquired from sensors are al-
ways time series data. Thus, the driving style recognition
problem can be formulated as a time series classification
problem [46]. Time series classification problems are fre-
quently solved using long short-term memory (LSTM)
networks, which are recurrent neural network versions that
significantly alleviate the vanishing gradient problem by
using the gate structure [98]. Khodairy et al. [54] used
an optimized Stacked-LSTM model to recognize driving
styles and achieved an F1 score exceeding 99%, which
demonstrated the excellent performance of LSTM. Simi-
larly, Saleh et al. [46], applied Stacked-LSTM to recognize
driving styles based on the UAH-DriveSet dataset, and
achieved an F1 score of 91%, which was much higher
than the scores of a multilayer perceptron (MLP) and a
decision-tree. However, LSTM networks require consid-
erable memory and computing time costs, especially in
cases involving long input sequences [99]. Thus, they may
be unsuitable for short-term driving style recognition based
on in-vehicle hardware, which has high requirements for
real-time recognition with small storage spaces and low
computing power.
In a temporal convolutional network (TCN), filters are
shared across a layer; thus, its memory requirement is much
lower than that of LSTM. The computational efficiency of
the TCN is also higher than that of LSTM due to compu-
tational parallelism. A driving style recognition algorithm
based on a TCN and soft thresholding, called S-TCN, was
proposed in a previous research [83]. The authors indicated
that the S-TCN outperformed the current state-of-the-art
(SOTA) driving behavior (i.e, short-term driving style)
recognition methods, such as LSTM-FCN and ResNet,
with low memory requirements and high computational
efficiency. Owing to its great recognition capacity and low
memory and computing power requirements, we recom-
mend it for short-term driving style recognition.
Convolutional neural networks (CNNs) have been widely
used in image classification and proven to perform well.
It has also been successfully applied in some studies to
the recognition of driving styles. As CNNs are usually
employed to process images rather than time series data,
Li et al. [85] mapped natural driving sequential data into
two-dimensional pictures, called driving operation pictures
(DOPs), which allowed a CNN to be applied to driving
style recognition. A similar approach was also used by
Shahverdy et al. [87]. Three ANN algorithms, a CNN,
an LSTM network, and a trained LSTM network, were
applied to recognize driving styles in Li’s study and the
CNN performed best with an accuracy of 98.5%, also
outperforming the traditional SVM approach. However,
CNNs are prone to overfitting, especially when input data
are small. Bejani et al. [86] applied a CNN to recognize
driving styles and used two adaptive regularization meth-
ods, called adaptive weight decay and adaptive dropout, to
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avoid overfitting; they finally obtained a high recognition
accuracy of 95%. Although CNN computation is less than
LSTM [83], it is still quite large; therefore it may be
unsuitable for short-term driving style recognition based
on in-vehicle controllers.
Other types of ANNs have also been used for driving
style recognition. Schlegel et al. [100] proposed a driv-
ing style recognition method combining high-dimensional
vector data representation with high-dimensional com-
puting (HDC) and a simple feedforward neural network,
which not only achieved similar or slightly better classi-
fication results than those of LSTM but also significantly
reduced the required training time and yielded improved
data efficiency. With the development of ANNs, especially
deep learning, they tend to perform well in driving style
recognition and are one of the future directions.

Although the classification performance of supervised learn-
ing is strong, data labeling is inevitable, which requires high ex-
pertise from the algorithm designer, and labeling a large amount
of data consumes considerable time and effort. To alleviate this
problem, Van et al. [57] explored the combination of K-means
and an SVM. The unsupervised K-means algorithm was used to
explore the correlations of input data and label them, while the
SVM was used to perform driving style recognition based on
the K-means labeled data.

3) Semi-Supervised Learning: Semi-supervised learning
combines a small amount of labeled data with a large amount
of unlabeled data during training, which can save considerable
time and effort by avoiding much data labeling. Wang et al. [88]
proposed a semi-supervised learning model by first using K-
means cluster analysis to select several data clusters for manual
labeling, then using a quasi-Newton algorithm to assign optimal
labels to the data, and finally classifying the driving styles
into aggressive and regular groups via an SVM. For the same
purpose. Liu et al. [89], proposed a driving style recognition
method based on Tri-CatBoost and conducted extensive exper-
iments on UAH-DriveSet. The authors reported macroscopic
accuracy values higher than many unsupervised learning and
supervised learning algorithms, such as K-means, a gradient-
boosting decision tree (GBDT), an RF, decision trees, and an
MLP. The applicability of semi-supervised learning algorithms
to long- and short-term driving styles is mostly determined by
their learning model. For example, in Wang’s work, the learning
model is SVM.

V. ALGORITHM EVALUATION METRICS

Different algorithms have different performance characteris-
tics due to differences among their calculation principles; thus,
it is necessary to develop and select reasonable performance
metrics to evaluate and compare the performance of different
algorithms. For comparing algorithms of the same type, there
are specific metrics. For example, for clustering algorithms,
the silhouette coefficient can be used for evaluation [101]. For
different kinds of algorithms, some common metrics exist to
allow comparison of different algorithms. Common metrics can
also be used to select algorithms according to different needs

Fig. 4. Common evaluation metrics for driving style recognition algorithms.

(long-term or short-term driving style recognition). Since many
evaluation metrics exist among the same type of algorithms,
only common evaluation metrics are presented in this section to
guide different algorithms for long- and short-term driving style
recognition applications.

A. Existing Common Metrics

The existing common evaluation metrics are mainly divided
into accuracy metrics and time metrics. Accuracy metrics, which
describe an algorithm’s recognition accuracy, mainly include
accuracy, precision, recall, F1-score, and area under the receiver
operating characteristic (ROC) curve (AUC). However, this
metric is only suitable for cases with available ground truth.
Time metrics, which describe an algorithm’s recognition speed,
mainly refer to the average computation time of the recog-
nition algorithm. Other existing performance metrics are also
available, such as interpretability, which describes the difficulty
of understanding models’ internal logic and inner workings.
Fig. 4 shows the evaluation metrics utilized for driving style
recognition algorithms.

1) Accuracy Metrics:
� Accuracy

Accuracy is one of the simplest performance metrics for
measuring accuracy and is the performance metric selected
in most studies if the correct sample labels are provided.
Xue et al. [102] selected accuracy as a performance metric
to compare an SVM, an RF, KNN, and an MLP. However,
when the positive class dominates, high accuracy can be
easily achieved as long as we predict the sample to be
positive [103]. When recognizing driving styles, the sample
size of drivers with a normal driving style is usually larger
than the sample size of drivers with other driving styles.
Thus, the constructed model may still perform poorly
in driving style recognition even when obtaining a high
accuracy value.

� Precision, recall, and F1-score
Precision and recall are better metrics for unbalanced
datasets. Precision is the proportion of actually correct pos-
itive identifications, and recall is the proportion of correctly
identified actual positives. They are often in tension, and
only when both metrics are high will the model perform
well. A more concise and practical approach is to combine
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precision and recall into a single metric, the F1-score, as
defined in (1):

F1− score =
Precision×Recall

Precision+Recall
. (1)

If both the precision and recall values are high, then the
model will obtain a high F1 score. For the unbalanced
dataset, Silva et al. [104] selected the F1-score instead
of accuracy as the performance metric to compare ANN,
SVM and RF algorithms.

� ROC curve
ROC curves are based on ROC graphs, in which the false-
positive rate is plotted on the X-axis, and the true-positive
rate is plotted on the Y-axis. In contrast to the abovemen-
tioned performance metrics, ROC curves are insensitive to
class distribution changes. The AUC is defined as the area
under the ROC curve. If the performance of the classifier
is superior, then the AUC is close to 1. If the classifier per-
formance is poor, then the ROC curve is close to a straight
line, and the AUC is close to 0.5. Zepf et al. [105] produced
the ROC curve of their driving style recognition model to
evaluate its performance and calculated a corresponding
AUC of 88.7%.

2) Time Metrics: The performance of a recognition model
can be evaluated by considering not only accuracy metrics but
also time metrics, i.e., the computational complexity of the
model, especially when recognizing short-term driving styles
with a high update frequency. The common time metric is the
average computation time. It can be divided into two metrics:
the average training time per epoch and the average prediction
time per sample. They are mainly related to the complexity
of the algorithm and the input data. Zhao et al. [83], used the
average computation time to evaluate the complexity of different
deep-learning based methods for driving style recognition.

3) Others: Some other metrics can also be used to evalu-
ate the performance of an algorithm, such as interpretability.
Many algorithms, especially ANNs, have good driving style
recognition performance are black-box models. The internal
logic and inner workings of these models are difficult to ex-
plain. A research [106] indicated that a single metric, such as
accuracy, provides incomplete descriptions of most real-world
tasks. Thus, model interpretability must be evaluated, even if
the model has a good recognition performance. Doshi-Velez
et al. [106] proposed three main levels of experiments to evaluate
interpretability. However, given the lack of uniformity in the
definition of interpretability, it is still difficult to evaluate model
interpretability [107].

B. Summary and Shortcomings of Existing Studies

Short-term driving style recognition, mainly used for driver
intention prediction and driving behavior monitoring, must rec-
ognize driving styles in the shortest possible time with relatively
low-dimensional inputs. Thus, the time metric is important for
evaluating how well a short-term driving style algorithm per-
forms. The main application for long-term driving style recog-
nition is to optimize the design of advanced automotive systems
and autonomous driving systems. Thus, such an algorithm needs
to have a high recognition accuracy. The accuracy metric is

important for evaluating how well a long-term driving style
algorithm performs. Given the high demand for driving safety,
driving style recognition algorithms should be interpretable.

However, the performance metrics in the existing studies
often vary from one test environment to another, even under
the same algorithm. Vaitkus et al. [27], used accelerometer data
and selected seven features to recognize driving styles with a
KNN model, and the accuracy of the test set reached 100%.
However, in another study [108] that compared the performance
of several recognition algorithms, including the KNN algorithm,
the recognition accuracy of the KNN model was only 68%. This
finding represents a large difference, and the main reason for
this result is the lack of consistency in the algorithmic input data
and the selection of the test sets. 1. Different algorithms use
different features from driving data, which can greatly impact
the algorithms’ performance. 2. The selected datasets are incon-
sistent and differ in amount and type. 3. Even though the same
dataset is used in some studies to compare different algorithms,
the performance comparison results of different studies are not
the same due to the differences in test set selection, resulting in
a lack of objectivity in the performance comparison results of
different algorithms. These scenarios lead to a lack of objective
comparisons among different existing driving style recognition
algorithms.

VI. FUTURE APPLICATIONS

New connectivity and personalization features will be in-
creasingly implemented with software for intelligent vehicles
in the future. The driver’s experience of the vehicle will be
shaped from the original hardware to the software. The software
cannot be separated from driving style recognition to meet the
driver’s individual needs. Driving style recognition will have
increasingly important applications in emerging autonomous
vehicle fields.

The future applications of driving style recognition can be
divided into personalized service recommendations and au-
tonomous driving.

A. Personalized Service Recommendation

Personalized service recommendation makes the human–
machine interface (HMI) recommend some applications accord-
ing to the driver’s preferences [109], [110]. For example, when
the driver prefers sport, the HMI recommends some appro-
priate parameters of the powertrain [111]. The driver chooses
whether to accept the recommendation by using the software,
not by means of a hardware button. The service recommen-
dation’s reasonableness mainly depends on understanding the
driver’s driving behaviors and driving styles. Customized and
personalized services influence people’s trust and acceptance
of autonomous vehicles [112]. Zhu et al. [113] recognized
driving style by analyzing driver braking behavior and designed
a personalized basic booster control strategy based on driving
style to effectively enhance the personalization of the braking
system, resulting in higher pedal response and user acceptance.
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B. Personalized Autonomous Driving

Personalized or customized autonomous driving refers to au-
tonomous vehicles adapting their driving preferences according
to different drivers and driving scenarios. For example, the
driving actions of the same autonomous vehicle in the same
scenario are different between young and old drivers and be-
tween aggressive and conservative drivers [114]. A self-learning
optimal cruise controller that can automatically adapt to individ-
ual car-following styles is developed for the individual driver
in [115]. Human-like driving is also important in personalized
autonomous driving. Reinforcement learning (RL) and inverse
reinforcement learning (IRL) are widely used in the field of
human-like driving [116]. Liu et al. [117] used an IRL algorithm
to train an automated lane change system, and the well-trained
system automatically adjusted the system parameters for dif-
ferent driving styles. In another research [118], the authors
designed different reward functions for reinforcement learning
for different driving styles, allowing autonomous vehicles to
adapt to human-driving habits.

VII. CONCLUSION

Driving style recognition is active in many automotive sce-
narios, such as driver intention prediction and autopilot systems.
This review comprehensively explores driving style recognition
from an application and implementation perspective. Specifi-
cally, it divides the available driving style recognition methods
into short-term and long-term recognition approaches from these
two perspectives. This research is the first to divide driving style
recognition into long-term and short-term perspectives. First,
short-term and long-term driving styles are defined, and their
characteristics, such as influencing factors and labels, are given.
Then, the utilized data inputs and preprocessing approaches
are briefly described. In addition, the existing driving style
recognition algorithms are reviewed, and their applicability for
short-term and long-term recognition is compared. Furthermore,
this review investigates the existing evaluation metrics for these
algorithms from multiple perspectives, such as accuracy, time,
and interpretability metrics. Finally, the applications of driv-
ing style recognition in future vehicles, especially autonomous
vehicles, are described. Thus, this study can help researchers
quickly implement short-term or long-term driving style recog-
nition methods depending on their application purposes and
application platforms.
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