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ABSTRACT Internet of Things (IoT) -based 6G is expected to revolutionize our world. Various candidate
technologies have been proposed to meet IoT system requirements based on 6G, symbiotic radio (SR) is one
of these technologies. This paper aims to use symbiotic radio technology to support the passive Internet of
things and enhance uplink transmission performance. The IoT tag information is sent to the cloud for analysis
through a macro base station (MBS) or a wireless access point (WAP), where the smartphones are used as a
relay to transmit this information to the MBS orWAP. In this paper, an optimization problem was formulated
into two phases to maximize the total throughput of the system. The first phase is, the problem of achieving
the optimum mode selection of the LTE or Wi-Fi Network, aiming to maximize the system throughput.
A matching game algorithm is used to solve this problem. Second phase, the problem of achieving optimum
clustering of tags, where the tags are divided into virtual clusters, and findingwhich smartphones’ LTE/Wi-Fi
downlink signals all cluster members can ride to maximize the system throughput. A double deep Q-network
(DDQN) model was proposed to solve this problem. Simulation results show that our proposed algorithms
increase the total system data rate by an average of 90% above the system using the LTE network first
without DDQL algorithm. Furthermore, it enhances the capacity of the system on average by 100% above
LTE network first system without the DDQL algorithm.

INDEX TERMS IoT, DDQL, LTE, Wi-Fi, matching game, backscattering, symbiotic radio.

I. INTRODUCTION
The Internet of Things (IoT) is considered as one of the
major applications of future wireless networks that enables
devices to communicate with each other [1]. IoT devices
have grown significantly, so substantial amounts of spectrum
resources and energy are required [2]. It is a challenge for
5G wireless systems to satisfy the IoT requirements. 5G has
introduced some technologies for IoT, but cannot fully satisfy
IoT requirements. Therefore, 6G is a promising generation
of wireless communications that is expected to overcome 5G
in enhancing the performance of these systems. Many 6G
promising technologies have been proposed, such as artificial
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intelligence (AI), and symbiotic radio(SR). These technolo-
gies are expected to meet the requirements of the IoT system
such as enhancing the system rate, capacity, and energy effi-
ciency where the IoT system has a low downlink data rate of
250 kb/s and an uplink data rate of 15 kb/s [3], [4], [5]. AI is a
critical and highly valued technology in the future’s 6Gwhere
it provides intelligence to wireless networks. AI is used as a
tool for system data analysis which helps in making correct
decisions automatically [6], [7].

Backscattering (BackCom) is a technology used to
improve wireless system performance. Backscattering pro-
vides spectrum resources and energy for IoT tags, thereby
improving the system spectrum and energy efficiency.
Backscattering is presented in the LTE (LScatter) and Wi-Fi
(BackFi) frequency bands, where the tag’s information is
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ridden and modulated over continuous wave signals gener-
ated by a carrier emitter [8]. Recently, ambient backscatter
communication (AmBC) system have been used for passive
Internet of Things that do not require a dedicated carrier
emitter. The ambient system enables backscattering tags to
transmit their information over the existing ambient Radio
Frequency (RF) signal (e.g., Cellular or Wi-Fi signal) that
shares the transmitter and spectrum of the primary signal;
however, it has some decoding problems at the reader [9].
Therefore, symbiotic radio SR is used for passive Internet
of things communication, which is one a 6G promising tech-
nologies. SR provides highly reliable backscattering commu-
nications, which compensate for the disadvantage of AmBC.
In SR, IoT tags not only share the transmitter and spectrum
of the primary signal but also share the primary receiver. The
primary receiver decodes the signals from the primary trans-
mitter and backscattering tags [10]. Therefore, using SR can
significantly enhance the performance of IoT systems, where
mutualism spectrum sharing increases the system spectrum
efficiency and backscattering communication increases its
energy efficiency. Decoding at the primary receiver by utiliz-
ing successive interference cancellation (SIC) can solve the
decoding problems and provide a reliable system. SIC was
used to estimate the primary signal first. Then, the receiver
subtracts this estimated signal from the received signal and
finally, detects the tags’ backscattered signal. Recently, mode
selection communication scheme is studied with objective of
enhancing the IoT system performance by selecting between
active (battery- assisted communication) and passive mode
(battery- free communication) based on the network topology
and the location of the IoT device related to the receiver.
The passive mode is more required for IoT network where it
solves the problem of longer communication range and sup-
port ‘‘green communication’’ [11], [12], [13]. Furthermore,
machine learning is used based on backscatter for provid-
ing IoT system performance enhancement as the bit error
rate(BER), throughput and capacity of the system. A trained
model can be obtained by using machine learning based
on the input data of the system which improve the system
performance [14].

A. LITERATURE REVIEW
In this section, many studies are have attempted to improve
IoT performance by maximizing throughput, capacity, and
energy efficiency using different 6G techniques. In [15]
backscattering (BackCom) is an emerging technique in com-
munication systems. backscatter technique and tag-power
harvesting are coupled, which enhances the spectrum and
energy efficiency of the system. In [16] and [17] exposed
the ambient backscatter communication (AMBC) technique
that enables smart tags to communicate using ambient radio
frequency (RF) signals without requiring active RF transmis-
sion. IoT systems can use this technique to enhance their
performance. In [18] AMBCwas integrated into RF-powered
underlay Cognitive Radio Non-Orthogonal Multiple Access

(CR-NOMA) networkswhich enabled secondary transmitters
to utilize the harvested energy for simultaneous data trans-
mission depending on power-domain NOMA. RF-powered
underlay CR-NOMA networks can increase secondary sys-
tem throughput. Although, the promising aspect of ambient
backscattering is successful in enhancing the system per-
formance, it has a detection problem at the reader, where
the ambient backscatter system detects the signal of other
systems’ that are strangers to the reader, and the channel
parameters cannot be estimated by the reader.

Other studies have supported the symbiotic radio (SR)
technique for communication systems. Therefore, in [10]
and [19] SR is introduced and detection is performed at the
primary receiver using successive interference cancellation
(SIC), which detects the primary signal first and then sub-
tracts this signal from the received signal and decodes the
backscattered signal. SR can improve IoT performance more
than BackCom and AMBC. In [20], an analysis of the down-
link of a NOMA-enabled cellular system batched with a sym-
biotic radio, derived the rate for the symbiotic radio system
and formulated an expression for the outage probability of the
signal-to-interference and noise ratio. In [21], three practical
transmission schemeswere proposedwith different symbiotic
relationships between backscatter and primary systems. The
achieved transmissions rates of the primary and backscatter
systems can be derived for the fading state and an optimal
power allocation is acquired for the transmission scheme.
In [11] communication mode selection scheme is proposed
for IoT network where the IoT devices select between active
transmission mode and backscattering to nearby smart phone
mode according to the network topology and transmit power
budget. A mode selection problem is formulated to maximiz-
ing the connection density of the system where at passive
mode the IoT tags backscatter the nearest smart phone signal
which act as a relay to deliver the tag signal to the MBS.
In [12] an adaptive radio mode selection is proposed for
IoT network where the IoT device can transmit its informa-
tion through active or passive mode. Active mode supports
the traditional battery-assisted and passive mode supports
backscatter- assisted communication. An adaptive commu-
nication problem was formulated to maximize the power
and minimize the outage performance of the system. In [22]
hybrid active and passive antenna selection for signal trans-
mit/ backscatter system is proposed using multi input single
output (MISO) antennas where two working mode is allowed
for each antenna (active and passive modes) which is deter-
mined by choosing the maximum value of the transmit power
in the active mode and the backscatter power in the passive
mode. This scheme aims to enhance the system reliability
at active mode and reduce the power consumption at pas-
sive mode. In [23] AMBC-assisted decode-and-forward (DF)
relaying scheme is proposed so, the relay can decode and
forward the backscattered signal of the tag where received
power at the relay is split between the traditional DF scheme
and the AMBC scheme which enhance the performance
of the system. In [24] an unsupervised machine learning
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(UML) algorithm is proposed for signal detection based on
AMBC communication systemwhere the tags received signal
features are exploited to groups them into clusters which
improve the system detection performance.

B. CONTRIBUTION
Our work aims to enhance the uplink IoT system data rate
to contribute in solving the growth of IoT devices issue
(Massive IoT), which requires better system performance.
The problem is proposed to be solved into two optimization
problem phases that are solved in series. In the first phase
solution, a many-to-one matching game is used to select the
network (LTE or Wi-Fi) for information transmission where,
the smartphone act as a relay to deliver decoded IoT tag
information to theMBS orWAP,whichmaximizes the overall
system rate. In the second phase solution, the SR technique
is used for enabling IoT tags to reflect their information to
the smartphones by backscatter the downlink signal between
the MBS and smart phones then this information is decoded
at the smartphones. IoT tags were virtually divided into opti-
mum clusters using the DDQL algorithm. The information
of Each cluster tag is backscattered on a smartphone through
(LTE or Wi-Fi) network. The contributions of our paper are
as follows:

1) A symbiotic radio communication technique was pro-
posed to enhance the throughput of IoT systems.

2) Two optimization problem phases are considered to
maximize the total uplink rate of IoT system.

3) A Many-to-one matching game algorithm is used to
solve the first problem phase by selecting the network
(LTE or Wi-Fi) for the transmission of the smartphone
decoded information that maximize the system rate.

4) The DDQL algorithm is utilized to solve the second
problem phase by achieving optimum tags clusters that
backscatter on each smartphone signals.

The reminder of this paper is organized as follows. In sec-
tion II, we present the proposed system model. In section III,
we formulate the throughput maximization problem of the
system. In section IV, we present the matching game algo-
rithm and explain the details of the proposed algorithm.
In section V, we provide the theoretical description of the
double deep reinforcement learning algorithm and the details
of the proposed algorithm. In section, VI, the network param-
eters are presented. Section VII introduces network parame-
ters. Finally, we conclude the paper in section VIII.

II. SYSTEM MODEL
Consider a symbiotic radio communication system with K
IoT tags, which is represented by K = {1, 2, . . . . .,K},
M smart phones are represented by M = {1, 2, . . . . .,M} and
NWi-Fi access point N = {1, 2, . . . . .,N} under the coverage
of a microcell base station (MBS) as shown in Figure (1).
The IoT tags are backscattered on the downlink primary
signal from the MBS or WAP and reflect their information
to the smartphones by using the SR technique to enhance the
system performance by increasing the spectrum and energy

efficiency of the system, where it shares the primary signal
transmitter, receiver, and spectrum resource. Then, the smart-
phone is used as a relay that decodes the tag information
using the SIC technique and transmits it to the MBS through
the LTE network or WAP through the Wi-Fi network to
reach the data cloud. The data cloud is an important part
of the IoT network, where it is responsible for tag informa-
tion analysis and computing to control system tags. The IoT
tags are distributed virtually into clusters, and each cluster
tags are allowed to backscatter their information to one of
the neighboring smartphones. The optimum cluster is one
in which its members can achieve the maximum total rate.
Then, the tags information is decoded at the smartphone and
transmitted through a network of (LTE or Wi-Fi). The WAPs
operate in a frequency range different from that of the LTE
MBS. Moreover, Orthogonal Frequency Division Multiple
Access (OFDMA) is presumed to be utilized by the LTE
network to access the channel, whereas WAPs use the IEEE
802.11 distributed coordination function (DCF) mechanism
which is dependent on the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol for channel
access. The following sections describe the received data rate
formulas of the IoT tags information at the smartphone, and
the data rate of the smartphone received information at the
MBS or WAP based on the OFDMA technique for transmis-
sion using a LTE network and orthogonal frequency division
multiplexing (OFDM) technique for transmission through a
Wi-Fi network [25].

FIGURE 1. SR for IoT system model.

A. RATE CALCULATION FOR THE SMARTPHONE
In the first problem solution, the expected detected tag infor-
mation at the smartphone is associated with the MBS through
the LTE network or with the WAP through the Wi-Fi network
based on the maximum data rate achievement. Therefore, the
data rate of the tags’ information signal is calculated network
selection for the tags’ information transmission.
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The SNR of the tags’ information signal transmitted from
the smartphone m to the MBS can be expressed as,

γ LTEml =
pmlhml

N0
(1)

where, pml is the power transmitted from the smartphone to
theMBS, hml is the channel gain between smartphone and the
MBS as shown in Figure (2). Subsequently, the physical data
rate of the signal can be determined instead of the simple and
theoretical form of Shannon bymapping with the SNR (γLTE )
as:

RLTEml =
NfB.Nsub.Nn.Nbx .ECRx

TSf
×

1
Repx

(2)

where NfB is the number of frequency blocks in bandwidth
B, Nsub is the number of subcarriers in one Block, Nn is the
number of each subcarrier’s symbols, TSf is the subframe
duration, Repx is the repetition factor. Furthermore, Nbx is the
number of symbol bits, and ECRx is the code rate [26], [27].

FIGURE 2. Channels model of SR for IoT system.

For WAP association, the SNR of the tags information sig-
nal that is transmitted from smartphone m to WAPn through
the Wi-Fi band (2.4 GHZ) can be expressed as follows:

γWi−fimn =
pmnhmn

N0
(3)

We denote pmn as the transmitting power of the smartphone
m to WAP n. hmn is the channel between the smartphone
m and WAP n. A contention extent may be on the Wi-Fi
channel, which affects system throughput. This contention
depends on the number of users associated with the WAP,
in which a collision between them may occur. Thus, each
WAP has a maximum capacity; based on its characteristics
and the technology used; to avoid collision. The data rate
of the tag information signal at WAP is calculated based
on the enhanced 802.11 DCF back-off model to obtain the
channel contention considering the CW resetting scheme and

the packet collision effect [28], [29] as follows:

RWi−fimn =
τ (1 − τ )NwD

T +

(
Dτ (1−τ )Nw

Rphmn

) (4)

where τ represents the probability of channel contention, Nw
denotes the total number of users associated with the WAP,
D is the maximum allowed size of the user packets. T can be
denoted as,

T = (1 − τ )Nw+1e+ (1 −

(
1 − τ )Nw+1

)
(TcTS + TDIFS )

+ (Nw + 1)τ (1 − τ )Nw (TRTS + TACK + 3TsIFS ) (5)

where e is the duration of an empty slot time; TRTS ,TcTS ,
TDIFS ,TsIFS and TACK denote the duration of the request to
send (RTS) short frame, clear to send (CTS) short frame,
DIFS, SIFS, and ACK, respectively. Rphmn is the physical rate
of the transmitted signal from the smartphone to the WAP
which can be calculated as follows:

Rphmn =
Nspatial .Nsub.Nb.Cw

TS
(6)

where, Nspatial is the number of streams, Nsub is the total
number of data sub-carriers, TS represents the OFDM symbol
duration,Nb is the number of bits per symbol,Cw is the coding
rate, and Nb Cw are determined by mapping the measured
SNR (γWi−fimn ) value at the WAP [27].

B. RATE CALCULATION FOR THE IoT TAGS’
BACKSCATTERED INFORMATION
As mentioned, IoT tags are backscattered on the downlink
primary signal from the MBS to a smartphone through the
LTE band. The received backscattered signal at the smart-
phone can be represented as,

yLsp(t) = hlms(t) + ηgkm hlkx (t) s(t) + N0 (7)

where, s(t) is the downlink primary signal of the smartphone
and x(t) is the tag information signal. As shown in Figure 2,
hlm is the channel gain between the RF source (MBS) and
the smartphone m. hlk is the channel gain between the RF
source (MBS) and the tag k . gkm is the channel gain between
the smartphonem and the tag k. N0 denotes the additive white
Gaussian noise AWGN. η is the reflection coefficient [20],
[30]. The SINRγ Lkm of the tag k signal that backscatters the
down link primary signal of smartphone m can be computed
as follows:,

γ Lkm =
ηplgkmhl,k∑klm−1

i=1,i̸=k ηgimpl,hl,i + N0
(8)

where, pl denotes the power of the downlink RF signal.∑klm−1
i=1,i ̸=k ηgimpl,hl,i represent the interference caused by

other klm − 1 tags which backscatter the same downlink
primary signal between the MBS and smartphone m. The
smartphone detects these backscattered signals using SIC.
SIC detects the tag’s signal after subtracting the primary
signal, which provides a reliable system.
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In addition, IoT tags use Wi-Fi transmissions from the
WAP to a Wi-Fi client as the excitation signal to ride it.
The tag receives the Wi-Fi signal and reflects its information
on the smartphone. The received signal at the smartphone
through the Wi-Fi frequency band can be expressed as,

ywsp(t) = hmnw(t) + ηgkmhnkx (t)w(t) + N0 (9)

where, w(t) is the primary Wi-Fi transmitted signal, hmn is
the channel gain between smartphone m and WAP n, hnk
denotes the channel gain betweenWAP n and IoT tag k . SINR
of the received tag’s k backscattered information signal at
smartphone m through the Wi-Fi frequency band (2.4 GHz)
can be calculated as,

γ wkm =
ηpwgkmhnk∑knm−1

i=1,i ̸=k ηgimpw,hni + N0
(10)

where, pw denotes the power of the WAP-transmitted sig-
nal.

∑knm−1
i=1,i̸=k ηgimpw,hni represent the interference caused by

other knm − 1 tags which backscatter the same primary Wi-Fi
signal between WAP n and the smartphone m [31], [32].
The rate of each tag k ∈ K at the smartphone m ∈ M can

be calculated by using the ShannonModel where the tag rides
the primary signal without any control as,

Rmk = Blog2(1+γmk ) (11)

where, γkm is the SINR of tag k which may be γ Lkm or γ wkm.

III. PROBLEM FORMULATION
In this section, the system problem is formulated to maxi-
mize the overall IoT system throughput, which contributes to
massive IoT devices communication. This is represented by
two optimization problem phases. The first problem phase,
p1 (12), can be solved by matching the game algorithm to
determine the optimum mode selection of the network (LTE
or Wi-Fi). The second problem phase, P2 (13), is solved by
finding the optimal cluster of tags using the DDQL algorithm,
which satisfies the maximum system throughput.

P1 : max
∑

m∈M

∑
n∈N

(RLTEml + R
Wi−fi
mn )

P2 : max
∑

m∈M

∑
k∈K

XkmRkm (12)

Subject to

C1 : pml > plth and pmn > pwth,

C2 : γ Llm > γ Lkm and γ wmn > γ wkm,

∀k ∈ K,m ∈ M and n ∈ N

C3 : Xkm = {0, 1} (13)

Constraint C1 confirms that the smartphone is covered by
the MBS and the WAP where, plth and pwth denote the thresh-
old transmitting power of MBS and WAP respectively that
guarantee the coverage. Constraint C2 was used to obtain the
a condition of perfect SIC. Constraint C3 is a backscattering
indicator where, Xkm is a binary value that be 0 or 1. In the
following sections, DDQL andmatching game algorithms are
descibed.

IV. MATCHING GAME ALGORITHM
The matching game isa low-complexity algorithm; it is one
of the algorithms used to solve maximization problems to
enhance the performance of the system. Matching game has
many types: one- to- one matching game in which one agent
from one side of matching is matched with one agent on
the other side, many-to-one matching game in which many
agents from one side can be matched with one agent on the
other side, and many-to-many matching game in which many
agents from one side can be matched with many other agents
on their side [33], [34], [35], [36].

A. THEORETICAL DESCRIPTION
In this work, we applied a many-to-one matching game to
enable each smartphone to determine the optimum selection
of the network LTE or Wi-Fi band which transmits the tags
information through it to maximize its signal rate. Thus, the
smart mobile device constructs a preference list according to
the utility function Utm which can be defined as,

Utm = Rm, (14)

where, Rm is the smartphone mobile rate which may be RLTEml
or RWi−fimn . The utility function that the MBS or WAP accepts
the request for the smartphone tomaximize the overall system
rate, is calculated as:

Utb = RT , (15)

where, RT is the total system rate. The smart mobile request
may not be accepted at the MBS or WAP, in this case, the
smartphone tries to select the next choice in its preference
list.

B. THE PROPOSED ALGORITHM 1
In the proposed algorithm, the smartphone calculates its util-
ity function; based on (14), and constructs its preference list.
Then, it tries to select the frequency band (LTE or Wi-Fi) for
tag information transmission by sending a request to theMBS
or WAP according to the first choice in its preference list.
The request is accepted or rejected based on (15) and repeated
until stable matching 8 is achieved that all the smart phones
are connected with MBS or WAP.

V. DOUBLE DEEP REINFORCEMENT LEARNING
ALGORITHM
The reinforcement learning algorithm is a learning process
in which agents take action and wait for the reaction of the
environment. A reward is provided by the environment to the
agent for every action and the Reinforcement learning (RL)
agent selects the correct action that maximizes the reward of
the new state. Deep reinforcement learning (DRL) algorithms
can be classified into three types:

(I) Value-based methods that determine a policy by learn-
ing only the value function Deep Q -learning(DQL).

(II) Policy-based methods that find policy directly based
on the gradient related to the policy.
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Algorithm 1 Many –to-One Matching Game
• Discover the tags backscattered information signals at
each smart phone and calculate its channel gain
through MBS and WAP.

• Construct the preference list of each smart mobile based
on its utility function Utm in (14).

• Requests to select the frequency band for information
signal transmission of each smart mobile according to
its preference list.

• Construct the MBS and WAP preference list based on
(15) and decide wether to accept or reject each mobile
request according to it.

• repeat
The rejected request re-apply to the next choice in its
preference list.

• Until
All smart mobiles connect to (MBS or WAP) for signal
transmission. A stable matching 8 was achieved.

• Calculate the system rate.

(III) Actor-critic methods that are a hybrid of the previous
two types of value-based and policy-based methods [37].

A. THEORETICAL DESCRIPTION
The DQL algorithm was proposed to solve problem P2. DQL
is a multi-layered neural network that for a given state st
outputs an action at where, θQ are the parameters of the
network at time t. Firstly, it takes an action at at state st and
then observes the environment’s immediate reward rt+1 with
the resulting state st+1, The DQL update equation is:

Q
(
s, a | θ

Q
t+1

)
= Q

(
s, a | θ

Q
t

)
+ v

[
rt+1 + ξ

′
max
a

(
st+1, a′

| θ
Q
t

)
− Q

(
st, at | θ

Q
t

)]
(16)

= Q
(
s, a | θ

Q
t

)
+ v [rt+1

+ ξ max
a′

Q
(
st+1, argmax

a′
Q

(
st+1, a′

| θ
Q
t

)
| θ

Q
t

)
−Q

(
st, at | θ

Q
t

)]
(17)

where, ν denotes the learning rate. The learning term
Q(s, a| θ

Q
t+1 ) is the updated Q network which is cal-

culated depending on the current Q network Q(s, a |θ
Q
t )

at action , a′.maxa′Q(st+1, argmaxa′Q(st+1, a′
|θ
Q
t )|θ

Q
t ) rep-

resent a systematic overestimation of the Q-value. Double
DQL is an algorithm used to reduce the overestimation.
In DDQL two networks Q and Q′ are learned by randomly
assigning each experience to update one of the two networks,
where, there are two parameters θQ and θQ

′

. In each update,
one of these parameters is used to obtain the greedy policy
and the other to obtain its target value. DDQL reduces over-
estimations by decomposing the max operation into selection
and evaluation action a′, a that evaluates the greedy policy

according to the target network [38], [39]. The DDQL update
equation(Bellman) can be represented as,

Q
(
s, a | θ

Q
t+1

)
= Q

(
s, a | θ

Q
t

)
+ v [rt+1

+ ξ max
a′

Q
(
st+1, argmax

a′
Q

(
st+1, a′

| θ
Q′

t

)
| θ

Q
t

)
−Q

(
st, at | θ

Q
t

)]
(18)

The parameter θQ
′

of the Q′ network can be calculated
periodically using the Polyak averaging method based on
parameter τ to represent the parameter θQ of Q network after
time step t0 as [40], and [41].

θ
Q′

t+t0 = (1 − τ )θQ
′

t + τθ
Q
t (19)

Our goal is to solve the maximization problem of the
system throughput by designing aDRL system for virtual tags
clusters. We optimized these virtual clusters using the DDQL
algorithm. Figure (3) shows a block diagram of the DDQL
Scheme, which is used to solve the problem in (12).

FIGURE 3. DDQL model.

The design includes the tag virtual clusters state s and,
the reward r, which is given by the environment when taking
an action a through the DDQL algorithm training and reply
buffer observation of different actions and then randomly
sample from the buffer experience. The state s of IoT tags
K is taken as a Vector of SINR value for each tag in its virtual
cluster and the reward is the throughput of the system.

B. THE PROPOSED ALGORITHM 2
We begin by initializing the environment with one MBS,
K IoT tags, M smartphones, and N WAP. At the initial state
s0 the input of the neural network is a vector of the SINR of
the IoT tags based on (8), and (10), regardless of whether it
backscatters the smartphone signal through the LTE or Wi-Fi
band. The DDQL agent takes action at at every time step, t,
of the episode. The environment sends an immediate reward
to the agent and the state transitions to a new state st+1.
The neural network updates the parameter θ

Q
t to θ

Q
t+1 (19)

to calculate Q(s, a |θ
Q
t+1) using the Bellman equation (18).

42336 VOLUME 11, 2023



G. M. Salama et al.: Deep Reinforcement Learning Based Algorithm for Symbiotic Radio IoT

Algorithm 2 DDQL Algorithm for IoT Tags Clustering
• Initialization: Discover each IoT tags, smart phones, WAP
location coordinates.
• Randomly initialize the Q network Q(s, a |θ

Q
t ).

• Initialize the target network Q′

• θQ
′

⇐ θQ

• Initialize replay buffer R
• for episode = 1. . . . . . ; E do
• initializing the Environment state s0
• calculate the SINR for each tag as an input vector of the
neural network.
• for t = 1. . . ..; T do
Select the clustering action at argmaxa Q(st, at )
Execute action a and observe reward rt and observe
the new state st+1
Store transition (st, at , rt, st+1) in Buffer R
Sample a random mini-batch of L transitions from the

buffer R.
• Training of DDQL

Select a′ argmaxQ′(st+1, a′
|θ
Q′

t )
Update the Q based on bellman equation in (17).
Update the DDQL target network if mod (t, p) = 0
end for
end for

VI. NETWORK PARAMETERS
The proposed algorithm results were evaluated based on
parameters listed in Table 1. Moreover, the indoor path loss
model between tags andMBS and,WAP at the LTE andWi-Fi
bands, respectively, are represented by (20) and, (21) as,

pLTE = 128.1 + 37.6 log(dL) (20)

pWiFi
= 20 log fw + ηw log dw + pf (Mw) − 28 (21)

where dL is the distance between the MBS and the IoT tags,
dw is the distance between theWAP and the IoT tags, fw is the
frequency band of the Wi-Fi, ηw is the coefficient of distance
power loss and is assumed to be 30, pf (Mw) represents the
penetration loss factor and is equal to pf (Mw) = Mw + 13;
Mw denotes the number of walls and is assumed to be 3 [27].
Tables 1 and 2 list the parameters used for the simulation

and calculation of the matching game algorithm and the
DDQL algorithm, respectively [29], [40]. The smartphones
can be in movements so, our proposed algorithm runs period-
ically to update its calculations based on the recent locations
of the smartphones.

VII. PERFORMANCE EVALUATION
To evaluate our proposed algorithms, the performance of
the proposed matching game algorithm which is used as a
solution to the first problem of the system, is compared with
the LTE and Wi-Fi first association techniques. Then, the
DDQL algorithm, which is proposed to solve the second
problem of the system, is compared with the system that
does not use the nearest smartphone algorithm. Furthermore,

TABLE 1. Simulation parameters of matching game algorithm [27].

TABLE 2. Simulation parameters of DDQL algorithm [38].

the performance of the system in terms of data rate and
capacity was studied using different numbers of smartphones
to explain the optimum number of smartphones needed for
this system.

Figure (4) shows our proposed matching game algorithm
which is designed to follow the smartphone utility function to
choose the most suitable network with a specific transmission
mode (LTE or Wi-Fi), through which an initial smartphone
load is proposed to be transmitted. Matching game algorithm
succeeded in maximizing the total data rate of smartphones
by 45% compared with the system using LTE first (all oper-
ation of LTE protocol), and by 12% compared with Wi-Fi
first (all operation of Wi-Fi Protocol). The figure shows that
the system data rate using the matching game is increased by
increasing the number of smartphones that have more infor-
mation, and then it will be saturated as a result of exhausting
the spectrum resources.

Thus, the total data rate of the system is saturated, regard-
less of the increase in smartphones and their information.

Figure (5) shows that the proposed DDQL algorithm out-
performs the backscattering of IoT tags at nearest smartphone
by 16% in terms of the total rate of the system second phase
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FIGURE 4. Total data rate vs. number of smartphones.

versus different number of tags at M = 2. This is because the
DDQL algorithm can find the optimum clusters of backscat-
ter tags for each smartphone which maximize the total data
rate of the tags when using only two smart phones at the
second phase of the system. As we can see from the figure
the total data rate firstly increases by increasing the number of
tags and then, it decreases gradually as a result of increasing
mutual interference between tags in the same cluster.

FIGURE 5. The total data rate vs. number of tags.

Figure (6) illustrates that our proposed algorithm which
use the matching game and DDQL algorithms successfully
maximizes the overall system data rate compared to the sys-
tem performance by using the matching game but without
the DDQL algorithm, using the LTE network first with the
DDQL algorithm, and using the LTE network first without
DDQL. As shown in the figure, our proposed scheme can
enhance the total system data rate by an average of 90% above
the system without any algorithms, 20% above the system

without the DDQL algorithm, and 90% above the systemwith
the LTE network first. This figure explains the performance
of the system at a different number of tags K and number of
smartphones M = 4 and Wi-Fi access point N = 2 where
the total system data rate increase by increasing the number
of tags and then, it saturated according to the achieved data
rate of the system with matching game by using a number
of smart phones M = 4. So, we studied the performance of
different numbers of smartphones, as shown in Figure (7).

FIGURE 6. Total system data rate vs. the number of tags.

FIGURE 7. The total system data rate vs. the number of tags at different
numbers of smartphones.

The total system data rate of our proposed algorithms
(DDQL and Matching game) is illustrated in Figure (7) for
different numbers of smartphones to obtain the optimum
number of smartphones required for our system. We observe
that for a number of smartphones, M = 4, the total s ystem
data rate is increased by an average of 90% compared to
the system-based number of smartphones M = 2. This is
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because when smartphones increase the number of tags per
smartphone cluster, the achieved rate of each cluster increase
as a result of less mutual interference between the cluster tags
However, at M = 6 and 8, the total system rate increases
slightly by 5% and, 8% over the total data rate of the system-
based number of smartphones, M = 4, because each smart-
phone cluster has approximately one or two tags. Based on the
aforementioned, the optimum number of smartphones for our
system isM = 4 because after four smartphones any increase
in the number of smartphones has a low effect on the total
system data rate.

Figure (8) shows the effect of increasing the number
of smartphones on the system capacity of IoT tags at the
required data rate per IoT tag of 10 Mb/s assuming that the
number of tags is K=20. This figure shows that with an
increase in the number of smartphones fromM = 2 toM = 4,
the capacity of the system greatly increases as a result of
fewer cluster tags and subsequently a high cluster data rate.

Subsequently, the increase in the number of smartphones
achieved a slight system capacity enhancement. Table 3
presents the system capacity for different numbers of smart-
phones M. Furthermore, the figure illustrates that the sys-
tem capacity of our proposed algorithms using a matching
game with DDQL algorithms outperforms the capacity of
the system with LTE first with DDQL algorithms, where it
succeeded in enhancing the system capacity on average by
100% above the system using the LTE network first with the
DDQL algorithm at a number of smartphones M = 4.

FIGURE 8. The capacity of the system vs. the number of smart phones.

However, for a high number of smartphones M = 10, 12
the capacity of the system becomes the same. This is because
each smartphone cluster has one tag; therefore, the DDQL
algorithm has no effect in this case.

Figure (9) represent a comparison between the total data
rate of the system second phase by using the DDQL algorithm
and using pairing and scheduling algorithm versus different
number of tags atM = 4, 6. The figure shows that the DDQL
algorithm overcome the pairing and scheduling algorithm in

TABLE 3. Capacity of the system vs. number of smart phones.

FIGURE 9. The total system data rate vs. number of tags at M = 4, 6.

increasing the total data rate by 10% at M = 4 and 11%
at M = 6 where, DDQL algorithm by finding the optimum
clusters of IoT tags success in increasing the total data rate
than scheduling and pairing algorithm which allows the tags
that backscatter the nearest smart phone and uses it as relay
to deliver its information to the MBS. Furthermore, the figure
shows that firstly, the system data rate increases by increasing
the number of tags then it decreases as a result of increasing
interference between tags.

Figure (10) illustrates that our proposed algorithm outper-
forms the pairing and scheduling algorithm by 50% in term
of the capacity of system at required rate per IoT device
equal 10Mb/s versus different number of smart phones at
K = 20. We observe that the capacity of the system increases
by increase the number of smart phones in the two algo-
rithm. However, the system capacity increases slightly after
M = 8 by using pairing and scheduling algorithm because the
number of tags that are backscattered on each smart phone
decrease after M = 8. AT our proposed scheme the system
capacity increases slightly after M = 4 as a result of fewer
cluster (LTE or Wi-Fi) tags where each smart phone has two
clusters LTE and Wi-Fi. So, the matching with DDQL algo-
rithm achieves better performance than pairing and schedul-
ing algorithm with lower number of smart phones.

In Figure (11) the DDQL algorithm can outperform both of
the UML (clustering) algorithm and the paring and schedul-
ing algorithm in enhancing the system second phase data rate
by average 7% and 10% respectively. The DDQL algorithm
can find the optimum clusters which maximize the system
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FIGURE 10. The capacity of the system vs. the number of smart phones.

total data rate better than the unsupervised clustering algo-
rithm which only groups the tags into clusters according
to their features to backscatter the smart phone signal [24]
and better than the pairing and Scheduling algorithm which
allows only the IoT tags that achieve the threshold SINR to
be backscattered on the primary smart phone signals.

FIGURE 11. The total system data rate vs. number of tags at M = 4.

The achieved data rate per tag at the required data rate of
the IoT tag (10 Mb/s) is represented by different numbers
of tags in Figure (11). We observe that the achieved rate is
decreased by increasing the number of tags as a result of more
mutual interference in each cluster which reduces the rate per
tag in the cluster. Moreover, the achieved data rate for the
number of smartphones M = 4 succeeded in achieving the
required rate for more tags than the system with smartphone
number M = 2 and it increased slightly by increasing the
number of smartphones M.

FIGURE 12. The achieved data rate per tag vs. number of tags.

VIII. CONCLUSION
In this paper, a framework is proposed to jointly optimize
the smartphone mode selection of (LTE or Wi-Fi) network
that acts as a relay for the backscattered information received
from IoT tags. The mode selection (LTE or Wi-Fi) problem
has been formulated as an optimization problem to maximize
system throughput, where a many-to-one matching game is
used to solve the first optimization problem phase. In addi-
tion, IoT tags clustering is optimized using the SR technique
to backscatter on the neighboring smartphone. The IoT tags
clustering problem was formulated as a second optimization
problem phase to maximize the system throughput to solve
this problem, and a DDQL algorithm was proposed to obtain
the optimum cluster members. The simulation results show
that the proposed scheme outperforms than the system with-
out using DDQL and system using pairing and scheduling
algorithm. Our proposed algorithm outperforms the system
using the LTE network first without the DDQL algorithm
on average by 90% and succeeded in increasing the system
capacity on average by 100% above the system using the
LTE network first without the DDQL algorithm at number of
smartphones M = 4. Furthermore, the system performance
is studied to find the optimum number of smartphones that
is needed for the system where we find that the optimum
number of smartphones required for this system is four.
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