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ABSTRACT Quantum algorithms based on variational approaches are one of the most promising methods
to construct quantum solutions and have found a myriad of applications in the last few years. Despite the
adaptability and simplicity, their scalability and the selection of suitable ansatzes remain key challenges. In
this work, we report an algorithmic framework based on nested Monte Carlo tree search coupled with the
combinatorial multiarmed bandit model for the automated design of quantum circuits. Through numerical
experiments, we demonstrate our algorithm applied to various kinds of problems, including the ground
energy problem in quantum chemistry, quantum optimization on a graph, solving systems of linear equations,
and finding encoding circuits for quantum error detection codes. Compared to the existing approaches, the
results indicate that our circuit design algorithm can explore larger search spaces and optimize quantum
circuits for larger systems, showing both versatility and scalability.

INDEX TERMS Artificial intelligence (AI), Monte Carlo tree search (MCTS), quantum machine learning,
quantum neural networks, variational quantum circuits (VQCs).

I. INTRODUCTION
The variational quantum Circuit (VQC), also known
as a parameterized quantum circuit (PQC) approach,
first proposed for solving the ground state energy of
molecules [1], has been extended to many open research
problems, including in the field of quantum machine
learning [2], quantum chemistry [3], option pricing [4],
and quantum error correction [5], [6]. The performance
of VQC methods largely depends on the choice of
a suitable ansatz, which is not an easy task because,
generally, the search space is very large, and it is not
well established whether there is a common principle for
designing such an ansatz. For problems involving physical
systems, such as in quantum chemistry, we can rely on the
well-defined properties of molecular systems for ansatz
designing, such as the hardware efficient ansatz [7] and
physical-inspired ansatz, such as k-UpCCGSD [8]. However,
this cannot be generalized to other areas, such as designing
variational error correction circuits or quantum optimization
problems. For example, in [6], when developing a variational

circuit that can encode logical states for the five-qubit
quantum error correction code, the authors adopted an ex-
pensive approach by randomly searching over a large number
(on the order of 10 000) of circuits. It is anticipated that with
the increasing number of application areas for VQCs and
the need for scalability to tackle large problem sizes without
relying on fundamental physical properties, such random
searchmethods or methods based purely on human heuristics
will struggle to find suitable ansatzes. Therefore, developing
efficient methods for the design of VQCs is important.
Here, we focus on developing algorithms for the automated
design of VQCs by leveraging the power of artificial
intelligence (AI), which can be deployed for a wide range of
applications.
Although modern AI research often focuses on applica-

tions of image and natural language processing, the power of
AI can also bring new knowledge in many areas, especially
scientific discovery. AlphaFold2 managed to discover new
mechanisms for the bonding region of the proteins and
inhibitors [9] with competitive accuracy in predicting the
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FIGURE 1. Overview of the algorithmic framework proposed in this article for automated quantum circuit design. The operation pool (c) is obtained by
tailoring the basic operations (a) with respect to the device topology (b). After that, we formulate the combinations of different choices of operations at
different layer positions in the circuit (d) as a search tree (e). In (f), we evaluate our circuit on a quantum processor or quantum simulator to get the
value of the loss or reward function, and according to the value of the loss/reward function, we update the parameters on a classical computer and,
then, use MCTS to search for the current best circuit. We then send the updated circuit structure together with the updated parameters to the quantum
processor/simulator to obtain a new set of loss/reward values. The process depicted in (f) will repeat until a circuit that meets the stopping criteria is
found. Then, as shown in (g), we will follow the usual process to optimize the parameters in the searched VQC by classical-quantum hybrid computing.

TABLE 1. Run-Time-Related Search Hyperparameters and Maximum Circuit Evaluation Numbers.

FIGURE 2. Example of the circuit corresponding to the series of unitaries
applied to |ϕinit〉 in (3). This circuit can also be represented as a path
shown in the tree in Fig. 3.

3-D structure of proteins in the 14th Critical Assessment of
protein Structure Prediction (CASP) competition. In 2021,
machine learning algorithms helped mathematicians dis-
cover new mathematical relationships in two different areas
of mathematics [10]. Like VQCs, modern deep neural net-
works (DNN) also face a design problem when composing
the network for certain tasks. With the help of AI algorithms,
researchers developed techniques to search suitable network
architectures in a large search space efficiently. Famous
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FIGURE 3. Tree representation (along the arc with blue-shaded circles)
of the unitary described in (3) and (4) as well as Fig. 2. The circle with s0
is the root of the tree, which represents an empty circuit. Other circles
with s j

i denote the jth node at the ith level of the tree. i can also indicate

the number of layers currently in the circuit at state s j
i . For example, on

the leftmost branch of the tree, there is a node labeled s0
2, indicating that

it is the 0th node at level 2. At s0
2, the circuit would be Ps0

2
= [U0,U0],

which clearly only has two layers. We can also see that some of the
possible branches along the blue-node path are pruned, leading to the
size of the operation pool at some nodes being smaller than the total
number of possible choices c = |C|.

FIGURE 4. Four stages of MCTS. (a) Selection: Go down from the root
node to a nonfully expanded leaf node. (b) Expansion: Expand the
selected node by taking an action. After selecting an action, we will
either move to an already discovered child node or, if the action is
previously unselected, we will expand a new child node to our current
node. (c) Simulation: Simulate the game, which in our case is the
quantum circuit, to obtain reward information R. During simulation,
there will be a different policy, called the rollout policy, for selecting
actions until we reach the termination point of the game or exceed the
time limit. We will adopt the nested MCTS method to determine the
reward of an action or node, see Fig. 5. (d) Backpropagation:
Backpropagation of the reward information along the path (arc) taken.

FIGURE 5. Nested MCTS. (Left) The root node has three possible actions,
which in this case, are unselected initially. We perform MCTS on all three
children nodes (generated by the three possible actions) to update their
reward information. After one iteration of MCTS with each child as the
root node for the search tree that MCTS performed, the rewards of these
three actions leading to the three child nodes are 10, 10, and 20,
respectively. In this case, the child node on the right has the highest
reward. (Middle) After selecting the right-side child node, we perform
the same MCTS on all three possible children nodes as before, which
gives updated reward information. In this case, the middle child node
has the highest reward, meaning that at this level we expand the middle
child node. (Right) Similar operations as before. If we only perform
nested MCTS at the root node level, then it will be a level-1 nested MCTS.

FIGURE 6. Encoding circuit of the [[4,2,2]] code [33] to detect X - and
Z-errors. It needs 4 physical qubits for 2 logical qubits and has a code
distance 2. By our settings, the number of layers equals the number of
operations in the circuit. In this figure, the number of layers is 6.

FIGURE 7. Two different encoding circuits of the [[4,2,2]] code produced
by the search algorithm. With simple symbolic or numerical calculation,
we can easily verify that both of these circuits produce the required
codewords for the [[4,2,2]] error detection code, which indicates our
algorithm can produce device-tailored circuits when more restrictions
are added.

algorithms for neural architecture search (NAS) include the
differentiable architecture search (DARTS) algorithm [11],
which models the choice of operations placed in different
layers as an independent categorical probabilistic model
that can be optimized via gradient descent methods, and
the PNAS algorithm [12], which models the search process
with the sequential model-based optimization strategy.
Tree-based algorithms were also proposed for NAS, such as
AlphaX [13], which models the search process similarly to
the search stage of AlphaGo [14], and an algorithm proposed
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FIGURE 8. Circuit searched for the VQLS problem. Rot(φ, θ, ω) = RZ (ω)RY (θ)RZ (φ). The four Hadamard gates at the beginning of the circuit give an equal
superposition and are not included when constructing the search tree, i.e., the composed circuits will always start with four Hadamard gates placed on
the four qubits. When drawing the circuit, the Placeholder gates, which are just identity gates, are removed from searched P , although they were
considered when constructing the search tree.

FIGURE 9. Circuit for finding the ground energy of the H2 molecule produced by the search algorithm. We can see that there are already familiar
structures emerging, such as the SWAP gate between the first two qubits and the Ising coupling gatelike structure underneath the decomposed SWAP
gate.

FIGURE 10. Circuit structure produced by the search algorithm for LiH.
We can see that the structure of the circuit is quite simple, compared to
the circuit for H2 in Fig. 9, indicating that the initial state |ψ0〉 = |0〉⊗10 is
already very close to the ground energy state. We also noticed that the
circuit produced by the search algorithm is very simple compared to the
ansatz composed with qml.SingleExcitation and
qml.DoubleExcitation from Pennylane [47] according to the physical
properties of the molecule, which can be decomposed into 180 gates,
including 96 two-qubit control gates after removing gates with small
gradient values during training according to the ADAPT-VQE method [48].

FIGURE 11. Problem graph for the weighted MaxCut experiment. The
weights on edges (0,2), (0,4), (0,1), (2,4), (4,1), and (2,3) are 2, 6, 1, 5, 4,
and 3, respectively.

in [15], in which the authors combined tree search and com-
binatorial multiarmed bandits (CMABs) to achieve better
performance.
Based on progress in NAS algorithms, efforts have been

made to develop similar approaches for Quantum Ansatz
(Architecture) Search (QAS) problems. Zhang et al. [16]
adapted the DARTS algorithm [11] from NAS for QAS,
which models the distribution of different operations within
a single layer with the independent category probabilistic
model. The search algorithm updates the parameters in the
VQC as well as the probabilistic model. However, it has
been shown in NAS literature that DARTS tends to assign
fast-converge architectures with high probability during sam-
pling [17], [18]. Also, the off-the-shelf probabilistic distri-
butions for modeling the architecture space tend to have
difficulties when the search space is large. Later, the same
group of authors developed a neural network to evaluate the
performance of PQCs without actually training the circuits
and incorporated this neural network into quantum archi-
tecture search [19]. While NAS algorithms often focus on
image-related tasks and it has been proven through many
experiments that one neural network architecture can act as
a backbone feature extractor for many downstream tasks, the
structures of VQCs for different problems often vary a great
deal with different problems, casting some doubts on the
generalization abilities of such neural-predictor-based QAS
algorithms. Kuo et al. [20] proposed a deep reinforcement
learning-based method for tackling QAS. The reinforcement
learning agent is optimized by the advantage actor–critic and
proximal policy optimization algorithms.
However, NAS algorithms based on policy gradient rein-

forcement learning have been shown to easily get stuck in
local minimal, producing less optimal solutions [21], [22].
Also, the data size for training a reinforcement learning agent
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FIGURE 12. Searched circuit for the five-node MaxCut problem. We can see that we have a rather simple circuit, which gives us the optimal solution
00011, shown in Fig. 13. Similar to Fig. 23 in the Appendix, the circuit produced by our search algorithm requires a smaller number of CNOT gates than
even a single layer of standard QAOA circuit for the problem shown in Fig. 11.

FIGURE 13. Sampled solution for the five-node MaxCut problem, with
nodes 0, 1, and 2 colored red and nodes 3 and 4 colored blue for the two
partitions of the graph.

will overwhelm the system when the number of actions the
agent can choose from is large. He et al. [23] applied met-
alearning techniques to learn good heuristics of both the
architecture and the parameters. Du et al. [24] proposed
a QAS algorithm based on the one-shot NAS, where all
possible quantum circuits are represented by a supernet with
a weight-sharing strategy and the circuits are sampled uni-
formly during the training stage. After finishing the training
stage, all circuits in the supernet are ranked and the best-
performed circuit will be chosen for further optimization.
Later Linghu et al. [25] applied similar techniques in search
of a classification circuit on a physical quantum processor.
Meng et al. [26] applied Monte Carlo tree search (MCTS)
to ansatz optimization for problems in quantum chemistry
and condensed matter physics. These studies often restrict
themselves to one or two types of problems and small-sized
systems. Then, how to develop a framework for larger and
different kinds of problems? In this article, we aim to address
this question.
In order to develop a search technique that can be ap-

plied to larger search spaces and different variational quan-
tum problems, we introduce an algorithm for QAS prob-
lems based on the CMAB model as well as MCTS. With a
view of exploring extremely large search spaces compared
to previous work in the literature, the focus of our strategy is
underpinned by a reward scheme, which dictates the choices
of the quantum operations at each step of the algorithm with
the naive assumption [27]. This enables our strategy to work
on larger systems, more than 7 qubits, whereas the existing
examples [16], [19], [20], [23], [24] are restricted to typically

3 or 4 qubits, with the largest being 6 qubits. To demonstrate
our method, we show its application to a variety of problems,
including encoding the logic states for the [[4,2,2]] quantum
error detection code, solving the ground energy problem for
different molecules as well as linear systems of equations,
and searching the ansatz for solving optimizations problems.
Our work confirms that the automated quantum architecture
search based on the MCTS+CMAB approach exhibits great
versatility and scalability and, therefore, could provide an
efficient solution and new insights into the problems of de-
signing VQCs.
This article is organized as follows: Section II introduces

the basic notion of MCTS, as well as other techniques re-
quired for our algorithm, including nested MCTS and naive
assumptions from the CMAB model. Section III reports the
results based on the application of our search algorithm
to various problems, including searching for encoding cir-
cuits for the [[4,2,2]] quantum error detection code, the
ansatz circuit for finding the ground state energy of different
molecules, as well as circuits for solving a linear system of
equations and optimization. In Section IV, we discuss the
results and present conclusions.

II. METHODS
A. PROBLEM FORMULATION
In this article, we formulate the quantum ansatz search prob-
lem, which is aimed to automatically design VQCs to per-
form various tasks as a tree structure. We slice a quantum
circuit into layers, and for each layer, there is a pool of can-
didate operations. Starting with an empty circuit, we fill the
layers with operations chosen by the search algorithm, from
the first to the final layer. The overview of this process is
shown in Fig. 1, where we show the overarching algorithmic
framework developed in this work.
A quantum circuit is represented as an (ordered) list P of

operations of length p chosen from the operation list. The
length of this list is fixed within the problem. The operation
pool is a set

C = {U0,U1, . . . ,Uc−1} (1)

with |C| = c the number of elements. Each element Ui is a
possible choice for a certain layer of the quantum circuit.
Such operations can be parameterized (e.g., the RZ (θ ) gate)
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or nonparameterized (e.g., the Pauli gates). A quantum cir-
cuit with four layers could, for instance, be represented as

P = [U0,U1,U2,U1] (2)

where, according to the search algorithm, the operations cho-
sen for the first, second, third, and fourth layers are U0, U1,
U2, and U1. In this case, p = 4 and the size of the opera-
tion pool |C| = c (although only three different operations
appeared in the circuit, this does not mean we only have three
different operations in the operation pool). The search tree
for this circuit (see Fig. 2) is shown in Fig. 3. In this article,
we will only deal with unitary operations or unitary chan-
nels. The output state of such a quantum circuit can then be
written as

|ϕout〉 = U1U2U1U0|ϕinit〉 (3)

where |ϕinit〉 is the initial state of the quantum circuit. For
simplicity, we will use integers to denote the chosen opera-
tions (such operations can be whole-layer unitaries, such as
the mixing Hamiltonians often seen in typical QAOA circuits
or just single- and two-qubit gates).
For example, the quantum circuit from (3) can be

written as
P = [0, 1, 2, 1] (4)

and the operation at the ith layer can be referred as ki. For
example, in the quantum circuit shown in Fig. 2, we have
k2 = 1.
The performance of the quantum circuit can be evaluated

from the lossL or rewardR, where the reward is just the neg-
ative of the loss. Both are functions of P , and the parameters
of the chosen operations θ

L(P, θ) = L(P, θ)+ λ (5)

R(P, θ) = R(P, θ)− λ (6)

where λ is some (positive-definite) penalty function that may
only appear when certain circuit structures appear, as well as
other kinds of penalty terms, such as a penalty on the sum
of the absolute value of weights or the number of a certain
type of gates in the circuit; L and R are the loss/reward before
applying the penalty. The penalty term λ aims to “sway” the
search algorithm from structures we do not desire. Instead of
storing all the operation parameters for each different quan-
tum circuit, we share the parameters for a single operation
at a certain location. That is, we have a multidimensional
array of shape (p, c, l), where l is the maximum number of
parameters for the operations in the operation pool. If all the
operations in the pool are just the single qubit rotation gate
Rot [28]:

Rot(φ, θ, ω) = RZ (ω)RY (θ )RZ (φ)

=
[
e−i(φ+ω)/2 cos(θ/2) −ei(φ−ω)/2 sin(θ/2)
e−i(φ−ω)/2 sin(θ/2) ei(φ+ω)/2 cos(θ/2)

]
(7)

as well as its controlled version CRot gate on different (pairs
of) qubits; then, in this case, l = 3.

To reduce the space required to store the parameters of
all possible quantum circuits, for a quantum circuit with op-
eration k at layer i, the parameter is the same at that layer
for that specific operation for all other circuits with the same
operation at the same location, which means we are sharing
the parameters of the unitaries in the operation pool with
other circuits. For example, in Fig. 3, besides the blue-node
arc P = [U0,U1,U2,U1], there are also other paths, such as
P ′ = [U0,U1,U1, . . .], and since the first two operations inP
and P ′ are the same, then we will share the parameters ofU0
andU1 between these two circuits by setting the parameters
to be the same forU0 andU1 in both circuits. Such a strategy
is often called “parameter-sharing” or “weight-sharing” in
the NAS literature.
As shown in Fig. 3 and mentioned earlier, the process of

composing or searching a circuit can be formulated in the
form of a tree structure. For example, if we start from an
empty list P = [ ] with maximal length four and an operation
pool with three elements C = {U0,U1,U2}, then the state
of the root node of our search tree will be the empty list
s00 = [ ]. The root node will have three possible actions (if
there are no restrictions on what kind of operations can be
chosen), whichwill lead us to three children nodeswith states
s01 = [U0] = [0], s11 = [U1] = [1], s21 = [U2] = [2]. For each
of these nodes, there will be a certain number of different
operations that can be chosen to append to the end of the
list, depending on the specific restrictions. There will always
be a “placeholder” operation that can be chosen if all other
operations fail to meet the restrictions. The penalty resulting
from the number of “placeholder” operations will only be
reflected in the loss (or reward) of the circuit. The nodes
can always be expanded with different actions, leading to
different children, until the maximum length of the quantum
circuit has been reached, which will give us the leaf node of
the search tree.
Following the (generalized) definition of the CMAB ap-

proach proposed in [27], the process of choosing operations
at each layer can be viewed as both a local and global mul-
tiarmed bandit (MAB). A MAB, just as its name indicates,
is similar to a slot machine (in the casino) but has multiple
levers, or arms, that can be pulled. Or equivalently, it can be
viewed as someone who has multiple arms that can pull the
levers on different slot machines. In both cases, the rewards
obtained from pulling different arms follow different (often
unknown) distributions. The person pulling these arms needs
to develop a strategy that can maximize his rewards from
the machine(s). If we consider the whole circuit search prob-
lem as a MAB (the global MAB, MABg), then the “arms”
are different circuit configurations. Although the rewards of
these circuits are relatively easy to obtain based on the value
of their cost functions after training is finished (which still
requires a fair amount of time for training), the exploding
number of possible circuit configurations when the size of
operation pool and the number of layers increasemakes it im-
possible to perform an informed search for suitable solutions
while training every circuit encountered during the search
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process. Since our circuit is basically a combination of differ-
ent choices of layer unitaries, we can decompose the whole
problem into the choices of unitaries at each layer, which
is the local MAB, MABi, i denoting the MAB problem of
choosing the suitable unitary at layer i. In the local MAB for
a single layer, the “arms” of theMAB are no longer the circuit
configuration but instead the (permitted) unitary operations
from the operation pool C. Although the number of choices
for the local MABs is considerably smaller than the global
MAB, the reward for each arm is not directly observable. In
the next section, we will introduce the naive assumption [27]
to approximate the rewards of the local MABs from the
global MAB, which will help us determine the rewards of the
actions on each node (state) on the search tree for MCTS.

B. MCTS, NESTED MCTS, AND THE NAIVE ASSUMPTION
MCTS is a heuristic search algorithm for a sequence decision
process. It has achieved great success in other areas, includ-
ing defeating the 18-time world champion Lee Sedol in the
game of Go [14], [29]. Generally, there are the following four
stages in a single iteration of MCTS (see Fig. 4) [30].

1) Selection [see Fig. 4(a)]. In the selection stage, the
algorithm will start from the root of the tree, find a
node at the end of an arc (a path from the root of the
tree to the leaf node, the path marked by bold arrows
and blue circles in Fig. 4). The nodes along the arc are
selected according to some policy, often referred to as
the “selection policy,” until a nonfully expanded node
or a leaf node is reached. If the node is a leaf node,
i.e., after selecting the operation for the last layer of the
quantum circuit, we can directly jump to the simulation
stage to get the reward of the corresponding arc. If
the node is not a leaf node, i.e., the node is not fully
expanded, and then, we can progress to the next stage.

2) Expansion [see Fig. 4(b)]. In the expansion stage, we
choose a previously unvisited child at the node selected
in the previous stage by choosing a previously unper-
formed action. We can see from the upper right tree in
Fig. 4 that a new node has been expanded at the end of
the arc.

3) Simulation [see Fig. 4(c)]. In the simulation stage, if
the node obtained from the previous stages is not a leaf
node, we continue down the tree, select actions at each
node along the arc according to the rollout policy until
we have reached a leaf node, i.e., finish choosing the
operation for the last layer. After we have the leaf node,
we simulate the circuit and obtain the reward R based
on the loss L. Usually, the loss L is required to update
the parameters in the circuit.

4) Backpropagation [see Fig. 4(d)]. In this stage, the re-
ward information obtained from the simulation stage
is back-propagated through the arc back from the leaf
node up to the root of the tree, and the number of visits
and the (average) reward for each node along the arc
are updated.

The nested MCTS algorithm [31] is based on the vanilla
MCTS algorithm. However, before selecting the best child
according to the selection policy, a nested MCTS will be
performed on the subtrees with each child as the root node.
Then, the best child will be selected according to the selec-
tion policy with updated reward information; see Fig. 5.

We denote a quantum circuit with p layers P =
[k1, . . . , kp], with each layer ki having a search space no
greater than |C| = c (where c is the number of possible uni-
tary operations, as defined earlier). Each choice for layer ki is
then a local arm for the local MAB, MABi. The set of these
choices is also denoted as ki. The combination of all p layers
in P forms a valid quantum circuit, which is called a global
arm of the global MAB, MABg.

Since the global arm can be formed from the combination
of the local arms, if we use the naive assumption [27], the
global reward Rglobal for MABg can be approximated by the
sum of the reward of local MABs, and each local reward only
depends on the choice made in each local MAB. This also
means that if the global reward is more easily accessed than
the local rewards, the local rewards can be approximated
from the global reward. To simplify the algorithm itself and
reduce complexity, we will adopt the naive assumption for
the distribution of local and global rewards, where we have
a linear relationship between the global reward and local
rewards

Rglobal = 1

p

p∑
i=1

Ri. (8)

When searching for quantum circuits, we have no access
to the reward distribution of individual unitary operations;
however, we can apply the naive assumption to approximate
those rewards (“local reward”) with the global reward

Ri ≈ Rglobal (9)

where Ri is the reward for pulling an arm at local MABi
and Rglobal is the reward for the global arm. With the naive
assumption, we will not need to directly optimize the large
space of global arms as in traditional MABs. Instead,
we can apply MCTS on the local MABs to find the best
combination of local arms. Also, such a linearized (and
simple) assumption enables our algorithm to be suitable for
a wide range of problems.
In the original work on nested MCTS [31], a random

policy was adopted for sampling. In this article, we will
instead adopt the upper confidence bound (UCB) policy [32],
to balance exploration and exploitation. It should be noted
that UCB is not the only policy that considers balancing ex-
ploration and exploitation. Other policies, such as ε-Greedy,
also try to balance these two different kinds of actions but
with more randomness. Unlike ε-Greedy, UCB will take the
number of times each arm is pulled into account when trying
to choose between a high-reward arm or a previously less
pulled arm. Given a local MABi, with the set of all the
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possible choices ki, the UCB policy can be defined as

UCB : argmax
arm j∈ki

R̄
(
ki, arm j

)+ α
√
2 ln ni
n j

(10)

where R̄(ki, arm j ) is the average reward for arm j (i.e., the
reward for operation choice Uj for layer ki) in local MABi,
ni is the number of times that MABi has been used, and n j
is the number of times arm j has been pulled. The parameter

α provides a balance between exploration
(√

2 ln ni
n j

)
and ex-

ploitation (R̄(ki, arm j)). The UCB policy modifies the reward
on which the selection of action will be based.
For small α, the actual reward from the bandit will play an

important role in the UCB-modified rewards, which will lead
to selecting actions with previously observed high rewards.
When α is large enough, the second term, which will be
relatively large if MABi has been visited many times but
arm j of MABi has only been pulled a small number of times,
will have more impact on the modified reward, leading to a
selection favoring previously less visited actions.

C. QAS WITH NESTED NAIVE MCTS
Generally, a single iteration for the search algorithm
will include two steps for nonparameterized circuits and
two more parameter-related steps for PQCs. The set of
parameters, which will be referred to as the parameters of the
super circuit, or just parameters in the following algorithms,
follow the same parameter-sharing strategy as described in
Section II-A. That is, if the same unitary operation (say,U2)
appears in the same location (say, layer #5) across different
quantum circuits, then the parameters are the same, even for
different circuits. Also, with PQCs, it is common practice
to “warm up” the parameters by randomly sampling a batch
of quantum circuits, calculating the averaged gradient, and
updating the parameters according to the averaged gradient
to get a better start for the parameters during the search
process. During one iteration of the search algorithm (for the
algorithm pseudocode, see Section A in the Appendix), we
will generally need to sample a batch of circuits according to
a sample policy and perform exploitation to find the best arc
(circuit). Both of these two processes will need a function
to select a child node, which selects actions based on the
selection policy, as well as pruning nodes with low aver-
age rewards, and a function to execute a single round. The
ExecuteSingleRound function selects a path leading from the
current node to a leaf node of the tree following the selection
policy, as well as performing the simulation stage to obtain
and backpropagate rewards. The difference between sam-
pling an arc and exploiting an arc, although they both require
multiple executions of the node selection function, is that the
SampleArc function will first call the ExecuteSingleRound
function at the root node N times to update the rewards in
the tree following a sampling policy, then select an arc based
on the updated rewards while the ExploitArc function will
execute the ExecuteSingleRound function at each node along

the arc from the root N times. The process for each iteration
is listed as follows.

1) Sample a batch of quantum circuits from the super
circuit with the SampleArc function described in
Algorithm 1.

2) (For PQCs) Calculate the averaged gradients of the
sampled batch and add noise to the gradient to guide
the optimizer to a more “flat” minimum if needed.

3) (For PQCs) Update the super circuit parameters ac-
cording to the averaged gradients.

4) Find the best circuit with the ExploitArc function de-
scribed in Algorithm 2.

We could also set up early-stopping criteria for the search.
That is, when the reward of the circuit obtained with Algo-
rithm 2 meets a preset standard, we stop the search algorithm
and return the circuit that met such standard (and further
fine-tune the circuit parameters if there are any).
With the naive assumption, which means the reward is

evenly distributed on the local arms pulled for a globalMAB,
we can impose a prune ratio during the search. That is, given
a node that has child nodes, if the average reward of a child
node is smaller than a ratio, or percentage, of the average
reward of the said node, then this child node will be removed
from the set of all children unless the number of children
reached the minimum requirement.

III. NUMERICAL EXPERIMENTS AND RESULTS
In this section, we will demonstrate via numerical experi-
ments that our algorithmic framework is suitable for various
problems. Additionally, our algorithmic framework can be
adapted to larger-scale problems in the future beyond the
limits of simulation and into the context of implementation
on physical devices. The parameters of the circuits in this
section can be found in the result files contained in the open-
sourced code.1 The reward and loss plots for the search and
training stages can be found in the Appendix.

A. SEARCHING FOR THE ENCODING CIRCUIT OF [[4,2,2]]
QUANTUM ERROR DETECTION CODE
The [[4,2,2]] quantum error detection code is a simple quan-
tum error detection code, which needs 4 physical qubits for 2
logical qubits and has a code distance of 2. It is the smallest
stabilizer code that can detect X- and Z-errors [33]. One
possible set of code words for the [[4,2,2]] error detection
code is

E[[4,2,2]] = span

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|00〉L = 1√
2
(|0000〉 + |1111〉)

|01〉L = 1√
2
(|0110〉 + |1001〉)

|10〉L = 1√
2
(|1010〉 + |0101〉)

|11〉L = 1√
2
(|1100〉 + |0011〉)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (11)

The corresponding encoding circuit is shown in Fig. 6.

1https://github.com/peiyong-addwater/QAS/blob/main/results_and_
plots/.

3100620 VOLUME 4, 2023

https://github.com/peiyong-addwater/QAS/blob/main/results_and_plots/
https://github.com/peiyong-addwater/QAS/blob/main/results_and_plots/


Wang et al.: AUTOMATED QUANTUM CIRCUIT DESIGN WITH NESTED MCTS Engineeringuantum
Transactions onIEEE

Quantum error detection and correction are vital to large-
scale fault-tolerant quantum computing. By searching for
the encoding circuit of the [[4,2,2]] error detection code,
we demonstrate that our algorithm has the potential to
automatically find device-specific encoding circuits of quan-
tum error detection and correction codes for future quantum
processors.
1) EXPERIMENT SETTINGS
When searching for the encoding circuit of the [4,2,2] quan-
tum error correction code, we adopted an operation pool
consisting of only nonparametric operations: the Hadamard
gate on each of the four qubits and cnot gates between
any two qubits. The total size of the operation pool is
4+ 4!

2!×2! × 2 = 16. When there are six layers in total, the
overall size of the search space is 166 ≈ 1.67× 107.

The loss function for this task is based on the fidelity
between the output state of the searched circuit and the output
generated by the encoding circuit from [33, Sec. 4.3] (also
shown in Fig. 6) when input states taken from the set of Pauli
operator eigenstates and the magic state |T 〉 are used

S = {|0〉, |1〉, |+〉, |−〉, | + i〉, | − i〉, |T 〉} (12)

where |T 〉 = |0〉+eiπ/4|1〉√
2

.
The input states (initialized on all four qubits) are

I[[4,2,2]] = {|ϕ1〉 ⊗ |ϕ2〉 ⊗ |00〉 | |ϕ1〉, |ϕ2〉 ∈ S} (13)

We denote the unitary on all four qubits shown in Fig. 6
as U[[4,2,2]], and the unitary from the searched circuit as
US [[4,2,2]], which is a function of the structurePS [[4,2,2]]. The
loss and reward function can then be expressed as

L[[4,2,2]] = 1− 1

|I[[4,2,2]]|
∑
|ψi〉∈I

〈ψi|U†
S [[4,2,2]]O[[4,2,2]]US [[4,2,2]]|ψi〉 (14)

R[[4,2,2]] = 1− L[[4,2,2]] (15)

where

O[[4,2,2]](|ψi〉) = U[[4,2,2]]|ψi〉〈ψi|U†
[[4,2,2]], |ψi〉 ∈ I[[4,2,2]].

(16)

The circuit simulator used in this and the following numer-
ical experiments is Pennylane [34].
2) RESULTS
To verify whether the search algorithm will always reach
the same solution, we ran the search algorithm twice, and
both times the algorithm found an encoding circuit within
a small number of iterations (see Fig. 14 in the Appendix),
although the actual circuit in each case is different, as shown
in Fig. 7. The search process that gave the circuit in Fig.
7(a) met the early-stopping criteria in four iterations, and
the search process that gave the circuit in Fig. 7(b) met the
early-stopping criteria in eight iterations, as shown in Fig. 14
in the Appendix.

B. SOLVING LINEAR EQUATIONS
The variational quantum linear solver (VQLS), first proposed
in [35], is designed to solve linear systems Ax = b on near-
term quantum devices. Instead of using quantum phase esti-
mation as in the HHL algorithm [36], which is unfeasible on
near-term devices due to large circuit depth, VQLS adopts a
variational circuit to prepare a state |x〉 such that

A|x〉 ∝ |b〉. (17)

In this section, we will task our algorithm to automatically
search for a variational circuit to prepare a state |x〉 to solve
Ax = b with A in the form of

A =
∑
l

clAl (18)

where Al are unitaries, and |b〉 = H⊗n|0〉.
We will also adopt the local cost function CL described

in [35]

CL = 1−
∑

l,l′ clc
∗
l′ 〈0|V †A†l′UPU

†AlV |0〉∑
l,l′ clc

∗
l′ 〈0|V †A†l′AlV |0〉

(19)

where U = H⊗n, V is the (searched) variational circuit that
can produce the solution state V |0〉 = |x〉, and P = 1

2 +
1
2n

∑n−1
j=0 Zj [37].

1) EXPERIMENT SETTINGS
The linear system to be solved in our demonstration is

A = ζ I + JX1 + JX2 + ηZ3Z4 (20)

|b〉 = H⊗4|0〉 (21)

with J = 0.1, ζ = 1, η = 0.2. The loss function we adopted
follows the local lossCL in (19). However, since the starting
point of the loss values often has a magnitude of 10−2–10−3,
we will need to scale the reward function

R = e−10CL − λ (22)

where λ is a penalty term depending on the number of Place-
holder gates (which can be considered as identity operations,
just holding a place and doing nothing) in the circuit. The op-
eration pool consists of cnot gates between neighboring two
qubits as well as the first and fourth qubits, the Placeholder,
and the single qubit rotation gate Rot [28] as follows:

Rot(φ, θ, ω) = RZ (ω)RY (θ )RZ (φ)

=
[
e−i(φ+ω)/2 cos(θ/2) −ei(φ−ω)/2 sin(θ/2)
e−i(φ−ω)/2 sin(θ/2) ei(φ+ω)/2 cos(θ/2)

]
.

(23)

Such a circular connection topology of cnots is more suit-
able for today’s quantum hardware than a nonrestricted con-
nection topology since cnots over nonneighboring qubits
often require a lot of SWAP gates on the actual hardware,
introducing more noise into the circuit. Such a four-qubit cir-
cular topology exists on Google’s Sycamore [38], although
this device is not publicly available. Also, from the searched
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circuit shown in Fig. 8, the algorithm only used cnot gates
between neighboring qubits.
The size of the operation pool c = |C| = 16, and the

number of layers p = 10, giving us a search space of size
|S| = 1016. There is also an additional restriction of the
maximum number of cnot gates in the circuit, which is 8,
the number of cnot gates required to create two layers of
circular entanglement.

2) RESULTS
For the VQLS experiment, the search quickly terminates
when the reward reaches the early-stop threshold (shown
in Fig. 15 in the Appendix). During the finetune stage, the
loss drops down to close to zero within 100 iterations (see
Fig. 15 in the Appendix). Although facing a large search
space, our algorithm can still find a circuit (shown in Fig.
8) that minimizes the loss function [see Fig. 15(b) in the
Appendix] and leads us to results close to the classical so-
lution. The mean-square error (MSE) between the VQLS
results with searched circuit and the classical solution is
9.8522× 10−6. A comparison of the results obtained by di-
rectly solving the linear equation Ax = b and by sampling
the state |x〉 produced by the searched circuit is shown in
Fig. 16 in the Appendix.

C. SEARCH FOR QUANTUM CHEMISTRY ANSATZ
Recently, there has been a lot of progress made in finding
the ground state energy of simple molecules on near-term
quantum computers with the variational circuit, both on the
theoretical [39], [40], [41] and experimental [1], [7], [42],
[43], [44], [45] front. Normally, when designing the ansatz
for the ground energy problem either a physically plausible
or a hardware-efficient ansatz needs to be found. However,
our algorithm provides an approach, which can minimize the
effort needed to carefully choose an ansatz and automati-
cally design the circuit according to the device gate set and
topology.
Generally speaking, solving the ground energy problem

with quantum computers is an application of the variational
principle [46]

E0 ≤ 〈0̃|H|0̃〉〈0̃ | 0̃〉 (24)

where H is the system Hamiltonian, |0̃〉 is the “trial ket”
[46], or ansatz, trying to mimic the real wave function of the
ground state with energy E0 (the smallest eigenvalue of the
system Hamiltonian H). Starting from |0⊗n〉 for an n-qubit
system, the “trial ket” can be written as a function of a set of
(real) parameters θ

|0̃〉 = |ϕ(θ )〉 = U (θ )|0⊗n〉. (25)

Given an ansatz, the goal of optimization is to find a set
of parameters θ that minimizes the right-hand side of (24).
However, in our experiments, the form of the trial wave
function will no longer be fixed—we will not only vary the

parameters but also the circuit structure that represents the
ansatz.

1) EXPERIMENT SETTINGS
We first define the three chemistry problems before present-
ing the results.

a) Search an ansatz for finding the ground energy of H2

In this experiment, we adopted the 4-qubit Hamiltonian HH2

for the hydrogen molecule H2 generated by the Pennylane-
QChem [34] package, when the coordinates of the two hy-
drogen atoms are (0, 0,−0.6614) and (0, 0, 0.6614), respec-
tively, in atom units. The goal of this experiment is to find
an ansatz that can produce similar states as the four-qubit
Givens rotation for single and double excitation. The unitary
operator2 that performs single excitation on a subspace
spanned by {|01〉, |10〉} can be written as

U (φ) =

⎡
⎢⎢⎣
1 0 0 0
0 cos(φ/2) − sin(φ/2) 0
0 sin(φ/2) cos(φ/2) 0
0 0 0 1

⎤
⎥⎥⎦ . (26)

And the transformation of the double excitation on the sub-
space spanned by {|1100〉, |0011〉} is3

|0011〉 → cos(φ/2)|0011〉 + sin(φ/2)|1100〉
|1100〉 → cos(φ/2)|1100〉 − sin(φ/2)|0011〉. (27)

Following the work in [47], we initialized the circuit with
the 4-qubit vacuum state |ψ0〉 = |0000〉. We denote the uni-
tary for the searched ansatz USA, which is a function of its
structure PSA and corresponding parameters. Then, the loss
and reward functions can be written as

LH2 = 〈ψ0|U†
SAHH2USA|ψ0〉 (28)

RH2 = −LH2 . (29)

The operation pool consists of Placeholder, Rot, and cnot
gates with a linear entanglement topology (nearest neigh-
bor interactions). A linear topology is more suitable for to-
day’s NISQ hardware since we can find a line of qubits on
current devices (and certainly on more advanced devices),
such as the 20-qubit line (circle), which can be found on the
ibmq_montreal device, requiring fewer SWAP gates for the
transpiled circuit. It is worth noting that the linear topology is
the hardest scenario, which demonstrates our algorithm can
work effectively under such harsh conditions. Also, restrict-
ing cnot gates to only near-neighbor helps reduce the size of
the operation pool and, hence, the search space, which will
work better under limited sampling rounds. The maximum
number of layers is 30, with a maximum number of cnot

2 https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Single
Excitation.html

3 https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Double
Excitation.html

3100620 VOLUME 4, 2023

https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Singlepenalty -@M Excitation.html
https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Singlepenalty -@M Excitation.html
https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Doublepenalty -@M Excitation.html
https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Doublepenalty -@M Excitation.html


Wang et al.: AUTOMATED QUANTUM CIRCUIT DESIGN WITH NESTED MCTS Engineeringuantum
Transactions onIEEE

gates 30/2 = 15, and no penalty term for the number of
Placeholder gates

RH2,Pool 1 = RH2 . (30)

Such settings of the operation pool and the number of
layers will give us an overall search space of size 1430 ≈
2.42× 1034. However, the imposed hard limits and gate lim-
its will drastically reduce the size of the search space.

b) Search an ansatz for finding the ground energy of LiH
The loss and reward functions for the LiH task are similar to
H2

LLiH = 〈ψ0|U†
SAHLiHUSA|ψ0〉 (31)

RLiH = −LLiH (32)

and the initial state is also the vacuum state |ψ0〉 = |0〉⊗10.
The Hamiltonian is obtained at bond length 2.9693 Bohr,
or 1.5713 Angstrom, with 2 active electrons and 5 active
orbitals. The size of the operation pool c = |C| = 38, in-
cluding Rot gates, Placeholder, and cnot gates operating
on neighboring qubits on a line topology. The maximum
number of layers is 20, giving us a search space of size
|S| = 3820 ≈ 3.94× 1031. The “hard limit” on the number
of cnot gates in the circuit is 20/2 = 10.

c) Search an ansatz for finding the ground energy of H2O
The loss and reward functions of the water molecule are
shown as follows:

LH2O = 〈ψ0|U†
SAHH2OUSA|ψ0〉 (33)

RH2O = −LH2O (34)

and the initial state is also the vacuum state |ψ0〉 = |0〉⊗8.
The Hamiltonian is obtained when the three atoms are posi-
tioned at the following coordinates:

H : (0., 0., 0.)

O : (1.6323, 0.8641, 0)

H : (3.3609, 0., 0.). (35)

Units are in Angstrom. Active electrons are set to 4 and
active orbitals are set to 4. The size of the operation pool
c = |C| = 30, including Rot gates, Placeholder, and cnot
gates operating on neighboring qubits on a line topology. The
maximum number of layers is 20, giving us a search space
of size |S| = 3050 ≈ 7.18× 1073. The “hard limit” on the
number of cnot gates in the circuit is 25.

2) RESULTS
To avoid cluttering, the rewards during the search process and
losses during fine-tuning can be found in Section B3. Besides
restrictions on cnot topology, we also constrained the depth
and number of cnot gates. Although the current energy
estimations are good, they can be further improved toward
chemical precision by increasing the searched circuit size.

Also, shorter circuits perform better in the presence of noise.
Detailed insights regarding the search, fine-tuning stages,
and corresponding plots can be found in the Appendix, Sec-
tion B3. Generally speaking, although the rewards change is
rather stochastic during the search stage, the searched circuit
converges to energy values close to the reference values.

a) H2 results
The searched ansatz is presented in Fig. 9. We can see
from Fig. 9 that the unitaries are not randomly placed on
the four qubit lines; instead, they present familiar structures
such as the decomposition of the SWAP gate (the three
cnot gates after Rot(φ4, θ4, ω4)) and Ising coupling gates
(Rot(φ6, θ6, ω6) with the two cnot gates on its right and
left side). An example of the Ising coupling gates (often
appearing in quantum optimization problems) is the RZZ gate

RZZ (θ ) = e−i
θ
2 Z⊗Z

=

⎡
⎢⎢⎢⎣
e−i

θ
2 0 0 0

0 ei
θ
2 0 0

0 0 ei
θ
2 0

0 0 0 e−i
θ
2

⎤
⎥⎥⎥⎦

= CNOT1,2RZ2(θ )CNOT1,2 (36)

where CNOT1,2 is the cnot gate controlled by the first qubit
and target on the second qubit, and RZ2(θ ) is a Z-rotation
gate on the second qubit. However, other parts of the circuit
are not familiar, which indicates that the search algorithm can
go beyond human intuition. The total number of gates in the
circuit is 22, including 13 local cnot gates.
b) LiH results
The searched ansatz is presented in Fig. 10. The circuit pro-
duced by the search algorithm is simpler compared to the H2
ansatz in Fig. 9, indicating that the initial state may be very
close to the ground energy state.

c) H2O results
The searched ansatz is presented in Fig. 20 in the Appendix
due to its large depth, which has 38 gates in total, including
10 local cnot gates. Although some familiar structures exist,
such as the Ising coupling in the circuit, the heuristics behind
most parts of the circuit are already unintuitive for human
researchers.

D. SOLVING THE MAXCUT PROBLEM
As a classic and well-known optimization problem, theMax-
Cut problem plays an important role in network science,
circuit design, as well as physics [49]. The objective of the
MaxCut problem is to find a partition z of vertices in a graph
G = (V,E ), which maximizes the number of edges connect-
ing the vertices in two disjoint sets A and B

C(z) =
m∑
a=1

Ca(z) (37)
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where Ca(z) = 1 if the ath edge connects one vortex in set
A and one vortex in set B, and Ca(z) = 0 otherwise. To per-
form the optimization on a quantum computer, we need to
transform the cost function into an Ising formulation

HC = −
∑

(i, j)∈E

1

2
(I − ZiZ j )wi j (38)

where Zi is the Pauli Z operator on the ith qubit andwi j is the
weight of edge (i, j) ∈ E for weighted MaxCut problem. For
unweighted problems, wi j = 1. In this formulation, vertices
are represented by qubits in the computational bases. By find-
ing the wave function that minimizes the cost Hamiltonian
HC, we can find the solution that maximizes C(z). Previ-
ously, the major components of the quantum approximate
optimization algorithm (QAOA) ansatz are the cost Hamil-
tonian encoded by the cost unitary and the mixing Hamilto-
nians encoded by the mixing unitaries [50]. Although this
ansatz can find all the solutions in an equal superposition
form, it is not always effective when the number of layers
is small. Also, when the number of qubits (vertices) grows,
the required number of layers and the number of shots during
measurement to extract all of the solutions will also grow.
Since we already have a Hamiltonian as our cost function

in Section III-C, we follow a similar approach as quantum
chemistry to find one solution when the number of vertices
is large.
In this section, we only demonstrate results for a weighted

MaxCut problem. An example of an unweighted MaxCut
problem is shown in the Appendix.

1) EXPERIMENT SETTINGS
For weighted MaxCut, we have a five-node graph, which
is shown in Fig. 11. The solution for this problem 00011
(11100) is simpler than the unweighted version. The re-
ward and loss functions follow the same principle of the
unweighted problem. The size of the operation pool c = C =
20, and the number of layers p = 10, leading to a search
space of size |S| = 2010 ≈ 1.02× 1013. The “hard” restric-
tion on the maximum number of cnots in the circuit is 5.

2) RESULTS
The search rewards and fine-tune losses for the weighted
MaxCut problem are shown in Fig. 21. We can see that the
search converged quickly and the fine-tune loss is very close
to -18, indicating that the circuit (see Fig. 12) produced by
our search algorithm can, indeed, find an optimal solution
(see Fig. 13).

IV. DISCUSSION
In this article, we formulated the circuit search problem using
a tree structure. The sampled circuit can be represented as
an arc (path from the root to a leaf) on the tree. We also
introduced the CMAB and the naive assumption to model
the selection of unitary operators for each layer in the
circuit and linearly approximated the rewards of different

unitaries with the reward of a fully constructed circuit.
The search process is solved with the MCTS algorithm. We
demonstrated the effectiveness of our algorithmic framework
with various examples, including finding the encoding circuit
of the [[4,2,2]] quantum error detection code, developing the
ansatz for variationally solving system of linear equations,
searching the circuit for solving the ground state energy
problem of different molecules, as well as circuits for solving
optimization problems on a graph. To our understanding,
this is the first work to propose such a versatile framework
for the automated discovery of quantum circuits with MCTS
and CMABs.
From the numerical experiments and results shown in the

previous sections, we can see that by formulating the quan-
tum ansatz search problem as a tree-based structure, one can
impose various kinds of restrictions on the circuit structure
as well as pruning low-reward actions, therefore effectively
reducing the size of the search space. The approach and im-
plementation presented here can be adapted to user-specific
search problems following the given examples in the code,4

as long as the new search problem has a well-defined reward
(and loss) function. Although in most of our experiments, we
adopted linear topologies for cnot connections, it is worth
noting that even if, in the ideal simulations, an all-to-all cnot
connected graph will result in more cnots being selected in
the circuit. When evaluating the quantum circuit on a noisy
simulator or an actual NISQ device with restricted topology,
nonneighboring cnot gates will bring more SWAP gates in
the transpiled circuit, hence more noise in the circuit, leading
to an output state farther from the desired state, which will
be reflected in the reward signal for MCTS.

1) RUNTIME ANALYSIS
We analyze the required runtime base on the number of
circuit evaluations needed. When applying our algorithm to
searching a circuit for a real quantum device, single-circuit
evaluation time could be very small for large circuits com-
pared with running on a simulator, especially for circuits
with large amounts of entanglement, which are very hard to
simulate classically but can be easily evaluated on a quantum
device.
Based on the hyperparameters given in Table 1, we can

calculate the maximum number of circuit evaluations5 as
follows:

n = [(bw + p× l × 2× bw )+ p× re]× tw
+ [bs × rs + p× l × 2× bs + p× re]× ts (39)

where

4 https://github.com/peiyong-addwater/QAS
5The actual number of circuit evaluations should be smaller than the

calculated since the search process may stop once the reward meets the
early-stop criteria. Also, the actual number of circuit evaluations required
in calculating gradients with the parameter-shift method should be much
smaller than the calculated ones since not every layer has parameterized
operations. We only calculate the upper bound.
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1) n: number of circuit evaluations;
2) p: number of layers in the circuit;
3) l: number of parameters per layer;
4) bw: random sample batch size during warm-up

iterations;
5) bs: sampling size during search iterations;
6) rs: number of execution rounds during search

sampling;
7) re: number of execution rounds during exploitation;
8) tw: number of iterations for warm-up;
9) ts: number of iterations for searching.

The results and parameters are also shown in Table 1.

2) COMPARISON WITH OTHER RESEARCH
Other works in this area, including the differentiable
quantum ansatz algorithm proposed in [16], and other QAS
algorithms based on metalearning [23], or reinforcement
learning [20], generally investigate small-scale problems,
such as 3- or 4-qubit quantum Fourier transforms in [16], and
3-qubit classification tasks and the 4-qubit H2 ground-state
energy problem in [24]. A larger example can be seen
in [19], which is a 6-qubit transversal Ising field model. In
comparison, we investigate some larger-scale problems with
a larger search space and a wider range of applications, from
solving linear equations to finding the ground state energy
of small molecules.
3) FUTURE WORK
Several hyperparameters, such as the maximum number of
gates and cnots in the circuit, still need to be tuned before
the search algorithm can produce satisfying results, which
leaves space for improvement in the automation level of the
algorithm. We can see from Table 1 that the choices of the
hyperparameters listed are still largely arbitrary. A future
research project will run large quantities of experiments to
empirically find the scaling properties of the hyperparam-
eters with respect to the problem scale, i.e., the number of
qubits, size of the operation pool, and the number of layers.
In the future, possible investigations include the performance
of our algorithm under noise and the improvement of the
algorithm’s scalability by introducing parallelization to the
tree search algorithmwhen using a quantum simulator. Intro-
ducing more flexible value and/or policy functions into the
algorithm would be a fruitful research direction. Although
we did not aim for large-scale simulation in this article, it
would be interesting to see how the algorithm would perform
when the number of qubits and number of layers increase
in the future. Also, interpretability is still a huge problem
for AI/deep learning-based algorithms. Although we can ob-
serve some structure from the search results, and since the
operation pools often consist of simple single qubit rota-
tion gates and cnots, which will make the searched circuit
look more random than circuits composed of rotation and
entanglement layers, one requires more insights regarding
the search process to ensure that the algorithm does not just

produce a random circuit. We also would like to investi-
gate different quantum complexitymeasures and information
scrambling properties for the circuits produced during the
search process.
In summary, our research has shown that MCTS enhanced

with CMAB is a versatile and efficient approach to search
for quantum circuits for a variety of problems, even when the
search space is large—addressing an important requirement
in the application of variational quantum algorithms to a
range of problems of interest.

4) DATA AVAILABILITY
The code and data for this article are hosted on
https://github.com/peiyong-addwater/QAS.

APPENDIX SUPPLEMENTARY MATERIALS
A. PSEUDOCODE FOR THE TREE SEARCH PROCESS

Algorithm 1 SampleArc
Input: sample policy Policy, parameters of the super
circuit param, number of rounds in sampling N
Output: list representation P of quantum circuit
curr← GetRoot(Tr) � Starting from the root
node of the tree Tr
i← 0 � Counter
while i < N do
ExecuteSingleRound(curr,Policy, param)
i← i+ 1
end while
while curr is not leaf node do
curr← SelectNode(curr,Policy)
end while
P ← GetListRepresentation(curr)

Algorithm 2 ExploitArc
Input: exploit policy Policy, parameters of the super
circuit param, number of rounds in exploitation N
Output: list representation P of quantum circuit
curr← GetRoot(Tr) �Starting from the root
node of the tree Tr
while curr is not leaf node do
i← 0 � Counter
while i < N do
ExecuteSingleRound(curr,Policy, param)
i← i+ 1
end while
curr← SelectNode(curr,Policy)
end while
P ← GetListRepresentation(curr)
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Algorithm 3 SelectNode
Input: current node n, selection policy Policy
Output: selected node n′
if n is fully expanded then
PruneChild(n) � Prune children nodes
according to certain threshold
n′ ← GetBestChild(n,Policy) � Select
the best child
else
n′ ← ExpandChild(n) � Expand the node
end if

Algorithm 4 ExecuteSingleRound
Input: current node n, selection policy Policy,
parameters of the super circuit param
Output: leaf node n′
n′ ← n
while n′ is not leaf node do
n′ ← SelectNode(n′,Policy)
end while
R← Simulation(n′, param) � Obtain
reward from simulation
Backpropagate(n′,R) � Back-propagate the
reward information along the arc

FIG. 14. Rewards when searching for encoding circuits of the [[4,2,2]]
code. We can see that in both cases the algorithm was able to find the
encoding circuit that generated the required code words in just a few
iterations. “Circuit a” refers to the search rewards for the circuit in
Fig. 7(a) and “Circuit b” refers to the search rewards for the circuit in
Fig. 7(b).

B. REWARD AND LOSS PLOTS FOR THE EXPERIMENTS
In this section, we put the plots for the search and fine-tune
process of the numerical experiments.

1) THE [[4,2,2]] CODE EXPERIMENT
2) VQLS EXPERIMENT
3) QUANTUM CHEMISTRY EXPERIMENTS
4) WEIGHTED MAXCUT
C. ADDITIONAL UNWEIGHTED MAXCUT EXPERIMENTS
1) EXPERIMENT SETTINGS
The problem graph for the unweighted MaxCut experiment
is shown in Fig. 22. This problem has six equally optimal
solutions: 1001100, 0110010, 0111010, 1000101, 1001101,
and 0110011, all with C(z) = 7. The loss function is based
on the expectation of the cost Hamiltonian HC

LMaxCut = (〈+|)⊗7U†
SAHCUSA(|+〉)⊗7. (A1)

The reward function is simply the negative of the loss func-
tion

RMaxCut = −LMaxCut. (A2)

We ran the search algorithm twice with the same basic set-
tings, including the operation pool and the maximum number
of layers. Since there is a random sampling process during
the warm-up stage, the final solutions found by the algorithm
are expected to be different. The operation pool consists of
CNOT gates between every two qubits, the Placeholder and
the single qubit rotation gate [28]

Rot(φ, θ, ω) = RZ (ω)RY (θ )RZ (φ)

=
[
e−i(φ+ω)/2 cos(θ/2) −ei(φ−ω)/2 sin(θ/2)
e−i(φ−ω)/2 sin(θ/2) ei(φ+ω)/2 cos(θ/2)

]
. (A3)

The size of the operation pool c = |C| = 28, and the number
of layers p = 15, leading to a search space of size |S| =
2815 ≈ 5× 1021. The “hard” restrictions on the maximum
number of CNOT gates in a circuit, which is 7, can help
reduce the size of the search space.

2) RESULTS
The two runs of the search algorithms gave us two circuits
see Fig. 23, leading to two of the six optimal solutions (see
Fig. 24). The search rewards and fine-tune losses for both
circuits are shown in Fig. 25. During the search stage, since
we already know the maximum reward it could reach is
7, and the reward can only be integers, we set the early-
stopping limit to 6.5 to reduce the amount of time spent on
searching, which means the algorithm will stop searching
and proceed to fine-tuning the parameters in the circuit af-
ter the reward exceeds 6.5. In a real-world application, we
could let the search algorithm run through all of the preset
numbers of iterations and record the best circuit structure
as well as the corresponding rewards at each iteration at
the same time. Then, after the search stage finishes, we can
choose the best circuit (or top-k circuits) in the search his-
tory to fine-tune, increasing our chance to find the optimal
solution.
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FIG. 15. Search rewards and fine-tune loss for VQLS experiment. The change of rewards with respect to the iterations is shown in (a). We can see that
the reward quickly reached the early stopping threshold at iteration 10. In the VQLS case, the reward is scaled since the initial reward with random
sampled circuit structure and parameters is already at the magnitude of 10−2. Fine-tune loss for the VQLS circuit is shown in (b). After the search
stopped at iteration 10 shown in (a). The structure of the circuit is left unchanged and its parameters are optimized to achieve smaller losses. The final
loss of the parameters is very close to 0.

FIG. 16. Comparison between classical probabilities, obtained from solving the matrix equation with the classical method, i.e., x = A−1b, of the
normalized solution vector x

||x|| for Ax = b (left), and the probabilities obtained by sampling the state |x > produced by the trained circuit in Fig. 8(right).
The number of shots for measurement is 106. We can see that the quantum results are very close to the classically obtained ones, with MSE between
the VQLS results with the searched circuit and the classical solution is 9.8522 × 10−6, showing that our algorithm can be applied to finding variational
ansatz for VQLS problems.

FIG. 17. Search rewards and fine-tune loss for H2 circuit experiment. In (a), we have the search rewards for the H2 ansatz. We can see that for most of
the 50 iterations, the reward for the best circuit sampled from the search tree stays over 0.7. In (b), we have the fine-tuned loss for the searched H2
circuit. At the last iteration of optimisation, the energy is around -1.1359 Ha. The classically computed full configuration interaction result with PySCF
[52]; [53]), which is around -1.132 Ha and marked by the red horizontal dashed line. We can see that our result is closer to the ground truth (FCI energy,
the red dashed line) than the ground state energy computed by the self-consistent field (SCF) methods (the blue dot-dashed line).
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FIG. 18. Search rewards and fine-tune loss for the LiH circuit experiment. In (a), we have the search rewards for the LiH ansatz. We can see that for
most of the 50 iterations, the reward for the best circuit sampled from the search tree stays over 7.7 Ha. In (b), we have the fine-tune loss for the
searched LiH circuit. At the last iteration of optimization, the energy is around -7.9526 Ha, closer to the energy obtained by the ADAPT-VQE method [49],
but with a much shorter circuit.

FIG. 19. Search rewards and fine-tune loss for the H2O circuit. In Fig. 17(a), we have the search rewards for the H2O ansatz. For most of the 50
iterations, the reward for the best circuit sampled from the search tree stays over 74.9 Ha. In (b), we have the fine-tune loss for the searched H2O circuit.
At the last iteration of optimization, the energy is around -75.4220 Ha, closer to the classically computed full configuration interaction energy with
PySCF [52], [53], which can be viewed as the true ground state rather than the energy obtained with the SCF method.

FIG. 20. Circuit for H2O produced by the search algorithm. We can see that our circuit respects the connectivity of the qubits, which in this case, is
linear. Ising rotationlike structures also emerge as in the H2 circuit in Fig. 9. We also noticed that the search algorithm’s circuit is much shorter than the
ansatz composed with qml.SingleExcitation and qml.DoubleExcitation from Pennylane [48] according to the molecule’s physical properties,
which, after removing gates with small gradient values during training, can be decomposed into 528 gates, including 276 two-qubit control gates.
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FIG. 21. Search rewards and fine-tune losses of for the five-node MAXCUT problem. (a) Search rewards for the five-node weighted MAXCUT problem. b)
Fine-tune loss for the five-node weighted MAXCUT problem.

FIG. 22. Problem graph for the unweighted MAXCUT experiment

FIG. 23. Two different circuits finding two different solutions of the MAXCUT problem shown in Fig. 22. Figure (a) gives the solution 0110010 [see
Fig. 24(a)] and (b) gives the solution 0111010 [see Fig. 24(b)]. If we only want one of the optimal solutions, our algorithmic framework can produce
much shorter circuits than the standard QAOA ansatz, making it more favorable on current NISQ devices. From the problem graph shown in Fig. 22, the

standard QAOA circuit in a single layer would require eight e−iγZi Z j , i, j ∈ E entangling gates to encode the cost Hamiltonian, as well as a layer of
single-qubit rotation gates for the mix Hamiltonian, while our circuit requires just several single-qubit rotation gates and no more than five CNOT gates
to find one of the optimal solutions.
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FIG. 24. Two different optimal solutions found by the circuits in Fig. 23(a) and (b), respectively. These two different solutions are both optimal for the
given problem. Figure (a) corresponds to solution 0110010, where nodes 0, 4, 3, and 6 are colored red and nodes 1, 2, and 5 are colored blue for the two
partitions of the graph. Figure (b) corresponds to solution 0111010, where nodes 0, 4 and 6 are colored red and nodes 1, 2, 3, and 5 are colored blue for
the two partitions of the graph.

FIG. 25. Search and fine-tune rewards for the circuits in Fig. 23. (a) Change of rewards w.r.t. search iteration during the search for the ansatz [in Fig.
23(a)] that gives the solution 0110010 [in Fig. 24(a)]. To reduce the amount of time for searching, we stopped the algorithm after the search reward
exceeded 6.5. (b) Change of loss w.r.t. optimization iteration during the finetune for the ansatz [in Fig. 23(a)] that gives the solution 0110010 [in Fig.
24(a)]. We can see that the final loss is very close to -7, indicating that the circuit we found can produce an optimal solution. (c) Change of rewards w.r.t.
search iteration during the search for the ansatz [in Fig. 23(b)] that gives the solution 0111010 [in Fig. 24(b)]. To reduce the amount of time for
searching, we stopped the algorithm after the search reward exceeded 6.5. (d) Change of loss w.r.t. optimization iteration during the finetune for the
ansatz [in Fig. 23(b)] that gives the solution 0111010 [in Fig. 24(b)]. We can see that the final loss is close to -7, indicating that the circuit we found can
produce an optimal solution.
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