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ABSTRACT The tremendous progress of deep convolution neural networks has shown promising results
on the classification of various sports activities. However, the accurate localization of a particular sports
event or activity in a continuous video stream is still a challenging problem. The accurate detection of
sports actions enables the comparison of different performances, objectively. In this work, we propose
the DiveNet action localization module to detect the springboard diving sports action in an unconstrained
environment. We used Temporal Convolution Network (TCN) over a backbone feature extractor to localize
diving actions, with low latency. We estimate the divers center of mass (COM) trajectory and the peak dive
height using the temporal demarcations provided by the action localization step via the projectile motion
formula. In addition, we train a DiveNet pose regression network, which extends the Unipose architecture
with direct physical parameter estimation, i.e COM and 2D joint keypoints. We propose a new homography
computation method between the diving motion plane and the image-view for each dive. This enables the
representation of physical parameters in metric scale, without any calibration. We release the first publicly
available diving sports video dataset, recorded at 60 Hz with a static camera setup for different springboard
heights. DiveNet action localization achieves an accuracy of 95% with a single frame latency (< 25 ms).
The DiveNet pose regression model shows competitive results around 70% PCK on different diving pose
datasets. We achieve COM accuracy of 6 pixels, dive peak height sensitivity of 20 cm and mean joint angle
errors around 10 degrees.

INDEX TERMS Deep learning, diving sports pose, action localization, sports analytics.

I. INTRODUCTION
The body pose and motion analysis of sports athletes is
an emerging research area in computer vision and deep
learning [1], [2], [3], [4]. The analysis of sports videos is a
challenging task because the body postures and manoeuvres
involved in sports such as diving, gymnastics and balance-
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beam are complex. In addition, monocular based human pose
estimation often suffer from self-occlusion and motion blur
due to high-speed nature of actions that are performed [5],
[6], [7]. These problems often cause many markerless
motion captures to provide inferior results [8]. Sports video
analysis aims to provide objective measures to compare
the athlete’s performance, e.g. during training. For a given
sports performance, video analysis can help to improve the
athlete’s technique with real-time feedback [9], [10], [11],
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[12], [13]. Thus, it assists sport trainers in technique analysis,
thereby increasing the overall efficiency of the coaching
process [14]. Existing sports analysis is largely analyzed
manually to observe the movement of the diver’s body parts
during training. The feedback provided after manual analysis
is time-consuming, laborious and error-prone [15]. In recent
years, alternative technologies are proposed [16], but they
still have limitations in using them to provide accurate and
robust results [15]. So far, existing analysis techniques often
focused on diving classification are challenges due to high
variability in the scenes. The variability occurs due to various
factors such as people in the background, image resolution
and different viewing positions [17].

Our work primarily focuses on competitive springboard
diving training. Thus, we differ from recent works on diving
action classification [5], [6], [7] as we solely focus on
accurate diving localization. We localize the diving motion
and segment the video in time, emphasizing low latency
segmentation bounds rather than performing general action
classification for a motion clip. This is particularly important
to compare specific motion segments of a motion during
training that are defined via certain human poses, as sug-
gested e.g. in [18]. Hence, we focus on segmentation of a
video to localize a particular set ofmotions in time throughout
a continuous video by detecting the frame representing the
beginning and end of the (diving) motion [19] as shown in
Figure 1. In other words, it is a precise detection of the start
frame and end frame of diving sports action in an untrimmed
video. On the other hand, diving action classification assigns
one of 48 diving classes based on the combination of four
attributes: 1) takeoff, 2) somersaults, 3) twists, and 4) dive
positions while entering the water [6], [7].

Action localization is an essential step before action
classification in a continuous video stream or long untrimmed
videos. It eliminates the need for manual effort to localize
motion in continuous live video or untrimmed sports videos.
To this end, we have the following key contributions, in this
work:

• We propose a novel TCN based low-latency solution for
diving action localization in untrimmed videos.

• We present a 2D pose estimation model with accurate
center of mass computation.

• We propose a novel homography computation method
between the diving motion plane and the image-view
to estimate the diving peak height and accurate motion
trajectory.

• We release the DSV diving dataset with action local-
ization demarcation and its corresponding 2D pose key-
points for the research community. The dataset is avail-
able for research at https://av.dfki.de/ murthy/divenet/.

II. RELATED WORKS
There is a surge in sports video analysis in recent years
due to the new advances in deep learning methods and the
availability of high computing resources. A common theme
for learning complex temporal relationships between the

actions in long untrimmed videos is to encode videos in
an end-to-end manner using pre-trained 2D or 3D CNNs
[20], [21], [22]. Sequence-to-sequence models use these
learned high-level features to localize the action.

A. ACTION PROPOSAL NETWORKS
The action proposal networks typically use search strategies
such as selective search sampling to produce sequence
proposals [23]. The bounding boxes also known as Tubelets
instead of super-pixels use super-voxels. Thereby eliminating
the issue of linking boxes from one frame to another.
Taking inspiration from R-CNN [24] and Faster R-CNN [25],
Temporal Action Localization network (TAL-Net) exploits
temporal context from the videos for both proposal generation
and classification [26], [27]. Action proposal based networks
are effective but require an exhaustive search of the complete
video, making them computationally expensive and infeasi-
ble, especially in very long videos [26].

B. GRAPH NEURAL NETWORKS
The learning of contextual relationships of sports actions
in videos can be modelled using graph-based methods.
A context graphs represents the similarities among videos
and the relationship between segments of a video [28].
The graph is learned using a context walk with a fixed
number of steps and creating a conditional distribution
over all super voxels. The Segment Action proposals are
predicted using Conditional Random Fields. Thus, context
graphs reduce the search space and avoid a need for a
sliding window over a complete action. Soomro et al. [28]
learns context relationships and represents them by a graph
for each video, where super-voxels form the nodes and
directed edges capture the spatial relations between them.
Graph based methods work by modelling similarities and
relationships between segments of a video to be able to form
a graph and cluster similar information making it easier to
classify them. The Graph Convolutional Networks (GCN)
is also used to capture the spatial and temporal pattern in
the data [29], [30]. A spatio-temporal graph convolution is
applied on pose estimation from videos to generate a higher-
level feature maps using a graph. These feature maps are
then classified to corresponding action categories using a
classifier with softmax outputs. The GCN can also be used to
explicitly model appearance and motion similarities between
video moments with a weakly supervised method [30].
A stacked version of GCN, Stacked Temporal GCN (ST-
GCN) represents elements related to the actions such as
actors, objects, etc. as nodes to better characterize the
complex actions in videos [31]. The nodes are connected
along the spatial and temporal dimensions instead of having
body joints as nodes of the graph.

C. RECURRENT NEURAL NETWORKS MODELS
The Recurrent Neural Networks (RNN) are one of the
most popular methods for modelling temporal information
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FIGURE 1. Illustration of physical parameter extraction framework from diving action video.

in sequences [32], [33], [34]. A MultiLSTM model further
expands the temporal relation by using multiple input and
output connections of an LSTM [35]. The work of [36]
used a novel two-stream feedback network instead of a
standard LSTM layer. The two-stream consists of the upper
stream, which focuses on the interpretation of the frames,
and the lower stream that models the temporal relations. The
Kanojia et al. [6] presented a novel attention guided LSTM
architecture with an encoder and decoder network for local-
izing actions in diving motion. The attention network utilizes
the global context from the encoder and learns to focus on the
diver during the dive without any such supervision. However,
apart from being hard to correctly train, recurrent neural
networks only capture implicit relationships between certain
high motion actions [37].

D. TEMPORAL CONVOLUTION NETWORKS
While RNN variants and graph-based models are hard to
train [37], they also tend to capture only implicit relationships
between specific motion actions and have a limited span of
attention. On the other hand, TCNs can process long-range
patterns due to the kernels sharing weight for all time steps.
The work by Lea et al. [38] was the first to use TCN networks
for action detection and segmentation. They presented two
TCN variants. First, Encoder-Decoder TCN hierarchically
modelled the actions using temporal convolutions, pooling
and upsampling. Second, Dilated TCN used a deep stack of
dilated convolutions with skip connections. They showed that
both TCN models outperformed their Bidirectional LSTM
network [39] and were much faster to train. More recent
variants of TCN for action detection are PDAN [40], MS-
TCN [41] and Multi-tower TCN [42]. MS-TCN extend the
work of Lea et al. [38] by stacking multiple dilated TCNs
to form an ensemble a multi-stage networks. Each stage
produces an initial prediction that is refined by the next one
and by computing the loss after each stage. Multi-tower TCN
also uses multiple TCN networks, but instead of forming an

ensemble, the networks are stacked in parallel. The outputs
from all the TCN towers (having different receptive fields) are
fused before passing through the softmax layer. The intuition
behind a multi-tower structure is to use multiple receptive
fields to processes information at various temporal scales to
deal with different event frequencies. One drawback of using
convolutions is that they assign the same importance to each
local feature in the kernel, preventing kernels from selecting
the region of interest effectively. In an attempt to remedy
this, Dai et al. [40] proposed the Pyramid Dilated Attention
Network (PDAN) that employs dilated attention layers to
allocate attentional weights to local frames in the kernel.
Inspired by the success and better performance of TCNs and
its ability to learn short-term and long-term temporal relations
over other sequence modelling methods [43], we develop a
temporal convolution network for diving action localization
in this work.

E. SPORTS POSE
There has been a tremendous success in estimating human
skeleton pose in images using deep learning methods. The
works based on stacked hour glass newtorks [44], [45], [46]
achieved remarkable performance on different datasets.
OpenPose [47] employs Part Affinity Fields (PAF) to support
bottom-up estimation. The authors of DeepHR Net [46]
exploit multi-scale high-resolution networks to improve the
feature representation. The UniPose model [48] based on
Waterfall Atrous Spatial Pooling architecture, achieves state-
of-art-results on several pose estimation metrics. The recent
VitPose model [49] explores the potential of plain and non-
hierarchical vision transformers [50] and provides a simple
yet effective vision transformer baseline for pose estimation
tasks. A very recent, also based on transformers, uses a pose
regression network to map images to keypoint co-ordinates,
without resorting to intermediate representations [51].

A lot of methods address human motion analysis in sports
videos, differently. Based on self-supervised learning, the

VOLUME 11, 2023 37751



P. Murthy et al.: DiveNet: Dive Action Localization and Physical Pose Parameter Extraction

FIGURE 2. Illustration of diving action localization in an untrimmed video.

FIGURE 3. Action Localization using class labels (NoDive, Start, Dive, End) for video frames. The dotted vertical blue line
and green line represent the start frame and end frame of the diving action respectively.

suggested method in [52] employs pseudo labels as a self-
supervised training strategy, together with a pseudo label
filtering method, in the disciplines of triple and long jump.
The study, described in [53], leads to the dataset Kanoya,
which is composed of numerous series of videos of gymnasts
doing acrobatic motions and proposes several refining
approaches to train OpenPose [47] for extreme human poses
in sports. The method offered by [54] introduces Video
Pose Distillation (VPD), a weakly supervised technique for
learning features for novel video domains, such as individual
sports that challenge pose estimation and shows the benefits
of VPD on four varied sports video datasets: diving, floor
exercises, tennis and figure skating, with fine grained action
labels. The recent works of [55] combines the use of computer
vision algorithms and fully convolutional neural networks.
The proposed marker-less 2D swimmer pose estimation
approach estimates the pose of a swimmer during exercise
while guaranteeing adequate measurement accuracy. While
the work of [56] presents a procedure-aware technique
for action quality assessment, trained via a new temporal
segmentation attention module, it also constructs a new fine-
grained dataset, termed FineDiving, created on various diving
events with detailed annotations on action procedures. The
work described in [57], provides an alternative unsupervised
representation learning technique based on videos captured
by a single RGB camera with a focus on diving sports. First,
the model uses a spatial transformer network to identify the
person across all frames and then encodes the subject into

time-variant and time-invariant components. They sample
with temporally close, distant and intermediate frames, given
a reference frame.

While these methods focuses on poses, our goal is to
extract a subset of physical parameters from diving action
videos as accurate as possible. We use our methodology to
segment untrimmed videos with low latency in order to locate
specific motions in time, regress 2D joints and COM and
estimate parameters such as the dive peak height as well as
the precise COM motion trajectory.

III. DIVING ACTION LOCALIZATION
The diving sport involves complex body movements per-
formed by an athlete in a short time (2-5 seconds). We apply
the task of temporal action localization for diving motion.
First, the dive is demarcated by detecting the start frame
and end frame of the motion as shown in Figure 2. The
start frame is a representative frame where the force exerted
by the athlete to the springboard is zero. The end frame
of the motion is when the athlete touches the water. Next,
we select three frame step function to represent the boundary
classes for each diving motion. Additionally, we define
two more classes, namely ‘‘NoDive’’ and ‘‘Dive’’. NoDive
class comprise all the frames not representing the diving
motion. These frames usually correspond to the diver
standing on the board or entering the water. The Dive class
represents all frames where the diver is in the air during
the motion. The class representation for the diving motion
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FIGURE 4. Images from the recorded DSV diving dataset. Figure (a), (b), (c) and (d) shows examplar frames of a diving video representing the classes
NoDive, Start, Dive, End, respectively.

FIGURE 5. Diving action localization - TCN block architecture.

classification is as shown in Figure 3. Examples of diver pose
representing different classes in diving motion are shown
in Figure 4.
Figure 5 illustrates the overall architecture of the diving

action localization framework. We first locate the person
with a square bounding box. We crop the person represented
in the image and provide it as an input (I ) to the Feature
Extractor Network. The extracted features for each image
are concatenated and fed to Temporal Convolutional Network
(TCN) to get the final class scores. The input image is cropped
with the detected bounding boxes containing the diver.
The cropped images are passed through feature extractor
backbone network, which extracts high-level features from
the images. Given a video sequence V =

∑N
t=1{It } of

length N , the feature extractor networks extracts features
F t for each cropped frame I t. The N features are split into
temporal windows of length T and used as input for the
temporal encoder. The temporal encoder consists of multiple
TCN blocks. The higher the number of TCN blocks leads

to higher receptive field i.e. the network has larger context
and can see farther in time. The output from the last TCN
block is T features for each item of the sequence, which are
concatenated and passed through multiple 1D convolutional
layers to down sample the feature size to IR512. Finally, the
softmax function is applied over the outputs of linear layers.
The linear layer outputs represent the confidence score for
each class, and the softmax layer squashes and normalizes
the score of each class to be between 0 and 1.
We use two different types of backbone feature extraction
networks for action localization:

• ResNet: The ResNet-18 is used as a backbone feature
extractor to segment diving frames in the specified
classes. The feature vector of 512 represents a single
frame as input to the classifier.

• Human Mesh Recovery: We use HMR model from [1]
as a backbone feature extractor to achieve the motion
segmentation. We use feature vector size of 2048 to
represent the pose of the person as input.
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FIGURE 6. Diving motion peak height estimation.

The temporal encoder as shown in Figure 5 is inspired
by [4] and comprises of 3 TCN blocks, each having a residual
connection to the previous block. Each TCN block contains
two sets of 1D convolutional layer, group normalization
layers, ReLUs for non-linearity and dropout layers with a
probability of 0.5 for regularization. The concatenated feature
vectors from the backbone network are input to the temporal
encoder. A sequence of length T {φ1, φ2, . . . , φT}, where φt
is the feature vector of the t th frame, is fed into the encoder.
The output of the proposed network is a single vector ôt for
each temporal window as shown in equation (2). The target
vector y is one hot encoding, which has the class label one for
positive classes and zero for negative classes. The weights
vector w has value wc for the respective c class. We set the
weights vector wc empirically to [0.15, 0.35, 0.15, 0.35] (see
section IX-D for more details). We use a weighted cross
entropy loss function as presented in equation, for training,
where C is the number of output classes:

L = −

C∑
i=1

wi · yi · log(ôt )), (1)

ôt = softmax(fTCN (φ1, φ2, . . . .φT )). (2)

IV. PEAK DIVE HEIGHT ESTIMATION
The dive peak height estimation uses the localized action time
computed using the action localization TCN Network. The
Figure 6 shows typical COM trajectory and its peak height
Ymax . The total time Tdive of the diving motion is computed
using the equation (3). The Fend and Fstart represents the
frame numbers in the untrimmed video. The Vfreq is the
recorded video frequency of the untrimmed video, they relate
as follows:

1Tdive =
(Fend − Fstart )

Vfreq
(3)

The highest point of the trajectory Ymax is computed as:

Ymax = Ystart +
1
2g

(
Yend − Ystart

1TDive
+
g1TDive

2

)2

, (4)

based on [18].
The Ystart is the vertical position of the body COM

represented in meters at the start of the dive relative to the
water-level. Yend represents the body COMposition at the end
of the dive above water. And g is the gravitational constant.
The assumed values for Yend = 1 and Ystart = Ystart = h0+1.
The height h0 is the springboard height above the water and is
assumed to be known for a given diving video, e.g. h0 = 3 for
a three meter tower. Typically, we assume the body COM for
an average athlete as 1m above the springboard. Note that in
case the exact measurements of height and body mass of the
diver are available, then a more precise COM position can be
used instead of assumed values.

The following section provides the mathematical deriva-
tion for the Equation 4.

A. MATHEMATICAL DERIVATION
We use the following Kinematics equation for projectile
motion, where a position of the COMof an object is described
with p(t) = [X (t),Y (t)]T as a point in a 2D plane and
its corresponding velocity v(t) = [U (t),V (t)]T . Since the
vertical (Y-axis) component only contributes to the height,
we consider only the y-component of the COM position and
velocity.

Y (t) = Ystart + Vstart +
1
2
at2 (5)

V (t) = Vstart + at (6)

Furthermore, we are only interested in the trajectory of the
COM in the air, the only acceleration acting on the COM
is gravity, i.e. a = −g. Here, t0 is the initial time and
Ystart = Y (0),Vstart = V (0) are the initial position and
velocity in y-direction, respectively. The highest point (Ymax)
can now be computed as follows. We know, the velocity at
this point in time (tmax) is 0 i.e. (V (tmax) = 0).
Using equation (6) we can compute this time via:

0 = Vstart − gtmax

⇒ tmax =
Vstart
g

(7)

Using equation (5 and 7) we obtain:

Ymax = Ystart + Vstart tmax −
1
2
gt2max

= Ystart + Vstart
Vstart
g

−
1
2
g

(
Vstart
g

)2

= Ystart +
(Vstart )2

2g
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FIGURE 7. The architecture of DiveNet pose regression model. The input image(HxW) is fed through the ResNet backbone
and Waterfall Atrous Spatial Pyramid(WASP) module to obtain 256 feature channels at reduced resolution by a factor of 8.
The decoder module generates 17 heatmaps, one per 16 joints and one for COM, followed by a local max operation which
produces 16 keypoints and 1 COM (as shown in output image with a red circle).

Now, utilizing (6) we can write: Vstart = V (t) + gt. We can
now approximate Vstart via an average approximation as:

Vstart ≈ V (
1TDive

2
) + g

1TDive
2

≈
1Y

1TDive
+ g

1TDive
2

≈
Ystart − Yend

1TDive
+ g

1TDive
2

. (8)

Inserting this into equation (8) gives:

Ymax = Ystart +
1
2g

(
Ystart − Yend

1TDive
+
g1TDive

2

)2

, (9)

as required.

V. DIVER POSE
This following section describes the pose regression module
of the DiveNet architecture.

A. POSE REGRESSION NETWORK
The Figure 7 shows the DiveNet Pose regression net-
work architecture which uses a ResNet-101 backbone
feature extractor network. A Waterfall Atrous Spatial Pyra-
mid(WASP)module inspired by [48] replaces the final layers.
The decoder receives 256 low level feature maps from the
first block of the ResNet backbone and 256 feature maps
from WASP. The feature maps are aggregated and processed
through convolutional layers, dropout layers (p = 0.5), and a
final bilinear interpolation to scale to the original input size
after a max pooling operation to match the dimensions of the
inputs. We change the final decoder layers to generate K + 1
heatmaps where K is the number joints along with single
heatmaps for the COM. The probability distributions were
obtained by applying a softmax function. We train DiveNet
pose regression network to regress 2D diving pose along with
COM. As a criterion, the mean squared error (squared L2
norm) was used between ground the true heatmaps (Hxi ) and

predicted heatmaps (Hyi ),

Lossmse =
1
n

n∑
i=1

(Hxi − Hyi )
2, (10)

where, Hxi = [h1, h2, .., h16, cxi] and Hyi = [h1, h2, .., h16
, cyi]. Here, h1, h2, .., h16 are the heatmaps of joints and cxi
and cyi are heatmaps of the prediction and ground truth COM,
respectively.

B. CENTER OF MASS TRAJECTORY
We compute the COM trajectory as illustrated in Figure 8a.
First, we compute the midpoints of bone segment represent-
ing bone centroids (a). Next, we compute a weighted sum
of centroids to represent the COM (see Figure 8b). In order
to compute the COM, we used a weighted sum of bone
segment centroids as proposed in [58], [59], and [60]. Finally,
we compute the COM on each frame to obtain the resulting
trajectory in the image space (see Figure 8c).

VI. PROPOSED DIVING PLANE
HOMOGRAPHY ESTIMATION
In this section, we derive how we estimate a homography
to identify points from the 2D image plane from unknown
camera view to a physical 2D plane. A homography provides
a projective geometry of two cameras and a world plane.
In simple terms, homographymaps images of points which lie
on a world plane from one camera view to another. However,
our setup consists of a single camera and without any known
camera calibration procedure or precise depth information
available about diving plane.

We begin with the motion assumptions from [18] for water
diving. The primary assumption is that the divers COM
follows a projectile motion while the diver is airborne. Thus,
the COM can be completely described with a 2D parabola
in a physical 2D plane. We aim to register the physical 2D
plane (looking from an orthogonal point of view onto the
plane) with the camera plane (might have a non-orthogonal
view angle) via the homography estimation. The Figure 9
shows the unknown recording image view plane, physical
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FIGURE 8. Illustration of the COM computation. First, we compute the midpoints of bone segments representing bone centroids (a). Next,
we compute the COM by a weighted sum of centroids (b). The COM trajectory in the image space (c).

FIGURE 9. Diving motion COM trajectory estimation using homography.

diving plane and selected four center of mass trajectory points
for registration. The mathematical derivation to approximate
physical peak heights derivation is explained in section IV-A.
The homography

H =

 h11, h12, h13
h21, h22, h23
h31, h32, h33


maps the image coordinates (x, y) to the respective physical
plane (x ′, y′), i.e. x ′

y′

1

 ∼ H

 x ′

y′

1

 (11)

x ′
=
h11x + h12y+ h13
h31x + h32y+ h33

, (12)

y′ =
h21x + h22y+ h23
h31x + h32y+ h33

. (13)

Given 4 points, a homography could be solved with a unity
constraint to cover the last degree of freedom, i.e.

Ah = 0, (14)

s.t. ∥h∥2 = 1, (15)

with h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T and A
can be derived by rearranging (12), (13).

Via the COM tracking from section V-B, we can easily
identify multiple points in the image plane ((x, y)i) that are
not lying on one line. The challenge in the present setting is
that we can only estimate the respective physical points in
the y-direction, via the equation (5) and the respective time-
stamp of the dive. However, we do not have any information
about the x-direction, since no starting angle is given that
could be used to estimate this component via a starting
velocity.

In this work, we propose to estimate a coefficients of a
quadratic function jointly with the homography that defines
the x coordinates, together with a relation on certain points
that have to hold via the Cayley-Klein metric, defined via the
cross-ratio.

To obtain a minimal number of parameters to estimate,
we describe the projectile motion in the physical plane, via
a parabola centered at the highest point a1 = Ymax , with the
restriction that we only allow concave functions, i.e.

y(t) = −a0x(t)2 + Ymax , (16)

s.t. a0 > 0. (17)

This can also be formulated as unconstrained equation

y(t) = − exp(ã0)x(t)2 + Ymax , (18)
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with ã0 = log a0. The x(t)− coordinate for the respective
point y(t) on the parabola can be described as

x(t) =


−

√
−y(t) + Ymax

exp(ã0)
: t > tmax√

−y(t) + Ymax
exp(ã0)

: t ≤ tmax

, (19)

with tmax given via equation (7). With (19), (18) and we can
describe coordinates (x ′, y′) on the physical plane for different
instances in time. However, to do this we still need to estimate
ã0, which leads to, at least, one condition for the x-direction
on the physical plane. To this end, we create a ratio that has
to match between to two coordinate systems. Let us start by
computing the time (tf ) that the COM needs to fall from the
highest point (Ymax) at time tmax until the y position is back to
the same height as the initial height (Ystart ). Looking at (7) at
t = tmax , we have Vstart = 0 and Ystart = Ymax , thus the time
until the initial height is reached again, can be computed by
rearranging the equation

Ystart = Ymax −
gt2f
2

(20)

⇒ tf =

√
2(Ymax − Ystart )

g
. (21)

Thus the total time from take-off until the same height is
reached again is tr = tmax + tf . The time span tr describes
the amount of time the diver needs to jump, pass through the
highest point and come back to the same height. Together
with t0 = 0 and tmax , the respective points (p(t)) of the COM
trajectory in the image plane, we can span a triangle in the 2D
plane, were the divers COM lies in. We use this fact to create
a relation between a line pointing along the x direction (in the
plane) and the y direction (in the plane) defined as follows

d img
x = p(tr ) − p(t0) (22)

pavg = p(t0) +
1
2
(d img
x ) (23)

d img
y = Ymax − (pavg). (24)

To obtain the relation, we exploit the Cayley-Klein metric,
which is based on the cross ratio that is invariant to
perspective changes. The metric measures the distance
between two points a and b, denoted as |ab|, with respect to
a quadric, e.g. a circle, with intersection points q and p; it is
defined as

d(a, b) = C log(
|bp||qa|
|ap||qb|

), (25)

for a constant C . Since we have two distances (x direction
and y direction) that we compare we define one quadric for
both distances, defined to be the circle with center pavg and
radius r = ∥d img

y ∥2. The circle can thus be parametrized as

x(f ) = pavg + r cos(f ) (26)

y(f ) = pavg + r sin(f ) (27)

The points p and q for the respective directions (x and y,
thus denoted as px , qx and py, qy respectively) can now be
computed via the intersection point f ∗

x and f ∗
y of the following

lines with the circle

px = pavg + f ∗
x d

img
x (28)

qx = pavg − f ∗
x d

img
x (29)

py = pavg + f ∗
y d

img
y (30)

qy = pavg − f ∗
y d

img
y . (31)

The intersections can thus be computed to be

f ∗
x =

√√√√ r2

∥d img
x ∥

2
2

(32)

f ∗
y =

√√√√ r2

∥d img
y ∥

2
2

. (33)

Now we can compute the relation between x and y direction
via a quotient of the following distances

relxy =
d(p(tr ), pavg)
d(Ymax , pavg)

. (34)

Note that the constant C cancels out, since we use the same
quadric for both distances.
This finally gives a relation for the x direction in the physical
plane that we can use in the estimation of the homography
with included parabola constraint to obtain the remaining
degree of freedom for the parabola. The distance in x
direction, in the physical plane can thus be computed from
the velocity in y direction, multiplied with the ratio and the
time from the time span tf , as

xphy(tf ) =
−(Ymax − Ystart )

tf
relxytf (35)

= −relxy(Ymax − Ystart ). (36)

The final optimization problem to solve reads

min
h̃

∥Ah̃∥2 (37)

s.t. ∥h∥2 = 1 ∧ xphy(tf ) = x(tf ), (38)

were h̃ = [hT , ã0]T .

VII. IMPLEMENTATION DETAILS
In this section, we provide details about the diving datasets
and the training procedure of the dive-net.

A. DIVING DATASET
1) DSV DATASET
We use a recorded DSV diving dataset consisting of
450 diving sequences covering 15 hours of video data, with
each motion clip lasting approximately 2 minutes. The video
differs in varying camera viewpoints and springboard heights.
The dataset consists of diving actions at four different levels
of diving height: 3m, 5m, 7.5m, 10 meters. The diving
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action within a single video sequence ranges from 2 to
5 seconds, making the localization problemmuch harder. The
dataset annotations consist of two temporal boundary marker
frames denoting the beginning and end of the diving action.
The annotations also consist of 2D keypoints representing
16 joints. Note, the recorded dataset videos are with a
static camera with a frame rate of 60Hz and a resolution of
3840 × 2160 px. To the best of our knowledge, this is the
first publicly available dataset with a static camera setup for
diving sports. This enables us to compute homography to the
diving plane via our newly proposed homography estimation
method.

We use a train, validation and test split of 60%, 15% and
25%, respectively.

2) IAT DATASET
IAT dataset consists of 100 Olympic diving performance
television broadcasting videos performed over 3 meter high
springboard. The video differs in varying camera viewpoints.
The dataset annotations consist of two temporal markers
to notify the beginning and end of the diving action. The
dataset annotations consist of two temporal boundary marker
frames denoting the beginning and end of the diving action.
The annotations also consist of 2D keypoints representing
16 joints. The videos involve a moving camera and is
recorded with a frame rate of 25Hz and a resolution of
720 × 576 px.

3) SPORTSCAP
The dataset includes per-frame action labels, manually
annotated poses, and action evaluations from professional
referees of various challenging sports video clips [8].
The dataset separates sports activity into two categories:
competitive sports and daily exercises. Competitive sports
comprise balance beam, competitive diving, uneven bars,
vault-women, hurdling, pole vault, and high jump, while
daily exercises include boxing, keep-fit, and badminton. The
dataset consists of 640 videos (110K frames) with 450,000
annotated skeletons of 25 joints and accompanying bounding
boxes. We trained our model using only diving sports 2d
pose data, totaling 23635 frames. Although, the frames in
the dataset are annotated for different video sequence, the
annotations are only available for intermittent frames. Hence,
we use the dataset for training purposes only and do not use
it for evaluations.

B. EXPERIMENTAL SETUP
The images used for training and evaluation are sampled
uniformly from untrimmed diving videos at a rate of
60 frames per second. For training, we only use the frames
involving diving motion. The images are cropped to size
224×224 around the bounding box containing the diver. The
cropped images are converted into features on per frame basis
using one of the feature extractors described in section III.
The model is trained with temporal sequences of length
T=17. The frames of a diving sequence are split into temporal

windows of length 17. These set of features are used as inputs
to the temporal encoder network.

C. TRAINING
We use TCN temporal encoder to have a receptive field of 17.
The 1D convolution layers have kernels size of 3 and padding
size of 2. The dilation size is set to 1.We train all the networks
for 50 epochs with a batch size of 16. Adam Optimiser [61]
is used for the optimisation of the networks. The dropout rate
is set to 0.5. We use three temporal blocks. The learning rate
and weight decay are set to 0.00001 and 0.001, respectively.
The weights used for cross-entropy loss are [.15,.35,.15,.35].
The model is implemented in Python 3.6 using PyTorch on
NVIDIA GeForce GTX 1080 GPU. We train DSV diving
dataset with the following split: 300 sequences for training,
50 sequences for validation and 100 sequences for testing.
The frames in each sequence belong to one of the four
classes (No Dive, Start, Mid, End). We train the DiveNet-
pose regression model for 50 epochs. Adam was used as an
optimizer with 0.0001 learning rate. The accuracy stabilized
at around 17 epochs with batch size of 8. We train the model
on DSV, IAT and Sportscap [8] Dataset.

VIII. EVALUATION RESULTS
A. ACTION LOCALIZATION
This section discusses the result of various experiments we
performed to determine the optimal parameters for the action
localizationmodel for diving. An example of ground truth and
predicted output probabilities is shown in Figure 10. For the
given video sequence, the start and end markers are predicted
within a single frame latency with respect to target temporal
markers. The predicted pink and purple coloured area shows
the latency of start and end boundary markers respectively
over the bold lines representing the ground truth.

We evaluate our diving action localization model with
two metrics: (i) classification accuracy of the frame and (ii)
latency in the position of boundary markers.

a: CLASSIFICATION ACCURACY
The mean classification accuracy is the ratio of the number
of correctly classified frames to the total number of input
frames representing boundary classes. Due to the presence of
highly imbalanced classes (start and end class frames having
very low representation), mean accuracy can be misleading
and incorrect metric. To this end, we further analyze the
performance of a model with a confusion matrix as shown in
Figure 12. The confusion matrix clearly shows a low number
of misclassification for all the classes, which is essential for
accurate localization of the diving motion.

b: LOCALIZATION LATENCY
We also evaluate the latency of the predicted boundary
markers of the trained model. Latency gives additional
information about how far are the start and end markers
predicted from the ground truth in time. For example, given a
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FIGURE 10. The ground truth and predicted probability signals for the 4 class model (No
Dive, Start, Dive, End). Bold lines represent the ground truth probability signal, and
coloured areas represent the predicted probabilities.

FIGURE 11. Histogram of the latency measure of the estimated start and end boundary markers. The y-axis represents the
number of sequences and x-axis represents the lag in frames. The negative values on x-axis represents prediction prior to
the reference frame and positive values represents prediction after the reference frame.

FIGURE 12. The confusion matrix shows the model accuracy over test set.
The model uses a HMR backbone network with 17 frames as input.

sequence where the start marker is the ith frame of the video,
and the network predicts the jth frame to be the start marker,
the sequence is termed as accurately detection if the latency
|(j − i)| lies within a threshold limit of 1. We measure the
percentage of test sequences that are within the low latency
threshold limit. The higher the percentage over the test set,
the better the predictions (see Figure 11).

TABLE 1. The PCK@0.25 accuracy metric showing the accuracy of pose
regression models on DSV and IAT test dataset.

B. 2D POSE REGRESSION
We evaluate our 2D pose regressor in comparision to state-
of-the-art 2D human pose regression models on diving-sports
datasets. We use Percentage of Correct Keypoints normalized
using headlength (PCKh). The predicted key point is assumed
correct when it lies within a certain normalized threshold
distance of the head length. For example, PCKh@0.25 metric
is the percentage of correct keypoints at a threshold of
0.25% times of the head length. We found different threshold
levels (typically 0.5, and 0.2) of PCK-h accuracy reported
in literature [10], [11]. Moreover, we observed empirically
that the threshold of 0.25 represents the joint area in pixels
in the test set images reasonably. Hence, we use 0.25 as
one representative threshold of PCK-h metric, in Table 1.
The performance on other thresholds can be observed in
Figure 13, which shows the diverging accuracy performances
on the diving test dataset (DSV - (a), IAT- (b)) for various
models at different threshold levels (x-axis represents the
different thresholds). The figure clearly shows that the
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FIGURE 13. The PCK-h plot compares the accuracy of different models at
different PCK-h thresholds. The plot (a) shows the performance on DSV
test dataset and plot (b) shows the performance on IAT test
dataset.

DiveNet Model gives superior performance for different
thresholds by achieving over 90% accuracy on both datasets
at the normalized threshold distance of 0.5.

The pose regression accuracy scores are measured in PCK
and can be found in Table 1. We found that Unipose performs
best in all the state-of-the-art models without any training on a
diving dataset. Hence, we further finetuned the uniposemodel
(named Unipose-FT) on the diving dataset and obtained an
accuracy of 72.80% on DSV and 70.43% on IAT dataset.
DiveNet achieved a slightly higher PCK@0.25 accuracy of
73.78% on DSV dataset but a slightly lower accuracy of
67.36% on the IAT dataset.

Note that beside the competitive performance of DiveNet
regarding pose estimation, the approach provides increased
accuracy compared to the other approaches in estimating
physical parameters, as discussed in section VIII-C
Figure 14 depicts scenarios where DiveNet outperforms

other models in terms of generating more realistic and precise
joint locations. We can observe in most cases that the models

were unable to correctly identify the upper body, resulting
in a poor head position. In first row, SGH-8, OpenPose and
Poseur failed to detect and predicted the left arm completely.
The left elbowwas mistaken for the left knee by DeepHRNet.
OpenPose and DeepHRNet failed completely for the head.
Due to its inability to detect both ankles, Unipose gave lesser
lengths for the legs. While DiveNet was able to achieve
better outcomes for the hands, legs, and head. The images
in the second row have background glare from lights, making
the scenario more difficult.The SGH-8 incorrectly predicted
hip and shoulder as left foot, resulting in incorrect head
prediction. Only the left hand could be reliably predicted by
OpenPose, while Poseur otherwise failed to detect any joint.
Right hand and right leg were combined with left leg via
DeepHRNet. Unipose confused right hand with background.
While it is clear that DiveNet offers a better answer in this
case. The third row shows an example with a blurred image
of a diver about to complete a dive. Due to the blurry image
in the hip area, none of the models were able to accurately
estimate the left hip joint. SHG-8 was unable to detect the
left leg due to occlusion. OpenPose failed miserably and
predicted the right leg as the left hand. Poseur failed to
detect the upper part of body. DeepHRNet projected legs
as hands because it believed the individual to be standing
upright. Unipose outperforms other models in the hands,
legs, and shoulders, while DiveNet outperforms Unipose in
the whole skeleton, notably in the hands, hips, shoulders,
and head. Similar to the second row, the pose in the fourth
row is challenging due to a high left body occlusion. This
scenario involves a position in which the hands go around
the legs, causing SHG-8 and DeepHRNet to interpret the
left hand as the right leg. OpenPose was unable to identify
the upper body, and Unipose failed to predict the left elbow
correctly. We can see that, despite the difficult circumstances,
DiveNet’s prediction was fairly accurate. In the fifth row,
SHG-8 failed for the right leg and OpenPose failed for the
left leg. Additionally, SHG-8 has poor predictions for hands.
DeepHRNet failed for the right hand, while Unipose failed
for both hands and the right ankle. When compared to all
other models, DiveNet provides more accurate hands, legs,
and shoulder position. The sixth, seventh, and eighth rows
all include a situation with additional individuals seated in
the background. We can observe in OpenPose, Poseur and
DeepHRNet in row six, and DeepHRNet in rows seven and
eight, that they failed in this case, and anticipated a diver
from the background. SHG-8 failed in rows six and eight
for hip joints and right hand respectively. In rows seven and
eight, OpenPose failed for the right hand. Unipose outper-
formed other models, although DiveNet’s results were more
precise and accurate, particularly for the hips, shoulders,
and legs.

Figure 15 depicts the extreme conditions under which
pose regression models failed for various body joints. This
figure also depicts the limitation scenarios where DiveNet
predictions were less accurate. The first row shows the
complex pose which are difficult to estimate. The SHG-8
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FIGURE 14. The figures demonstrate the 2D pose estimate results of various models on the DSV Diving set. Divenet shows superior pose
regression results on challenging diving images.

and DeepHRNet messed up the hands and legs completely.
As a result, SHG-8 misjudged the position of the shoulder,
mistaking the hip for the position of the head. Only the left
knee and ankle were predicted by OpenPose, and they were
confused with the right ones. Unipose mistook the left hand

for the right one when making its prediction. DiveNet offers a
more effective solution, although it fails to accurately predict
legs. Due to the background, none of the models were able
to estimate the hands correctly in the second or third row.
DiveNet’s predictions for the second row may be seen with
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FIGURE 15. The figures demonstrate the predictions of various models on exceedingly challenging scenarios in the DSV and IAT Diving sets. The last
column shows the current limitations of DiveNet’s predictions on challeging scenarios.

FIGURE 16. The plots show the COM error distribution of Unipose-FT (left) and DiveNet (right) model. The median COM error (left-orange line) of
Unipose-FT model is 36.08 pixels and 95 percentile error threshold (left-red line) lies at 60.76 pixels. The median COM error of DiveNet
(right-orange line) is significantly lower, at 5.87 pixels and the 95 percentile threshold (right-red line) lies at 16.64 pixels.

some offsets for the hands and right side of the body. In the
third row, Unipose and DiveNet incorrectly identified the left
leg as the right and struggled to identify the left hand. The
last row illustrates the situation where the upper body area
around the face is indistinct and has background noise. The
skin tone seems to hide the hands and face, making them
hardly apparent. We can see that DeepHRNet was ineffective
in predicting any joint positions. All of the models, including
DiveNet, failed to predict hands.

C. PHYSICAL PARAMETER ACCURACY
We measure different physical parameters of diving perfor-
mance: COM, Hip Angle and Knee angle. Also, we only
compareDiveNet withUnipose-FT instead of UniposeModel
inorder to have fair comparison of models with same training
setup and regressing a same number of joints. The Table 2
shows the accuracy of the COM prediction over the test
set. The median COM prediction error is 5.87 pixels on
DSV and 6.05 pixels on IAT dataset. This is significantly
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FIGURE 17. The plots show 2D joint angle error distribution of Hip Angles and Knee Angles for Unipose-FT (left) and
DiveNet (right). The median angle error (left-orange line) of Unipose-FT model is 8.28 degrees and 95 percentile error
threshold (left-red line) lies at 35.435 degrees. The median angle error of DiveNet (right-orange line) is marginally higher
at 8.52 degrees and the 95 percentile threshold (right-red line) lies at 38.96 degrees.

TABLE 2. The table shows the COM physical parameter mean pixel errors
over different height jumps performed in the test set of diving datasets.

TABLE 3. The table shows a comparison of the mean joint angle errors in
degrees over different height jumps in the diving test set. The lower the
angle value, the better is the model performance. We observed less than
1 degree difference and no significant variation in Hip angle and Knee
angle error between the two models.

TABLE 4. The table shows the sensitivity in peak height estimation of the
diving trajectory measured in meters over different height jumps
performed in the test set of DSV diving datasets.

lower than Unipose-FT model which results in 34.30 and
37.00 pixel on DSV and IAT datasets respectively. Due to
the lack of availability of actual transformation of images
to the real diving trajectory plane, we restrict our evaluation
to pixel space. The mean joint angle error are as shown
in Table 3 for hip and knee joints are 10.39 degrees
and 9.73 degrees respectively. The peak height estimation
sensitivity is influenced by the action localization module.
We observed a mean peak height error of 0.14 meters on
DSV dataset and 0.21 meters on the IAT dataset as shown
in Table 4. The Figure 16 shows the error distribution plot
for COM (left) and joint angles (right plot). The COM

error distribution shows 95 percentile of errors lie under
16.64 pixels for the complete diving testset. Similarly, the
Figure 17 show the errors distribution plot of 2D angle
errors of two trained models . The median angle error of
Unipose-FTmodel is 8.2825 and 95 percentile error threshold
lies at 35.435 degrees. The median angle error of DiveNet
is marginal higher at 8.52 degrees and the 95 percentile
threshold lies at 38.96 degrees.

IX. CONCLUSION
We present a diving motion analysis framework, DiveNet to
extract performance parameters. A generic action localization
(or recognition) of daily activities often performs well for
most actions. However, the diving motion, which involves
complex poses and manoeuvres, necessitates a specialized
network to accurately localize and segment long untrimmed
videos. We propose a diving action localization network,
a novel temporal convolution network-based block that
accurately localizes action with low latency using Spatio-
temporal features over video frames. Our proposed method
accurately predicts the start and end of the diving motion with
more than 90% classification accuracy and latency accuracy
of 90% within a threshold of [−1, 1] marker positions.
We also investigate the optimal context required to achieve
high localization accuracy with low latency. In addition,
we train a dive pose regression model, which outperforms
all the 2D pose regression models on diving dataset. The
trained pose regressor is robust for all diving heights and
provided accurate poses even in challenging scenarios. The
trained models are used to achieve a high accuracy on
COM trajectory estimation around 6 pixels and 2D joint
angle estimation accuracy around 10 degrees. We believe
the presented physical parameter extraction can easily be
generalized to other sports action tasks. Thus, we would
extend the learning to other sports, especially sports with
varying speeds of motion, as part of future work.
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TABLE 5. Quantitative results: Ablation study results of different type of
feature extractor with different input length. For instance, HMR5 is
Human Mesh Recovery model with five frames as input. The metric is per
frame classification accuracy, the higher the better. The top two best
results are highlighted in bold.

APPENDIX
ABLATION STUDIES
A. IMPORTANCE OF BALANCED SAMPLING
The diving dataset consists of temporal diving motion
boundary markers denoted as a step function consist-
ing of three frames (the boundary frame and adjacent
+/ − 1 frames). With such a representation, the data
is highly imbalanced with 95% of frames belonging to
class ‘‘Dive’’ and ‘‘NoDive’’. The problem of imbalanced
classes is, they lead to representation bias in classification
results, leading to erroneous conclusions [7]. To this end,
we use balanced sampling to sample an equal number
of representatives for each class randomly at each epoch
with weighted cross-entropy loss to improve the model
performance.

B. BACKBONE FEATURE EXTRACTION NETWORK
We investigate two different backbone networks, as discussed
in Section III for action localization task, see 5. We used
ResNet-18 trained on Object classification task and HMR
Network trained on a 3D Human Pose in the wild. The
backbone network ResNet-18 [20] network and HMR
network are trained with the same temporal input frame
configurations {5, 9, 13, 17, 21}. The 3D human pose based
feature extractor HMR provides superior results, reaching
above the overall accuracy of 90%. The pose based extractor
performs high despite slightly lower accuracy on the end
marker.

The ResNet-18 based feature extractor performs poorly
and does not reach above 90% accuracy for all four
classes in all scenarios. Also, even when it achieves 91.4%
accuracy for the ‘‘Start Marker’’, it fails for the ‘‘NoDive’’
class due to misclassification, resulting in high latency for
‘‘Start Marker’’. Furthermore, our experiments with deeper
networks of ResNet architectures reported no improvements
or inferior results.

C. NUMBER OF INPUT FRAMES
Table 5 presents experimental results with different input
frames. The size of the temporal window fed to the temporal

TABLE 6. Accuracy (Acc) and Latency (Lat) scores for models with
different weighted configurations used in weighted cross entropy loss
during the training. The latency values represent the percentage of frames
that have latency between [−1, 1] in the respective columns.

network as input affects the model’s performance. We trained
different models where N=5, 9, 13, 17, 21. The models with
the input window sizes of N = 5 and N = 9 perform
poorly. Thus, the model does not learn the necessary temporal
embedding if the input window is too short. Hence, the
model does not have adequate information to make accurate
localizations.

On the other hand, too long sequences could also produce
poor results, as the model is prone to overfit. With the
larger temporal window of N = 21 frames, the model does
not improve results. We found the input window size of
N = 13 and N = 17 frames produced the best results.
Therefore, we restrict further experiments and evaluation to
the models with 13 and 17 frames input windows.

D. WEIGHTED CROSS ENTROPY LOSS
Balanced sampling does mitigate the issue of highly unbal-
anced data, but it does not provide the best results. Therefore,
we further experiment with weighted cross-entropy loss.
Even though [.20, .30, .20, .30] provides a stable accuracy
for across the classes, its latency (Table 6) in predicting
the marker position is poor, especially for the start marker
(Figure 18). Thus, we found the weights of [.15, .35, .15, .35]
provide, empirically, the best results of over 90% in all cases.
The other class weight configurations deteriorate the latency
of the boundary markers, which implies that they do not assist
the learning of start and end boundary classes and are not
suitable for the prediction model.

E. TEMPORAL CONTEXT
We experiment to analyze the importance of the bidirectional
temporal context presented to the model. We trained two
different models: (i) model with only past frames including
the boundary frame Ft as input [Ft−n,Ft ] (ii) model with
equal amount of past and future frames relative to the
boundary marker frame [Ft−n,Ft+n]. We found the model
trained with only the past frames ([Ft−n,Ft ]) as input to
predict the class of the current frame Ft under-performs with
the accuracy of 70 %. Whereas by showing the information
in both directions, i.e. frames immediately before and
subsequent frames to boundarymarkers, themodel prediction
shows improvement over 91 %, as shown in Figure 19.
Thus, it is clear that it is essential to have context from both
directions to detect boundary classes accurately.
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FIGURE 18. Model accuracy over various individual classes using different class weighting configurations.

FIGURE 19. Ablation study to analyze the required context in (a) and effectiveness of TCN with respect to GRU
networks (b).

F. TCN VS GRU
We experimented with two different sequence mod-
elling architectures to evaluate diving action localization.
We trained GRU architecture inspired by [62] and trained
with the same experimental setup as our TCN architecture.
The temporal encoders process features for bi-directional
frames to classify a sample. The plots in Figure 19b clearly
shows the superiority of TCN model over GRU [62] model.
The TCN motion encoder outperforms the GRU model on all
classes.
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