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ABSTRACT Incremental learning-based fault diagnosis systems (IFD) are widely used because of their
ability to handle constantly updated fault data and types. However, the catastrophic forgetting problem
remains the most crucial contemporary challenge facing IFD. This paper proposes an incremental fault
diagnosis method based on metric feature distillation (MFD) and improved sample memory to solve this
problem. First, themetric feature distillation is designedwithmetric learningmethods and feature distillation.
It uses distillation and triplet loss to constrain the network parameters of old and new tasks in the same
feasible region, effectively alleviating catastrophic forgetting. Then, for a small amount of data that can
be stored scenario, an improved sample memory strategy is introduced to reduce catastrophic forgetting
further, called the center and hard sample memory (CAHM). It can better preserve the global information
of the data, reducing the forgetting of old data information that needs to be preserved during the training
process. Experimental results on CWRU and MFPT datasets verify the proposed method’s effectiveness.

INDEX TERMS Fault diagnosis, incremental learning, signal processing, knowledge distillation.

I. INTRODUCTION
In many scenarios in fault diagnosis, not all fault data is
available simultaneously. New fault data and fault types will
emerge as diagnostic techniques advance. This requires the
fault diagnosis system to process continuous data streams
and update the diagnosis. However, conventional intelligent
diagnostic systems are trained in a batch-learning setting.
When new fault data and fault types appear, the model will be
retrained using old and new fault data, resulting in a cumula-
tive increase in time cost and computing resources. The fault
diagnosis system based on incremental learning [1], i.e., the
incremental fault diagnosis system [2] (IFD), overcomes this
shortcoming and has been widely used. IFD requires a fault
diagnosis classifier capable of diagnosing new fault types
while maintaining the ability to analyze old ones.
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Catastrophic forgetting [3] is a key problem in enabling
incremental fault diagnosis systems to have continuous diag-
nostic capabilities. Recent research has made progress on
how to resist catastrophic forgetting. This further promotes
the development of deep learning [4]. However, most exist-
ing incremental learning methods typically use SoftMax
Classifier, which requires the network to add additional
parameters to new classes during incremental training con-
tinuously. It will lead to a shift in the parameter distribution
towards the new class and network budget increase. Metric
learning (embedding network) is an effective solution. For
example, SDC [5] applies the metric learning method to
incremental learning and proposes semantic drift compen-
sation to resist forgetting. Zhou et al. [6] introduces metric
learning to achieve few-shot class incremental learning by
compressing the embedding of known classes and reserving
new ones. Dou et al. [7] proposes a new Metric Learning
framework to accurately capture the relationships among
images. These methods effectively address the problem of
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increasing network parameters and the distribution drift
in traditional classification networks during incremental
learning by introducing metric learning. Moreover, these
methods also demonstrate that metric learning networks
have significant advantages over classification networks for
similarity-based classifiers. However, there needs to be more
application of metric learning to incremental fault diagno-
sis. The problem of catastrophic forgetting in incremental
learning networks based on metric learning must also be
investigated in depth. Inspired by the above ideas, this paper
proposes and applies a new forgetting resistance strategy to
fault diagnosis.

This paper proposes an incremental fault diagnosis frame-
work based on metric feature distillation and improved
sample memory to solve the catastrophic forgetting problem
facing IFD from two aspects. i) The metric feature distillation
(MFD) is designed with metric learning methods and feature
distillation. Wavelet transform is used to convert the 1D
signals into 2D images as the input to the neural network.
MFD adds the embedding layer after the fully connected layer
of ResNet18, and the network output is a 512-dimensional
feature vector. The NCM classifier is used instead of the
SoftMax classifier to avoid adding new output heads for
new fault types. Moreover, MFD applies absolute knowledge
distillation that calculates the absolute distance of new data
in the teacher and student networks as the distillation loss
function. It uses distillation and triplet loss to constrain the
network parameters of old and new tasks in the same fea-
sible region, effectively alleviating catastrophic forgetting.
ii) For a small amount of data that can be stored scenario,
this paper proposes an improved sample memory strategy to
reduce catastrophic forgetting further, called the center and
hard sample memory (CAHM). CAHM solves the problem
of missing local information in most current sample memory
strategies. CAHM calculates the distance of each sample to
the other samples. Then, the samples with the largest distance
are selected for storage. MFD is combined with CAHM
(MMFD), to improve the forgetting resistance of the model
synergistically. In summary, the major contributions of this
paper are:

• This paper proposes an incremental fault diagnosis
framework based on metric feature distillation (MFD)
to constrain the network parameters of old and new
tasks in the same feasible region, effectively alleviating
catastrophic forgetting.

• For a small amount of data that can be stored scenario,
this paper proposes an improved sample memory strat-
egy to further enhance the resistance to forgetting.

• The signal is processed with wavelet transform to con-
vert the 1D dataset of CWRU andMFPT into a 2D image
dataset. The normalized images are input to train an
incremental learning-based fault diagnosis model.

The paper is structured as follows: Some relevant knowl-
edge and motivation are introduced in Section II. The pro-
posed method is detailed in Section III. In Section IV,

experimental results are analyzed to verify the effectiveness
and efficiency of the proposed method. The impact of each
part of the proposed method on the performance is discussed
in Section V. Finally, the paper concludes with a summary of
the proposed method in Section VI.

II. RELATED WORK AND MOTIVATION
A. INCREMENTAL FAULT DIAGNOSIS METHOD
In practical applications, the data and categories that need
fault diagnosis are continuously updated and cumulatively
increased. However, most traditional intelligent diagnosis
methods are founded on batch learning. These methods are
not suitable for handling continuously updated data streams.
Recently, incremental learning-based fault diagnosis sys-
tems, called Incremental Fault Diagnosis systems, have been
widely studied to deal with incremental fault diagnosis prob-
lems. Yu and Zhao [8] designed a broad convolutional neural
network based on incremental learning to extract both fault
tendency and nonlinear structure from the obtained data
matrix. The model’s ability to capture fault features is effec-
tively enhanced using broad convolutional neural networks.
The method allows the model to incrementally diagnoses by
adding additional features for new fault data and types. In [9],
an online fault diagnosis method is proposed to learn new
fault types quickly. Oriented towards non-iid data, it solves
the problem of data distribution drift under nonstationary
industrial processes. The way extends the incremental learn-
ing assumption of iid of data to non-iid states to fit chang-
ing environments. Arunthavanathan et al. [10] use one-class
SVMand neural network Permutation algorithms to complete
self-learning and automatic diagnosis. The support vector
machines detect unmarked faults to achieve self-updating of
the fault database. The parameter contributions of the fault
diagnosis model under the new fault database are extracted
through a neural network permutation algorithm, and then the
diagnosis model is self-updating.

Applying incremental learning methods to fault diagnosis
has solved problems such as feature extraction and clas-
sification diagnosis in the case of incremental data types.
However, there needs to be further research into the issue
of catastrophic forgetting in incremental learning methods.
This is the main problem to be solved to improve the model’s
online diagnostic capability and to adapt it to continuously
updated fault types.

B. RECENT RESEARCH ON RESISTING CATASTROPHIC
FORGETTING
There are three main approaches [11] to dealing with catas-
trophic forgetting: Replay methods [12], [13], Regularization
based methods [14], [15], and Parameter isolation meth-
ods [16], [17]. Replay methods expect a joint training-like
effect by replaying old data or pseudo-data when learning
a new task. Experience replay [18] takes random samples
from the old experience when learning a new task and uses
them for training along with the new samples. This method
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prevents the latest samples from overwriting old ones, thus
protecting the old knowledge. Regularization-based methods
consolidate old knowledge by introducing an additional Reg-
ularization term. Rannen et al. [19] train an autoencoder that
prevents feature reconstruction from changing when training
a new task, thus preserving the primary information from the
old task. Minimizing all task losses by sharing the autoen-
coder, the task-specific decoder is trained to minimize task-
specific losses. Parameter isolation methods assign different
model parameters to each task or use compressed storage to
free up network capacity for new tasks to prevent forgetting.
In PathNet [20], each layer of the network can select K
modules among N candidate modules and then randomly
connect these modules to form multiple paths. These paths
are shared by multiple users, thus enabling parameter reuse
and thus resisting forgetting.

These methods yield better results, particularly Parame-
ter isolation methods achieve incredibly high performance.
However, the memory size increases linearly with the number
of tasks. Regularization-based strategies overcome this prob-
lem. Nevertheless, the soft penalty introduced is insufficient
to restrict the optimization process to stay in the feasible
region of previous tasks [21], which sometimes leads to an
increase in forgetting the previous task [11]. Replay methods
generally perform better than Regularization based.

C. SAMPLE MEMORY STRATEGY
A series of different ways of storage strategies have arisen
with data replay methods. They contribute significantly to
solving the problem of catastrophic forgetting. Random
selection is the simplest way to select samples to add to mem-
ory. The reservoir sampling algorithm [22] is used in Random
selection to generate random numbers from all training sam-
ples to ensure that each sample has the same probability of
being randomly selected. It maintains the distribution of the
original data as much as possible. Herding [12] iteratively
chooses a subset of samples for each class by calculating the
distance between each sample and classmean and chooses the
subset closest to the class mean in the learned feature space.
Distance [23] selects samples by calculating the inverse dis-
tance from the sample to the class mean, approximating the
distance from the sample to the decision boundary instead.
Entropy [23] calculates the entropy of the SoftMax output and
selects the samples with higher entropy. Since the SoftMax
layer has been removed from our network, we artificially
add a SoftMax output that does not affect the current network
when calculating the entropy. In [24], the inverse form of
Distance and Entropy is proposed. It is worth noting that
Inverse Distance is remarkably similar to Herding but differs
in that Inverse distance iteratively selects the single sample
closest to the class mean. In contrast, Herding determines the
sample set most comparable to the class mean.

D. MOTIVATION
Existing incremental fault diagnosis methods leave much
to be desired. Firstly, SoftMax classifiers require constant

FIGURE 1. The general procedure of the proposed fault diagnosis
method.

modification of the fully connected layers to accommodate
adding new classes during incremental learning. It not only
causes the accumulation of additional parameters but also
leads to parameter distribution drift toward the new task.
Then, the regularization-based incremental learning approach
is challenging to constrain the loss optimization for new tasks.
Incremental learning methods based on stored memory need
to find suitable sampling strategies.

Moreover, these strategies are only partially adaptable to
fault diagnosis datasets. When applying incremental learning
methods directly to fault diagnosis, some processing of data
and networks is required in advance. Therefore, a practical
framework must be investigated for the incremental fault
diagnosis problem.

III. PROPOSED METHOD
In this section, two incremental fault diagnosismethods based
on metric feature distillation and improved sample memory
are developed. The general process of the proposed method
is shown in Fig. 1. First, a 2D picture dataset D is con-
structed with wavelet transform by overlapping sampling
from the signal. Secondly, the pictures are divided into t
incremental task datasets Dt . Then, Dt is used as input to the
incremental neural network, and MFD is built to be trained.
For the scenarios where samples can be stored, the model’s
performance is further improved with the improved sampling
strategy CAHM added. Finally, the fault classes of the test
data are identified by the obtained incremental networkmodel
connected to the NCM classifier.
Without memory:When t = 1, the initial model is trained.

When t> 1, first, the parameters of model t are passed to
t ′ and the parameters of model t ′ are frozen. Second, when
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FIGURE 2. Triplet loss learning process. The input is a triplet including A
(Anchor example), P (Positive example: samples that are in the same
class as A), and N (Negative example: samples that are in a different class
from A).

training model t using new data, the output obtained from the
new data passing through model t ′ is used to constrain the
parameter distribution bias of model t . Finally, the parameters
of the received new model t are passed to model t ′. The
knowledge distillation is marked with a blue line in Fig. 1.
With memory: For samples that can be stored, the model

performance is further improved using a suitable sample
management strategy. Update the samples in the buffer before
the start of the next task. The old and new samples are
fed into the network simultaneously during training. More-
over, unlike the situation without a buffer, the sample set
from the buffer is used instead of the current dataset during
distillation.

A. SIGNAL PROCESSING WITH WAVELET TRANSFORM
Before the incremental neural network process, sensor sig-
nals must be converted into images. The wavelet transform
replaces the basis of the Fourier transforms with a wavelet
basis that can decay. This way, the frequency is obtained
while the time can be localized. The original signal is sam-
pled and converted into 2D images. The transformed images
are normalized and transmitted to the incremental neural
network. The general form of the wavelet transform is:

ψa,τ (t) =
1
√
a

∫
∞

−∞

f (t) ∗ ψ(
t − τ
a

)dt (1)

where a is the scale, τ is the translation, t is the time, andψ(·)
is the wavelet basis function. f (t) is the original signal.

B. METRIC FEATURE DISTILLATION
SDC [5] first added metric learning (embedding networks)
to incremental learning. However, it only focuses on com-
putational class centers and neglects the retention of old
knowledge. This paper develops the idea of SDC by
introducing knowledge distillation in the embedding net-
work and improving the computation. Moreover, traditional
convolutional neural networks use the SoftMax classifier.
Nevertheless, the SoftMax classifier must keep adding addi-
tional parameters for new classes during incremental training.
Besides, the network is vulnerable to class imbalance as the
structure of the fully connected layer is changed. This paper
adds an embedding layer to the last layer of Resnet18 to
map the data features to a low-dimensional feature space. The
loss function consists of a classification loss function and an
anti-forgetting regularization term. MFD uses the triplet loss
instead of the traditional cross-entropy loss function. When

FIGURE 3. Knowledge distillation model. The same points mean the same
class. The dashed graph represents the relative position of this sample in
the teacher’s feature space. L1 and L2 are the distances from the sample
to other class samples.

adding new classes, MFD needs no change in structure and
learns the relationship between samples better.

The structure of triplet loss is explained in Fig. 2. The final
optimization goal is to shorten the distance between A and P
and increase the distance between A and N. The calculation
formula is as follows:

d+ = ||f (xai )− f (x
p
i )||

2
2 (2)

d− = ||f (xai − f (x
n
i ))||

2
2 (3)

LML = max(0, d+ − d− + α) (4)

where d+ is the Euclidean distance between f (xai ) and f (x
p
i ).

d− is the Euclidean distance between f (xai ) and f (x
n
i ), and

f (xi) is the feature vector of the sample xi. The hyperparam-
eter α determines the metric scale.
The old network is the teacher, and the current network

is the student, as shown in Fig. 3. Traditional knowledge
distillation uses a cross-entropy loss function to constrain
the parameter optimization of the new task, thus resisting
catastrophic forgetting. This paper uses absolute knowledge
distillation to constrain the network parameters of the old
and new tasks to the same feasible region. In other words,
absolute knowledge distillation aims to reduce the distance
of new samples in the old and new networks.

LabsKD = ||f
S (x)− f T (x)|| (5)

where ∥·∥ refers to the Frobenius norm. f S (x) is the feature
vector of the current training sample x in the student network,
and f T (x) is the feature vector of the sample x in the teacher
network.

The parameters are updated jointly using the triplet loss
and the distillation loss to prevent forgetting the embedded
network.

L = LML + λLabsKD (6)

where λ is the reconciling factor of the two loss functions.
Instead of the SoftMax classifier, the nearest class mean

classifier (NCM) is used.

y∗ = argmin
c=1,...,t

dist(f (x),UC ) (7)

where dist(·, ·) is the Euclidean distance, and f (x) is the
feature vector of the sample x. UC is the class mean of
class C .
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Algorithm 1
input Xs, . . . ,Xt // training samples
input M // total memory size
require θ // model parameters
require P = (P1, . . . ,Ps−1) // current sample sets
θ ←− Train(Xs, . . . ,Xt ;P, θ)
m←− M/(t ∗ 2) // memory size of samples per class
for y = 1, . . . , s− 1 do
Py← delete_subsample(Py,m)

end for
for y = s, ..., t do
f ← Extract_features(Xs, . . . ,Xt , θ)
Py← add_center_data(Xy,m, f )
dis_ap, dis_an← f
Py← add_hard_data(Xy,m, dis_ap, dis_an)

end for
P← (P1, . . . ,Pt ) // new exemplar sets

C. IMPROVED SAMPLE MEMORY
The selected examples stored in memory should not only
represent their corresponding classes but also make a signif-
icant contribution when they are replayed. The sample near
the center of the samples is the most representative, which
can provide higher accuracy when calculating the class mean
required for the test. The hard samples are fuzzy, so they
will be more challenging to train when replayed. To meet
these two characteristics, this paper proposes a memory man-
agement strategy (center and hard memory, CAHM). This
strategy consists of two parts:
• Half of the fixedmemory stores samples near the sample
center to keep the sample set’s original characteristics.

• The other half of the fixed memory is used to store hard
samples to improve the classification accuracy of fuzzy
samples during training.

CAHM is detailed and explained in Algorithm 1. The
hard samples are obtained using the triplet loss calculation
method. First, CAHM gets the features of all candidate sam-
ples through the network. Secondly, these features calculate
the distance between each sample and other samples. The
distance dis_ap of similar samples and the distance dis_an
of different class samples are obtained. CAHM calculates
the distance of each sample to similar samples and other
samples. The samplewith the largest difference between them
is selected for storage. The order in which the samples are
chosen is recorded in decreasing order of importance. If fixed
memory is used and some memory must be freed to make
room for new samples, the samples with lower priority are
removed first.

This paper combines CAHM with MFD to synergistically
improve the model’s performance. Equation (5) is modified
as follows:

LabsKD = ||f
S (xm)− f T (xm)|| (8)

where xm is the sample set of the buffer.

TABLE 1. Description of the ten bearing conditions of CWRU.

TABLE 2. Description of the eighteen bearing conditions of MFPT.

IV. EXPERIMENTAL VERIFICATION
A. EXPERIMENTAL SETUP
Two well-known public experimental datasets are used to
verify the proposed method’s validity. One is from the Case
Western Reserve University (CWRU) Bearing Data Center
[25], and the other is Machinery Failure Prevention Technol-
ogy (MFPT) [26] society rolling element vibrational data set.
The data are shown in Table 1 and Table 2.

The CWRU dataset consists of a 1.5KW (2 horsepower)
motor under different working conditions (including 2 sam-
pling frequencies, 4 rotation speeds and load). It uses EDM
technology to simulate different fault severity on other bear-
ings (including 3 fault types, 5 fault sizes, and 3 fault direc-
tions) vibration signal collection results. The two sampling
frequencies are 12Khz and 48Khz. The four driving motor
speeds are 1730, 1750, 1772, and 1797 rpms, respectively.
The three types of failures are inner ring failure (IRD), outer
ring failure (ORD), and ball failure (BD). The five types of
faults are respectively 7, 14, 21, 28 mils, and 0.04 inches in
diameter. The first three fault diameters are SKF bearings
with the latter two fault diameters equivalent. NTN bearings.
The three failure directions are the faults at 3 o’clock (directly
located in the loaded area), 6 o’clock (orthogonal to the
loaded area), and 12 o’clock in the v outer bearing ring of
the drive and fan ends. This paper selects 10 vibration signals
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TABLE 3. Experimental parameter setting.

with a sampling rate of 12khz, a driving motor speed of
1797rpms, and a load of 0hp. One is a normal vibration signal,
and 9 are vibration signals with different faults.

The MFPT dataset is provided by the Mechanical Failure
Prevention Technology Association. Acceleration data were
collected for 6 seconds under baseline conditions with a load
of 270 lb and a 97,656 Hz sampling rate. In total, 10 outer
and 7 inner race failures were tracked. These included 3 outer
raceway failures, including a 270 lb load and a 97,656 Hz
sampling rate for 6 seconds. Seven additional outer race
failures are evaluated at various loads: 25, 50, 100, 150, 200,
250, and 300 lb. Faults are sampled at a rate of 48,828 Hz for
3 seconds. Seven inner ring faults are analyzed at loads of 0,
50, 100, 150, 200, 250, and 300 pounds. The sampling rate
for the inner ring failures is 48,848 Hz for 3 s. The MFPT is
classified as follows: normal baseline (N), inner ring failure
(IR), and outer ring failure (OR). The raw data consisted of
the following data points: N is 1757808 data points, IR is
1025388 data points, and OR is 2782196 data points. The raw
data consisted of the following data points: N is 1757808 data
points, IR is 1025388 data points, and OR is 2782196 data
points.

The specific parameter settings are shown in Table 3.
This paper uses ResNet18, an 18-layer convolutional neural
network with 5 residual blocks, as the basic network for
incremental fault diagnosis. An Embedding layer is added
to the output layer of ResNet18, and the network’s output is
a 512-dimensional embedded feature vector. Instead of the
traditional SoftMax classifier, theNCMclassifier is used. The
Adam optimizer is used instead of SGD.

This paper runs all experiments on a desktop computer with
a GTX 1065, an Intel Core i7-9750H, and 8G RAM. The
codes for this paper and the comparison method are written
in PyTorch 1.4, and Python 3.7.

B. PREPROCESS OF ORIGINAL DATA
Since the sensor can only capture the vibration signal of the
rolling bearing, it is necessary to process the original vibra-
tion signal and convert it into images. The wavelet transform
can amplify the details of the data and can extract the features
better, so this paper converts the vibration signal into pictures
by wavelet transform. In the CWRU dataset, each bearing
condition contains 2400 samples, amongwhich 2000 samples
are randomly selected as training samples, and 400 samples

FIGURE 4. Examples of CWRU with wavelet transform.

FIGURE 5. Examples of CWRU with wavelet transform.

are test samples. Each sample has 4096 sampling data points.
In the MFPT dataset, the data overlap method is used because
of the small number of images composed of data points. The
fault samples with a sampling rate of 6 seconds overlapped
1953 data points. For the sample with a sampling rate of
3 seconds, 651 data points overlapped. The total images gen-
erated from the dataset include 3480 images for the training
sample and 838 images for the test sample. The transformed
images are shown in Fig. 4 and Fig. 5. Further, the constructed
image is processed by MFD and MMFD.

C. MFD WITHOUT MEMORY
This section compares MFD with current classical incre-
mental learning methods (all without memory) on CRWU
and MFPT. These incremental learning methods include the
classical LWF [27], EWC [28], SI [29], and SDC. This paper
reports the diagnostic accuracy of these methods on two fault
datasets using a two-increment format. Ten experiments are
performed to calculate the average accuracy to avoid the
specificity and chance of the results. The time cost in Fig. 8
is the result of 10 epoch runs.
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FIGURE 6. Experimental results of different methods for incremental
class training on CWRU.

FIGURE 7. Experimental results of different methods for incremental
class training on MFPT.

Experimental results in Fig. 6 show that our method (MFD)
significantly outperforms LWF, EWC, SDC, and SI on the
CWRU. AlthoughMFD performs slightly worse than SDC in
the second diagnostic classification, it outperforms SDC after
that. Compared to SDC, MFD improves the model accuracy
by about 18.6%. Experimental results in Fig. 7 show that
MFD still achieves excellent diagnostic results (about 40%
improvement over SDC) when the number of classification
tasks increases. The data in Fig. 8 shows that MFD and LWF
have similar time costs and are lower than other algorithms
because both algorithms have the same time complexity.

D. MFD WITH MEMORY
MMFD is compared with classical sample memory-based
methods for the scenario where samples can be stored.
Experience Replay (ER) [18] merges memory samples
with current samples for training. Meta-Experience Replay

FIGURE 8. Time cost of MFD and other regularization-based methods on
CWRU and MFPT.

TABLE 4. Average accuracy on CWRU and MFPT for different rehearsal
method (memory size=200).

(MER) [30] uses a Meta-learning approach to replay past
data. Gradient-based Sample Selection (GSS) [31] finds
a constrained subset that maximizes the sample diversity.
Hindsight Anchor Learning (HAL) [32] introduces ‘‘anchor-
ing’’ to complement experience replay and uses bilevel opti-
mization to update knowledge. iCaRL combines replay and
knowledge distillation strategies. Unlike the parameter L2
distance optimization method, FDR [33] applies the func-
tion L2 distance to optimize. Gradient Episodic Memory
(GEM) [34] leverages old training data to build optimization
constraints to optimize the gradient loss while training new
tasks.

Experimental results in Table 4 show thatMMFD performs
well on both datasets due to the improved sample manage-
ment strategy and the superiority of the overall algorithm.
FDR performs well on the MFPT dataset but less on the
CWRU dataset. Like HAL and GEM, iCaRL shows unsatis-
factory results, even lower than Finetuning (without memory
and distillation). This paper compares the performance of
iCaRL, HAL, and GEM on classical datasets (e.g., CIFAR10)
and discusses why these methods do not apply to CWRU
and MFPT. These methods are not suitable for incremental
learning classes with high-class similarity. The high-class
similaritymakes training for the current task significantly less
efficient. Combining this and catastrophic forgetting prevents
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FIGURE 9. Time cost of MMFD and other replay-based methods on CWRU
and MFPT.

TABLE 5. Average accuracy on CWRU and MFPT for independent method
(memory size=200).

obtaining good classification results in all tasks. When com-
paring MMFDwith MER on similar time overhead (reducing
the number of the running epoch ofMER to shorten the time),
the results show that MMFD outperforms MER. However,
when the number of calendar elements of MER is increased,
it is found that the accuracy of MER also increases and even
exceeds the accuracy of our algorithm, as shown in Table 4.
It is worth noting that the time cost of MER is enormous due
to the high complexity of the algorithm. The data in Fig. 9
show that the time cost of MER is about 30 times higher than
that of MMFD on CWRU and about 18 times higher than
that of MMFD on MFPT. This problem has to be considered
in industrial applications. In addition, FDR and GSS do not
perform better with increased time and memory costs. MER,
GSS, HAL, and GEM experienced an intractable training
time under the same setting.

V. DISCUSSION
A. EFFECT OF CAHM ON MFD
To independently evaluate the benefit of our proposed MFD
and CAHM, this paper performs an ablation study using the
CWRU and MFPT datasets. Three scenarios are considered:
1) with MFD and CAHM, 2) only MFD, 3) only CAHM, and
4) without both (Finetuning).

Experimental results show that both components contribute
to the algorithm’s performance, as evidenced by the accu-
racy tests in Table 5. The accuracy without Distillation
and CAHM is extremely low, attributed to catastrophic

FIGURE 10. Experimental results on CWRU (base=2, task=5).

FIGURE 11. Experimental results of on CWRU (base=4, task=3).

forgetting. The combination of Distillation and CAHM pro-
vides a better model, although they both work well alone in
resisting catastrophic forgetting.

B. DISCUSSION OF THE MFD COMPONENTS
This section investigates fault diagnosis accuracy under dif-
ferent classes of incremental conditions. Experiments are
performed to verify the effectiveness of each component
of the MFD. This paper compares the following cases:
1) FT: Resnet18 and cross-entropy loss function without
measures to prevent catastrophic forgetting (lower band).
2)M-RES: Resnet18 network with metric learning added (FC
layer deleted and embedding layer added) and the triplet loss
function. 3) Join: in the Resnet18 classification network, each
time a new category is added, all the categories that have been
acquired are fully trained and are the fault diagnosis results
(upper band). 4) our: the MFD proposed in this paper.
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TABLE 6. Specific incremental learning results on the CWRU (accuracy
percentage).

TABLE 7. Comparison with different sampling strategies for three
episodic memory sizes 200, 500, and 1000 on CWRU and MFPT.

This paper conducted 10 experiments and took the aver-
age diagnostic accuracy of each for the study. Experimental
results are shown in Fig. 10 and Fig. 11. (Base: the number
of categories trained for the first time. Task: the number of
tasks.)

Experimental results fromFig. 10 and Fig. 11 show that the
diagnostic results of the embedding network perform better
than those of the classification network. The final diagnostic
accuracy of M-RES improves by about 9% compared with
FT, which shows that Triple Loss function works better than
the Cross-Entropy function for different classes of incremen-
tal conditions. Fig. 8 shows that the results ofMFD are almost
the same as Join of the first 3 diagnoses. Fig. 11 indicates
that the results of MFD are nearly the same as Join of the
first 2 diagnoses. This illustrates the efficiency of MFD.
FT always performs the worst, emphasizing the impact of
catastrophic forgetting in incremental learning.

To better illustrate the effectiveness of different methods
for incremental fault diagnosis, Table 6 lists the results of

each task on CWRU. After training a new model, this paper
tests the samples from the previously trained task separately
for each task. The aim is to show how well the old data
retain knowledge on the new model and to illustrate better
the effectiveness of each method in resisting forgetting.

C. COMPARISON OF CAHM WITH OTHER SAMPLING
METHODS
There are different sampling strategies for the scenario where
sample memory can be stored, as introduced in Section II.
Table 7 compares the performance of the various sampling
strategies for 200, 500, and 1000 memory sizes.

Experimental results show that CAHM performs bet-
ter than other strategies on CWRU. As the memory size
increases, all methods perform better. From the comparison
between distance and inverse distance, it can be seen that dis-
tance performs better below 1000 memory sizes. This gives
us an insight: if the samples in the buffer are sufficient to rep-
resent the characteristics of the original data, the samples with
highly uncertain decision boundaries will contribute more to
the training model. The same conclusion can be drawn from
entropy and inverse entropy. Whereas the memory size is
small, our method is superior to other methods. It can be
inferred that hard samples are more suitable for few-shot
incremental learning. The random process has less cost, and
when high accuracy is not required, and computational cost
is minimized, random is a better choice. Entropy and inverse
entropy have always maintained low accuracy and high cost,
which is unsuitable for our overall mechanism and may have
unexpected effects on other algorithms.

On the other hand, due to the different sizes of the two
datasets, the data trend is slightly different, and the accuracy
of the various methods on the MFPT datasets is generally
higher than that on CWRU. CWRU contains 20,000 training
samples and 4,000 test samples, a total of 10 classes, while
MFPT contains 3,480 training samples and 838 test samples,
18 classes. The data in Table 7 show that the effect of entropy
and inverse entropy in MFPT is better than in CWRU. The
possible reason is that the data set of MFPT is smaller on the
one hand, and the gap between MFPT classes is smaller on
the other. Keeping a large buffer for each class in a practical
application is challenging. Therefore, our method will be a
good choice.

VI. CONCLUSION
To solve the catastrophic forgetting problem facing incre-
mental fault diagnosis, this paper designs two incremental
fault diagnosis frameworks that apply to two scenarios. First,
inspired by metric learning and knowledge distillation, this
paper proposes an incremental fault diagnosis framework
based on metric feature distillation (MFD). Second, for sce-
narios where a small amount of fault data can be stored, this
paper proposes a CAHM sample memory strategy. Combin-
ing MFD, this paper designs an incremental fault diagnosis
framework based on MFD and CAHM (MMFD). Experi-
mental results on CWRU and MFPT show that the proposed
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framework can continuously maintain the diagnostic capabil-
ity with high accuracy with increasing fault data and types.

Despite the promising experimental results, the problems
of incremental fault diagnosis still need to be fully solved.
First, the CWRU and MFPT datasets used in this paper
are both rolling bearing fault datasets, and the experimental
results under other datasets have yet to be discovered. Second,
the catastrophic forgetting problem must be fully solved at
this stage, which makes the incremental fault diagnosis fail
to achieve the joint training results.

In future work, we plan to solve both problems. We will
first use the proposed framework for more complex fault
diagnosis datasets, testing and optimizing the algorithmic
framework. Moreover, we will further investigate how to
solve the catastrophic forgetting problem and apply it to
more domains. Some deep learning models have been used
in various fields to improve the performance of the mod-
els, for example, medical diagnosis [35], musculoskeletal
modeling [36], genetic engineering [37], and so on. These
models, however, have to face the problem of model growth
or memory growth under continuous data streams, and the
fundamental solution to them is to overcome catastrophic
forgetting.

REFERENCES
[1] M. Kang, J. Park, and B. Han, ‘‘Class-incremental learning by knowledge

distillation with adaptive feature consolidation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 16071–16080.

[2] X. Gu, Y. Zhao, G. Yang, and L. Li, ‘‘An imbalance modified convolutional
neural network with incremental learning for chemical fault diagnosis,’’
IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 3630–3639, Jun. 2022.

[3] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, ‘‘Measuring
catastrophic forgetting in neural networks,’’ in Proc. AAAI Conf. Artif.
Intell., Apr. 2018, pp. 1–9.

[4] J. Zhang, Y. Li, W. Xiao, and Z. Zhang, ‘‘Non-iterative and fast deep learn-
ing: Multilayer extreme learning machines,’’ J. Franklin Inst., vol. 357,
no. 13, pp. 8925–8955, 2020.

[5] L. Yu, B. Twardowski, X. Liu, L. Herranz, K. Wang, Y. Cheng, S. Jui,
and J. Van De Weijer, ‘‘Semantic drift compensation for class-incremental
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 6982–6991.

[6] D.-W. Zhou, F.-Y. Wang, H.-J. Ye, L. Ma, S. Pu, and D.-C. Zhan, ‘‘For-
ward compatible few-shot class-incremental learning,’’ inProc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 9046–9056.

[7] J. X. Dou, L. Luo, and R. M. Yang, ‘‘An optimal transport approach to
deep metric learning (student abstract),’’ in Proc. AAAI Conf. Artif. Intell.,
Jun. 2022, vol. 36, no. 11, pp. 12935–12936.

[8] W. Yu and C. Zhao, ‘‘Broad convolutional neural network based industrial
process fault diagnosis with incremental learning capability,’’ IEEE Trans.
Ind. Electron., vol. 67, no. 6, pp. 5081–5091, Jun. 2020.

[9] H. Zhou, H. Yin, D. Zhao, and L. Cai, ‘‘Incremental learning and condi-
tional drift adaptation for nonstationary industrial process fault diagnosis,’’
IEEE Trans. Ind. Informat., vol. 19, no. 4, pp. 5935–5944, Apr. 2023.

[10] R. Arunthavanathan, F. Khan, S. Ahmed, and S. Imtiaz, ‘‘Autonomous fault
diagnosis and root cause analysis for the processing system using one-class
SVM andNN permutation algorithm,’’ Ind. Eng. Chem. Res., vol. 61, no. 3,
pp. 1408–1422, Jan. 2022.

[11] M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, ‘‘A continual learning survey: Defying
forgetting in classification tasks,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 7, pp. 3366–3385, Jul. 2022.

[12] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘‘ICaRL:
Incremental classifier and representation learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001–2010.

[13] D. Isele and A. Cosgun, ‘‘Selective experience replay for lifelong learn-
ing,’’ in Proc. AAAI Conf. Artif. Intell., Apr. 2018, vol. 32, no. 1, pp. 1–8.

[14] S. Tang, P. Su, D. Chen, andW. Ouyang, ‘‘Gradient regularized contrastive
learning for continual domain adaptation,’’ in Proc. AAAI Conf. Artif.
Intell., May 2021, vol. 35, no. 3, pp. 2665–2673.

[15] K. J. Joseph, S. Khan, F. S. Khan, R. M. Anwer, and
V. N. Balasubramanian, ‘‘Energy-based latent aligner for incremental
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 7452–7461.

[16] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive neural net-
works,’’ 2016, arXiv:1606.04671.

[17] R. Aljundi, P. Chakravarty, and T. Tuytelaars, ‘‘Expert gate: Lifelong
learning with a network of experts,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 3366–3375.

[18] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G.Wayne, ‘‘Experience
replay for continual learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 32, 2019, pp. 1–11.

[19] A. Rannen, R. Aljundi, M. B. Blaschko, and T. Tuytelaars, ‘‘Encoder
based lifelong learning,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1320–1328.

[20] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, and D.Wierstra, ‘‘PathNet: Evolution channels gradient descent
in super neural networks,’’ 2017, arXiv:1701.08734.

[21] S. Farquhar and Y. Gal, ‘‘Towards robust evaluations of continual learn-
ing,’’ 2018, arXiv:1805.09733.

[22] R. Jayaram, G. Sharma, S. Tirthapura, and D. P. Woodruff, ‘‘Weighted
reservoir sampling from distributed streams,’’ in Proc. 38th ACM
SIGMOD-SIGACT-SIGAI Symp. Princ. Database Syst., Jun. 2019,
pp. 218–235.

[23] A. Chaudhry, P. K.Dokania, T. Ajanthan, and P. H. Torr, ‘‘Riemannianwalk
for incremental learning: Understanding forgetting and intransigence,’’ in
Proc. Eur. Conf. Comput. Vis., 2018, pp. 532–547.

[24] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and
J. Van De Weijer, ‘‘Class-incremental learning: Survey and performance
evaluation on image classification,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 45, no. 5, pp. 5513–5533, May 2023.

[25] K. Loparo. Case Western Reserve University Bearing Data Cen-
ter. Accessed: 2022. [Online]. Available: http://csegroups.case.edu/
bearingdatacenter/home

[26] E. Bechhoefer. (2013). Condition Based Maintenance Fault Database
for Testing Diagnostics and Prognostic Algorithms. [Online]. Available:
https://www.mfpt.org/fault-data-sets/

[27] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[28] K. James, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and D. Hassabis,
‘‘Overcoming catastrophic forgetting in neural networks,’’ Proc. Nat.
Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, Mar. 2017.

[29] F. Zenke, B. Poole, and S. Ganguli, ‘‘Continual learning through synaptic
intelligence,’’ in Proc. Int. Conf. Mach. Learn., Jul. 2017, pp. 3987–3995.

[30] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
‘‘Learning to learn without forgetting by maximizing transfer and mini-
mizing interference,’’ 2018, arXiv:1810.11910.

[31] F. Wiewel and B. Yang, ‘‘Entropy-based sample selection for online con-
tinual learning,’’ in Proc. 28th Eur. Signal Process. Conf. (EUSIPCO),
Jan. 2021, pp. 1477–1481.

[32] A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz, ‘‘Using
hindsight to anchor past knowledge in continual learning,’’ in Proc. AAAI
Conf. Artif. Intell., May 202, vol. 35, no. 8, pp. 6993–7001.

[33] A. S. Benjamin, D. Rolnick, and K. Kording, ‘‘Measuring and regularizing
networks in function space,’’ 2018, arXiv:1805.08289.

[34] S. Lee, M. Weerakoon, J. Choi, M. Zhang, D. Wang, and M. Jeon,
‘‘CarM: Hierarchical episodic memory for continual learning,’’ in Proc.
59th ACM/IEEE Design Autom. Conf., Jul. 2022, pp. 1147–1152.

[35] R. Aggarwal, V. Sounderajah, G. Martin, D. S. W. Ting,
A. Karthikesalingam, D. King, H. Ashrafian, and A. Darzi, ‘‘Diagnostic
accuracy of deep learning in medical imaging: A systematic review and
meta-analysis,’’ Npj Digit. Med., vol. 4, no. 1, p. 65, Apr. 2021.

[36] J. Zhang, Y. Zhao, F. Shone, Z. Li, A. F. Frangi, S. Q. Xie, and Z.-Q. Zhang,
‘‘Physics-informed deep learning for musculoskeletal modeling: Predict-
ing muscle forces and joint kinematics from surface EMG,’’ IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 31, pp. 484–493, 2023.

46024 VOLUME 11, 2023



Q. Min et al.: Incremental Fault Diagnosis Method Based on MFD and Improved Sample Memory

[37] R. S. Piecyk, L. Schlegel, and F. Johannes, ‘‘Predicting 3D chromatin
interactions from DNA sequence using deep learning,’’ Comput. Struct.
Biotechnol. J., vol. 20, pp. 3439–3448, Jan. 2022.

QILANG MIN received the B.E. degree from
the Wuhan University of Science and Technology,
Wuhan, China, in 2020, where he is currently
pursuing the M.E. degree with the School of Com-
puter Science and Technology. His research inter-
ests include machine learning, computer vision,
and fault diagnosis.

JUAN-JUAN HE (Member, IEEE) received the
Ph.D. degree in engineering from the School
of Automation, Huazhong University of Science
and Technology, in 2014. She was a Visiting
Professor with the Department of Computer Sci-
ence, Western University, for 24 months. She is
currently an Associate Professor of computer sci-
ence with the Wuhan University of Science and
Technology. Her research interests include compu-
tational intelligence, machine learning, membrane
computing, and various application domains.

PIAOYAO YU received the B.E. degree in com-
puter science and technology fromWuhanDonghu
University, Wuhan, China, in 2019, and the M.E.
degree in computer technology from the Wuhan
University of Science and Technology, in 2022.
Her research interests include incremental learn-
ing, computer vision, and these applications in
industry.

YUE FU received the B.E. degree in network
engineering from Xiangtan University, Xiangtan,
China, in 2020. She is currently pursuing the M.E.
degree with the School of Computer Science and
Technology, Wuhan University of Science and
Technology, Wuhan, China. Her research interests
include incremental learning and fault diagnosis.

VOLUME 11, 2023 46025


