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ABSTRACT

Ontologies encompass a formal representation of knowledge through
the definition of concepts or properties of a domain, and the relation-
ships between those concepts. In this work, we seek to investigate
whether using this ontological information will improve learning
from weakly labeled data, which are easier to collect since it requires
only the presence or absence of an event to be known. We use the
AudioSet ontology and dataset, which contains audio clips weakly
labeled with the ontology concepts and the ontology providing the
”Is A” relations between the concepts. We first re-implemented
the model proposed by [1] with modifications to fit the multi-label
scenario and then expand on that idea by using a Graph Convolu-
tional Network (GCN) to model the ontology information to learn
the concepts. We find that the baseline Twin Neural Network (TNN)
does not perform better by incorporating ontology information in
the weak and multi-label scenario, but that the GCN does capture
the ontology knowledge better for weak, multi-labeled data. We also
investigate how different modules can tolerate noises introduced
from weak labels and better incorporate ontology information. Our
best TNN-GCN model achieves mAP=0.45 and AUC=0.87 for
lower-level concepts and mAP=0.72 and AUC=0.86 for higher-level
concepts, which is an improvement over the baseline TNN but about
the same as our models that do not use ontology information.

Index Terms— Ontology, Graph Convolutional Network (GCN),
Twin Neural Network (TNN), weakly labeled data

1. INTRODUCTION

Ontologies represent hierarchical concepts through categories and
relationships of domain knowledge. For example when we hear a
sound, even if we don’t recognize the specific animal species mak-
ing the sound, we still recognize that given sound is a type of animal
sound. Like humans, a machine can utilize ontology information to
help to classify an object it hasn’t seen before as a higher-level label.
Incorporating these hierarchical relations from ontologies can im-
prove the classification of semantically different observations that
appear similar or provide more general descriptors of ambiguous
subclasses. Many recent works have explored using this external
knowledge to extract better feature representations [2, 3] as well as
how to embed the knowledge into model architectures [4, 5, 6, 7].
In this paper, we investigate whether the learning of ontological
classes from weak labeled data can be improved by including ex-
ternal knowledge of these relationships. For example, an audio clip
may contain a dog howling, a baby crying, and an engine idling, but
is weakly labeled simply as a dog howling is present. We will pre-
dict the ontological information of that data point, which includes
animal sounds and living things as the higher level concepts. The
ontology knowledge base can be also be provided or incorporated

into the neural network to aid in the classification task. One of the
challenges in this paper is that the network should also be able to
notice that there may be parts of the data that could belong to other
ontological labels, or could be tagged in the same higher level onto-
logical label but may not be labeled as such. For example, a piece
of an audio clip containing both dog howling and cat meowing may
only be weakly labeled as dog howling, while both dog howling and
cat meowing could lead to the prediction of the higher level ontolog-
ical label animal sounds or living thing. We would like to look into
whether the network can use that hidden knowledge to improve the
prediction for respective ontological categories.

The advantage of weakly labeled datasets is that weak labels are
easier to collect since they require only the presence or absence of an
event to be known, which leads to better scalability as demonstrated
by Google’s AudioSet [8]. However, they may introduce noise into
the labels which makes it difficult for models to learn from. Inves-
tigating this problem is thus important because it may lead to im-
proved performance for classification tasks in which it is difficult to
obtain strongly labeled datasets. We look to improve upon some pre-
vious work in the space of ontology prediction, hierarchical learning,
and knowledge graphs by implementing two different models which
embed the ontology information to predict the ontology classes and
hierarchies from weak labels. We hope to gain a better understand-
ing of ontological embeddings, whether they can improve classifica-
tion in the weak label scenario, and the advantages or disadvantages
of using weak labels. The following sections give a more detailed
background of recent literature and then discusses the techniques
and models we implement and our final results and conclusions.

2. METHODS

2.1. Dataset and Ontology

We use the AudioSet dataset, which consists of an ontology of
weakly labeled 632 audio event classes and 2,084,320 human-
labeled 10-second sound clips drawn from YouTube videos. The
128-dimensional Audioset features and ontology files are made
available by Google and accessed online from previous work [9],
[8]. Feature embeddings provided by [8] are extracted from a VG-
Gish model [10] followed by a PCA to reduce down to 128 dimen-
sions and each ten second clip is represented by ten 128-dimension
feature vectors, i.e. one feature vector represents one second of one
clip. Each clip in the dataset can contain mutiple labels where the
clsses encompass a wide variety of sounds like human noises, music,
animals or vehicles.

We use balanced training set (about 22,160 10-sec clips) of Au-
dioset to train our models. We then preprocess the corresponding
labels of each audio clip to get the labels in the top two levels of the
Audioset ontology. The validation set is about 20% of the training
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set size and is drawn from the unbalanced training set of Audioset,
and the Audioset test set contains about 20,383 audio clips. The
same label processing is done for the validation and test set to obtain
two levels of ontology labels. Although there are more levels to the
Audioset ontology, we choose to focus on the top two levels to fit
our model architectures.

To give a more general idea of the Audioset data, consider a
weakly labeled audio clip which could have multiple labels with no
timing information, but the labels could be related due to their on-
tology. For example, a human voice and hands could possibly co-
occur because they are both natural sounds. The labels could also
be related due to their dependency, such as a human crying could
co-occur with sad music. On the other hand the labels could also not
be related with each other. For instance, a dog barking sound and car
engine sound could co-occur in a clip accidentally.

2.2. Framework

We consider multi-labeled training data {(x1, y1), -, (Xn, ¥Yn)}
where x; € X is a single 128-dimension audio feature representa-
tion and X represents training data represented with embeddi%gs and
the corresponding y; is a collection of labels {(y1, ¥, ..., ¥1 ') .-
Wi, vz, ..., yg’”‘)} with & equal to the number of ontology levels and
T; equal to the number of labels for x at the i*" ontology level. Thus
in our post-processed dataset, we have k = 2 and will refer to these
as a subclass or “’level 17 labels and superclass or "level 2” labels.

2.3. MLP Network without Ontology Information

To investigate whether incorporating the ontology information is
beneficial to use with weakly labeled data, we first need to train a
model which uses no ontology information. We implement a simple
MLP network with three hidden layers and a final output layer that
collectively predicts ontology classes. More concretely, the final
layer has size Zle T; to predict all ontology labels. Each hidden
layer is of size 512 followed by a BatchNorm layer, ReLU activa-
tion, and a Dropout layer. This model makes no use of the ontology
information to aid in the prediction of the ontology labels, making
it a good baseline to compare to our models which will incorporate
the ontology information. The final outputs pass through a final
sigmoid activation for the multi-label scenario and the model aims
to minimize the binary cross entropy loss.

2.4. Twin Neural Network (TNN) model with Ontology-based
embeddings and Ontological layer

The ontology-based model from [1] is a recent contribution that
specifically focuses on audio data while also providing a method for
the prediction of classes at different ontology levels. Much of the
prior work on ontology prediction has been in different areas such
as medicine (drug classification) or text classification, whereas [1]
presents a framework that is more relevant and recent. This model
will therefore serve as a baseline for the models which will incor-
porate ontology information. The framework with modification for
multi-label scenarios is shown in Figure 1.

Now we present the components of the model and its mathe-
matical formulation, which is an extension of the work in [1] to
learn ontology-based embeddings for the classification of multi-
labeled data. We use a Twin Neural Network (TNN) to separate the
ontology-based embeddings by imposing the embedding distance
close to 0 if the input pairs are from the same subclass, close to 1
if they are from different subclasses, but the same superclass, and
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Fig. 1: Architecture of Twin Neural Network + Ontological Layer
with modification to fit the multi-label task

close to 2 if they are from different superclasses. To fit in the multi-
label scenario, we applied two kinds of sampling methods, the first
one is that samples fall into the same sub (super) class category if
and only if they have exactly the same subclasses; samples fall into
different sub (super) class category if any of their sub (super) classes
is different. The second approach is that samples fall into the same
sub (super) class category if and only if there is any sub (super) class
in their intersection; samples fall into different sub (super) class
categories if there is no sub (super) class in their intersection.

The base model architecture of the Twin neural network net is
the same MLP with three hidden layers from section 2.3, and each
branch of the Twin neural network net shares the MLP parameters.
Given a pair of input vectors x1, X2, the output of the MLP is an
ontology embedding z1 = f(x1),22 = f(x2). The embedding
vectors z1, z2 produce subclass probabilities after a sigmoid activa-
tion, which is used for the prediction of multi-labeled data.

The ontological layer, M, then relates the class probabilities of
level 1 to those in level 2 of the ontology via the following relation:

P(y2[x) = M - p(y1x) ey

We modify the ontological layer proposed in [1] in order to fit the
multi-label data scenario, where M is constructed such that it aver-
ages the probabilities of the subclasses within a single superclass.
Note that this layer is fixed and not trainable, it depends strictly on
the ontology of the training data.

The final loss function incorporates the binary cross entropy loss
of the level 1 class, £1, and the level 2 classes, L2, with the embed-
ding loss, Dy, = (||z1 — z2]||2 — d)? where d € {0, 1, 2} according
to the type of input pair.

L= (L] + L)+ A2 (L + L£3) + A3 Dy )

The base network takes an input feature of dimension 128 before
the output layer to the 42 classes in the first ontology level and then
through the ontology layer to the 7 classes in the second level. The
baseline paper does not actually report evaluation metrics for the Au-
dioset data, as they focused on other audio datasets: Urban Sounds -
USS8K and data from the Making Sense of Sounds Challenge. These
are both single-labeled datasets.

2.5. Graph Convolutional Network

To model both the co-occurrence information introduced from weak
labels and the domain knowledge from ontology, we seek to utilize
graph embedding approaches to extend the Twin Neural Network
(TNN) architecture. In [11] and [12], a Graph Convolution Network
(GCN) is shown to be effective for learning useful node representa-
tions through the information in a correlation graph. The essential
idea is to update the node representations by aggregating informa-
tion from neighboring nodes. Following prior work, [11, 12, 13], we
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define the subclass labels and superclass labels as the nodes of the
graph and aim to learn the label representation. The knowledge in
the graph is encoded as a correlation matrix, which is a crucial part
of the GCN. We will describe how it is constructed in Section 2.5.1.

We use one-hot encoding of labels as the initial node representa-
tion and use 2 GCN layers to extract embeddings with neighboring
information. For each GCN layer, we use 2 linear layers to trans-
form the input embedding of the node itself and a graph convolution
to aggregate the embeddings from its neighbor. Given a label em-
bedding Z € RE*? (where C is the number of nodes and d is the
dimensionality of node features), the graph convolution operation is:

Z7 = n(A' Z'Wiws) 3)

where W e R4 and W2! € RY*?" are 2 transformation matri-
ces to be learned and A’ € R“* is the correlation matrix and h(.)
is a non-linear operation which is a LeakyReLU in our experiments.
The dimensions of each the linear layers are 280 and 512 for the first
GCN layer and 320 and 128 for the second GCN layer.

2.5.1. Correlation Matrix

The GCN learns node representations by collecting information from
other nodes based on the correlation matrix provided. Thus, how we
build the correlation matrix is crucial but also challenging for GCN.
In this work, we referred to previous work [11, 12] and experimented
on 3 different correlation matrices.

Labels Co-occurrence based Correlation Matrix: [12] pro-
posed a way to model label dependency in the form of conditional
probability, i.e. P(L; | L;) denotes the probability of occurrence of
L; when Lj; is present. To construct the correlation matrix, we count
the co-occurrence of label pairs present in the training set to get a
matrix M € R*Y where M; ; denotes the co-occurrence time of
L; and L;. We then divide M by the occurrence time of L; in the
training set to get the conditional probability P. To prevent a long-
tail distribution where some rare co-occurrences may be noisy, we
binarize P by setting a tunable threshold ¢. The correlation matrix
A is setto 1 if P are above the ¢ and set to O when P is below the ¢,
where A € R*C,

Ontology-based Method One: [11] proposed the correlation
matrix A to denote label pairs who have same parents. A;; = 1
when L; and L; have same parents; A; ; = 0 otherwise.

Ontology-based Method Two: [11] proposed the correlation
matrix A to denote label pairs that have edges in between them. In
the dataset we are using, edges only occur between parents and chil-
dren, so we set A; ; = 1 when Lj; is a child of L; or the other way
around; otherwise, A; ; = 0.

To prevent over-smoothing, after binarizing, we re-weight A to
get the desired correlation matrix A’ by setting A;, j =pwheni=j
and A; ; = (1 —p)/ >_; A;j when A;; = 1, where p is probability.

2.6. Twin Neural Network with Graph Convolutional Network

The Graph Convolution Network module described in Section 2.5
can convert the label embedding from a one-hot representation to
embedding aggregating neighbor information. We use matrix multi-
plication to get the similarity between a given audio clip embedding
and every label’s embedding. Given these similarity values, we then
use a SoftMax activation and Binary Cross Entropy loss to calcu-
late the loss between our outputs and the target labels. The overall
framework is shown in Figure 2. Here we replace the baseline Onto-
logical Layer with the label embeddings that the GCN generates. To
combine it with TNN, we keep the A1, A2 and A3 for the loss term.
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Fig. 2: The framework of Twin Neural Network + GCN
3. EXPERIMENTS

3.1. Evaluation Metrics

The performance of our models is evaluated using weighted aver-
age precision and AUC from predictions. All reported metrics are
on the test set of the Audioset dataset. As discussed previously, we
extract the labels for each segment from the top two levels of the
Audioset ontology. The average precision (AP) metric is first com-
puted for each class by considering the precision (fraction of true
positive labels out of all predicted positive labels) - recall (fraction
of true positive labels out of actual positive labels) curve at differ-
ent thresholds. Thus it is an indication of how well the model can
identify positive classes in the data. The other metric we consider is
AUC, which considers negative labels by computing the area under
the TPR (true positive rate) - FPR (false positive rate) curve and is
an indication of how well the model can distinguish between classes.
The AP/AUC metric for the classes on the same ontology level is
combined through a weighted average based on the proportion of
each class that is present in the training data to get a final weighted
AP and weighted AUC score for each level.

3.2. Performance of MLP Model with no Ontology Information

The MLP model with no ontology information achieves a weighted
AP/AUC score of 0.45/0.87, respectively for subclasses and a
AP/AUC scores for the superclasses is 0.71/0.86, as shown in Table
1. We train the model for 70 epochs with a learning rate of 2e-3.

3.3. Performance of Twin Neural Network with Ontological
Layer

The Twin neural network model with the Ontology layer achieves
a subclass weighted AP/AUC = 0.36/0.81 and superclass weighted
AP/AUC = 0.39/0.65. After hyperparameter tuning of the loss func-
tion, we were able to achieve results in Table 1 with A\; = 1.5, Ao =
1, A3 = 0.25. We found that these metrics can be tuned based on the
A values in the loss function to control the contributions from each
level of the ontology.

Our results shows there should be more research work to apply
TNN to a multi-label scenario, such as how to generate pairs of the
same sub/superclass as well as their similarity metric. We further in-
vestigated this problem by considering two definitions: one in which
a pair of data is of the ”same” subclass if they have exactly the same
labels and another in which ”same” means that two pairs just have
some intersection in their labels. Our experiments suggest that the
latter definition is better for the multi-label scenario. However, the
performance of this baseline TNN model which uses ontology in-
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formation suggests that this external knowledge is still difficult to
embed into a model for weakly labeled data. Furthermore, we be-
lieve that this definition of ”same” or different” sub/superclass is still
ambiguous and introduces even more noise into the model as it at-
tempts to cluster pairs that are not really the ”same” subclass. This
can explain why we see such poor performance metrics compared to
the MLP with no ontology information.

Weighted AP Weighted AUC
Model Subclass | Superclass | Subclass | Superclass
MLP 0.4509 0.7056 0.8706 0.8556
TNN + Ont. 0.3653 0.3876 0.8055 0.6505
TNN + GCN | 0.4285 0.6790 0.8460 0.8280
MLP + GCN | 0.4590 0.7117 0.8751 0.8602

Table 1: mAP and AUC Results of different models. TNN. = Twin
Neural Network, Ont. = Ontology.
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Fig. 4: AUC across different low-level labels

3.4. Performance of Twin Neural Network-GCN Model

The extension of the TNN model replaces the Ontology layer with
a Graph Convolution network to embed ontology information. We
trained the model with the Adam optimizer for about 30 epochs. We
use 2 Linear Layer as the node embedding of GCN and apply 2 Layer
GCN. The performance is sensitive to the hyper-parameters A1, A2
and A3 of the loss function because it would amplify or reduce the
learning rate for different loss terms. We find the observation is that
the greater A is not necessarily equal to the greater learning rate.
The TNN with GCN tolerate noises introduced from weakly la-
beled data better than the baseline TNN with an un-trainable Onto-

Number of

310

Number of audio clips

Fig. 5: AP (left) and AUC (right) across different superclass labels

logical Layer. This suggests that the GCN can better capture the on-
tology hierarchy and that it can even overcome the noise introduced
by attempting to find pairs for the TNN. Overall, the evaluation met-
rics are close to baseline MLP with no ontology information. [14]

3.5. Performance of MLP-GCN Model

To study the utility of the TNN we also implement an MLP-GCN
using the same GCN structure as the one in the TNN-GCN. We
investigate which correlation matrices can provide the best perfor-
mance improvement. Among the 3 correlation matrices, we found
label-co-occurrence-based correlation works best to model ontology
information in the weak label scenario.

Consequently, we run experiments on the two trainable param-
eters: ¢,p. Experiments showed that p = 0.2,¢ = 0.08 gave the
best results. The model performs better than previous models but
improvement over an MLP without an Ontological Layer is limited.
This suggests that even with the ontology information embedded into
the GCN, it is still hard to get significant improvements in classifica-
tion results. It further demonstrates that the architecture of the TNN
net is not a great fit for the multi-label scenario. Using just a sim-
ple MLP to learn embeddings, it can already achieve relatively good
performance with the GCN. Overall, we found that there were cer-
tain classes for which it was always difficult to achieve high AP or
AUC scores as demonstrated in Figures 3, 4, 5. For these classes,
e.g. glass, fire, or silence, we analyzed which data points contain
those classes and found that they are often multi-labeled with more
commonly found classes in the training set, such as human voice, or
domestic sounds. This could make it difficult for the model to learn
different representations for those classes.

4. CONCLUSIONS

To conclude, we observed that the Twin neural network model with
the ontology layer has the worst performance, while a simple MLP
obtains better results, and the combination of MLP with GCN works
even better. It is possible for the TNN architecture to have a negative
impact on prediction, introducing confusion through the construc-
tion of input pairs for data that is weakly multi-labeled. Although the
GCN provides a slight improvement, it appears the model still has
difficulty in differentiating ambiguous subclasses or using the hidden
knowledge in weakly labeled data. The way to incorporate ontology
information may differ with context (dataset, ontological architec-
ture, network structure, etc.); additional investigation is needed to
determine the best ways to use it. For a dataset like AudioSet, where
each instance has multiple, or even wrong labels, having a simple
ontology layer at the output of TNN might not be a good choice. So
future works could narrow the scope of the datasets and try different
approaches to embed ontological information and approaches that
make use of deeper levels of ontology information.
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