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Abstract— Accurate scene understanding from multiple sen-
sors mounted on cars is a key requirement for autonomous
driving systems. Nowadays, this task is mainly performed through
data-hungry deep learning techniques that need very large
amounts of data to be trained. Due to the high cost of per-
forming segmentation labeling, many synthetic datasets have
been proposed. However, most of them miss the multi-sensor
nature of the data, and do not capture the significant changes
introduced by the variation of daytime and weather conditions.
To fill these gaps, we introduce SELMA, a novel synthetic
dataset for semantic segmentation that contains more than 30K
unique waypoints acquired from 24 different sensors including
RGB, depth, semantic cameras and LiDARs, in 27 different
weather and daytime conditions, for a total of more than
20M samples. SELMA is based on CARLA, an open-source
simulator for generating synthetic data in autonomous driving
scenarios, that we modified to increase the variability and the
diversity in the scenes and class sets, and to align it with other
benchmark datasets. As shown by the experimental evaluation,
SELMA allows the efficient training of standard and multi-modal
deep learning architectures, and achieves remarkable results on
real-world data. SELMA is free and publicly available, thus
supporting open science and research.

Index Terms— Synthetic dataset, CARLA, autonomous driv-
ing, domain adaptation, semantic segmentation, sensor fusion.

I. INTRODUCTION

RECENT advances in the automotive sector have paved
the way toward Connected Intelligent Transportation

Systems (C-ITSs) to achieve safer and more efficient driving.
Not only can C-ITSs reduce the number of traffic accidents
(up to 90%, according to some estimates [1]) or improve traffic
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management via smart platooning, cruise control and/or traffic
light coordination, but it also holds the promise to improve fuel
economy and contribute to a 60% fall in carbon emissions [2].
Overall, C-ITSs represent a huge market of more than 7 trillion
USD [3], hence stimulating significant research efforts.

To these goals, future connected vehicles will be equipped
with heterogeneous sensors, including Light Detection and
Ranging (LiDAR) and RGB camera sensors, able to provide
an accurate perception of the environment. In particular,
LiDARs generate a 3D omnidirectional representation of the
environment in the form of a point cloud, and stand out as the
most accurate sensors for geometry acquisition under several
weather and lighting conditions [4]. On the other side, RGB
cameras offer advantages like cheaper price, higher resolution
and higher frame rate than LiDARs, even though they suffer
from severe sensitivity to illumination and visibility condi-
tions [5]. In this sense, sensor fusion appears as a promising
solution to provide more robust scene understanding, at the
expense of the additional processing overhead for collecting
and combining observations from multiple sensors [6].

Autonomous driving tasks, in particular semantic segmen-
tation (SS) and Vehicle-to-Everything (V2X) communication,
raise several challenges [7], [8], also in view of the complex
and dynamic environment in which autonomous vehicles move
and operate. In these regards, machine learning (ML) and
deep learning (DL) represent valuable tools to address these
issues and optimize driving decisions [9]. However, these
techniques require the availability of massive amounts of
labeled data for proper training, whose acquisition and labeling
is extremely expensive and time consuming. Hence, existing
open-source datasets, like Waymo [10], Cityscapes [11], and
KITTI [12], are scarce and generally lack diversity. Moreover,
many datasets are too small to capture the many challenges of
the urban scenario, do not encompass multiple (and diverse)
sensors, and come with unlabeled scenes, undermining the
training of ML models [13].

To fill these gaps, the scientific community has been inves-
tigating the usage of synthetic (computer-generated) datasets,
where the full control of the data generation pipeline is del-
egated to simulations, hence ensuring lower costs, greater
flexibility, better repeatability, and larger amount of samples
than real-world data [14], [15], [16], [17], [18]. For example,
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annotation and quality control on a single real-world image
may require more than 1.5 hours of work according to [11],
thus large-scale real-world datasets would involve huge invest-
ments for labeling. Notably, simulations facilitate data acquisi-
tion in different conditions and scenarios, and consideration of
diverse sets of sensors. An open-source simulator to generate
synthetic data is CAR Learning to Act (CARLA) [19], which
includes urban layouts, a wide range of environmental condi-
tions, vehicles, buildings and pedestrians models, and supports
a flexible setup of sensors. At the time of writing, several syn-
thetic datasets exist for SS in autonomous driving [14], [20],
[21], [22], [23], [24], [25]. These datasets, however, present
limitations. In particular, samples are generally captured in
a limited number of settings, in similar viewpoints, weather,
lighting, and daytime conditions, and often from a single
sensor. Moreover, they do not provide end-users with fine-
grained control over the weather setup or the same semantic
class set as common benchmarks, like Cityscapes [11].

To overcome these limitations, in this paper we present
SEmantic Large-scale Multimodal Acquisitions in Variable
Weather, Daytime and Viewpoints (SELMA), a new multi-
modal synthetic dataset for autonomous driving, built using
a modified version of the CARLA simulator. Our dataset
stands out as one of the largest, most complete and diverse
datasets to ensure adequate design, prototyping, and validation
of autonomous driving models, in particular to solve complex
tasks like SS. Specifically, the SELMA dataset consists of:

• Data acquired in 30 909 independent locations
from 7 RGB cameras, 7 depth cameras, 7 semantic
cameras, and 3 LiDARs coupled with semantic
information. The multimodal setup of SELMA promotes
complementary and diversity of data, and permits higher
accuracy and performance of learning tasks [26].

• Acquisitions generated in variable weather, daytime and
viewpoint conditions, and across 8 maps, for a total of
216 unique settings. To this aim, the CARLA simulator
has been modified to increase the photo-realism of the
weather conditions, and to maximize the visual variabil-
ity, e.g., by adding parked bikes or traffic lights and signs.

• Semantic labeling for both camera and LiDAR data
into 36 distinct classes, with complete overlap with the
training set of common benchmarks like Cityscapes [11],
obtained by modifying the source code of the simulator.

We validate the accuracy and realism of our dataset starting
from a set of baseline experiments, and show that DL models
for semantic understanding trained on our dataset outperform
the same models trained on competing synthetic datasets when
tested on a real (i.e., non-simulated) domain.

The dataset is freely available for download,1 thus support-
ing open science and stimulating further research in the field
of autonomous driving.

The remainder of this paper is organized as follows.
In Sec. II we describe the existing real and synthetic datasets
related to our work. Sec. III presents the CARLA simulator
and the additions we introduced to acquire the data. The
SELMA dataset is then described in detail in Sec. IV, while

1The SELMA dataset is available at https://scanlab.dei.unipd.it/app/dataset

TABLE I
COMPARISON AMONG THE MOST POPULAR SS DATASETS. WHITE ROWS

REFER TO REAL DATASETS, DARK GREY REFERS TO SYNTHETIC
DATASETS, AND LIGHT GREY REFERS TO A COMBINATION OF

THE TWO. BEST IN BOLD, RUNNER-UP UNDERLINED. T: TYPE,
R: REAL, M: MIXED, S: SYNTHETIC, BB: BOUNDING

BOXES, W: WEATHERS, TOD: DAYTIME, AA: ANTI-
ALIASING, †: ESTIMATED DEPTH, *: RANDOM,

‡: FISHEYE CAMERA

Secs. V and VI show some numerical results validating the
accuracy of models trained on our dataset. Finally, in Sec. VII
we provide the conclusions and some future research direc-
tions.

II. RELATED WORK

The development of DL architectures seen in recent years
goes along with the design of extensive datasets, needed for
their optimization. One computer vision (CV) task where
such advancements have been particularly significant is scene
understanding, which evolved in several sub-tasks, each requir-
ing appropriate data for training. Among them, three tasks
are worth mentioning, given the strong push they provided
to datasets design: image classification, object detection and
semantic segmentation. The first sparked the generation of
widely used datasets, e.g., ImageNet [27]. The second and
third tasks have been widely applied to many problems,
and especially to autonomous driving systems. Here, vehicles
require accurate recognition of the surrounding environment to
appropriately plan driving actions. This translated into a wide
range of real and synthetic datasets to support the training
of autonomous driving applications [28], [29]. In this work,
we focus on the semantic segmentation task, generally recog-
nized as the most challenging of the three. The most popular
SS datasets existing in the literature and their characteristics
are reported in Table I.

A. Real Datasets

Given the high complexity and cost of labeling, most
wide-scale real datasets tend not to provide the ground truth,



7014 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 7, JULY 2023

e.g., SS labels or bounding boxes, thus limiting their use in
tasks like semantic segmentation and object detection. One of
the first works to introduce labeled SS samples in the context
of autonomous driving was CamVid [35], which consists of
over 700 images labeled in 32 classes. Based on this, a huge
effort was made by the creators of KITTI [12], [40], [53],
[54] to provide the first multimodal (stereo RGB and LiDAR)
dataset for road scenes. This dataset, unfortunately, consists of
only a small subset of 200 SS training images. The next funda-
mental step was the acquisition of the Cityscapes [11] dataset,
which was the first collection of labeled samples large enough
to support training of deep architectures to a satisfactory level.
It includes 5 000 finely-labeled samples and 20 000 coarsely-
labeled samples captured in several German cities, and has
become an important benchmark for the segmentation task.
Recent works focus more on the volume [34], [39], [42] and
variability [32], [44], [55], [56] of data. A noteworthy example
is also the DADA-seg dataset [36], consisting of 2000 driving
sequences obtained from mainstream video sites and focusing
specifically on semantic segmentation during traffic accident
events. Moreover, the DADA-seg dataset also allows to obtain
event-camera data. Even more recently, researchers are sup-
porting the advent of LiDAR sensors, and some datasets have
been generated accordingly [46], [57], [58], [59]. Furthermore,
fisheye and wide-field of view (FoV) cameras are being
considered by the research community thanks to their already
widespread adoption on commercial vehicles, thus prompting
the generation of new datasets of the same kind. Namely,
WoodScape [48] is among the first and most complete datasets
providing both LiDAR and fisheye captures, where the omni-
directional view of the surroundings is obtained combining the
4 fisheye cameras. Similarly, KITTI-360 [41], the successor of
the KITTI dataset, contains data from two lateral 180◦FoV
fisheye cameras and a 90◦ degree perspective stereo camera
in the front, and from a Velodyne HDL-64E and a SICK LMS
200 laser scanner. Finally, DensePASS [60] was generated
using Google Street View as a target dataset for the domain
transfer task from pinhole to panoramic data.

B. Synthetic Datasets

To circumvent the cost involved in the labeling of
large-scale datasets, particularly those for SS, many
synthetically-generated datasets have been proposed over the
years. The first two important benchmarks are GTA5 [20] and
SYNTHIA [21], both introduced in 2016. The former was
generated exploiting the homonymous game, and provides
25 000 samples of realistic high-quality images. The semantic
labels are provided in the same class set as Cityscapes [11],
although they were inferred by the authors from secondary
shader data, and the classes assigned to objects are not
always consistent. The latter was the first dataset to provide
depth ground truth for each of its 9 000 samples. The
class set is different than that used by Cityscapes, and
the overlap is limited to 16 classes (see the Suppl. Mat.2

2The Supplementary Material is available on arXiv (https://arxiv.
org/abs/2204.09788) and on our website (https://scanlab.dei.unipd.it/
selma-dataset/)

for details on the class splits). A third important synthetic
dataset is Virtual KITTI [14], [22] which, like its real
counterpart, focused heavily on the multimodal aspect. It was
the first to provide ground truth optical-flow and instance
segmentation data, in addition to color, depth and semantic.
More recently, the IDDA dataset [23] was introduced to
address the lack of weather conditions variability in the
available datasets. It was developed using CARLA [19] and
includes semantic labels (with an overlap of 16 classes with
Cityscapes), depth and RGB data. Similarly, OmniScape [61]
and SynWoodScape [52] modified the CARLA simulator to
produce catadioptric (the former) and fisheye (both) datasets,
whereas PanoFlow [62] used 6 90◦

× 90◦ FoV cameras
to produce panoramic images. Finally, the event camera
introduced in CARLA was used to generate EventScape [51],
a new dataset that combines semantic segmentation with the
new possibilities offered by event cameras.

From Table I we can see that, among the synthetic datasets,
SELMA is the only one to provide labeled data for multiple
LiDAR and camera sensors. Moreover, it is the only one that
provides multiple weather conditions while supporting the full
Cityscapes [11] class set, as opposed to IDDA. Even more,
it is the only one that provides 3D bounding boxes. Finally,
compared to GTA5 [20], i.e., the only competitor to provide
anti-aliased color images, SELMA provides more samples, and
considers a much higher variability of setups and sensors.

III. SIMULATOR SETUP

A. The CARLA Simulator

The CARLA simulator is used to generate synthetic data
relative to autonomous driving systems. It is designed as
an open-source layer over Unreal Engine 4 (UE4) to pro-
vide high-quality rendering, realistic physics based on the
NVIDIA PhysX engine, and basic Non-Player Character
(NPC) logic [19]. Reproducible and reliable physics simula-
tions, as well as realistic and synchronized sensor data, can
be obtained through the CARLA Application Programming
Interface (API). Hereby, we briefly report the main character-
istics of release 0.9.12, which was the starting point for the
customization we made to meet the desired characteristics of
the dataset, as detailed in Sec. III-B.

1) Unreal Engine Models: CARLA offers a wide variety
of carefully designed UE4 models for static (e.g., buildings,
vegetation, traffic signs) and dynamic objects (e.g., vehicles
and pedestrians), sharing a common scale, and with realistic
sizes. In release 0.9.12, the blueprint library includes the model
of 24 cars, 6 trucks, 4 motorbikes, 3 bikes, each with customiz-
able colors, and 41 pedestrian models of different ethnicity,
build, and dressed with a wide variety of clothes. Furthermore,
8 towns (Town01-07 and Town10HD) were carefully designed
by the CARLA team using more than 40 building models.
Each town has its unique features and landmarks, thus offering
8 simulation environments with diverse visual characteristics.

2) Sensors: Data from the simulated world can be retrieved
through a number of different sensors (see the Suppl. Mat.
for a detailed list of supported sensors), that can be placed
at an exact location and a given rotation, and attached to a
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Fig. 1. Desk view at three different times of the day.

Fig. 2. Samples in 9 variable weather conditions at Noon.

parent actor, thus following its movements with a rigid or
spring-arm-like behavior. Sensors data can be collected at each
simulation step. When working with multiple, high-resolution
sensors, synchronous mode is required to guarantee that the
GPU completes the rendering and delivers the data to the
client before the following simulation step. Thus, the sensor
acquisition rate is the same for all.

3) Weather Conditions and Daytime: Leveraging the under-
lying UE4 graphics, CARLA offers a variety of daytime
and weather conditions. The combination of daytime and
weather will be referred to as environmental conditions in
the rest of the paper. Such conditions differ in the position
and color of the sun, and in the intensity and color of
diffuse sky radiation (daytime), as well as ambient occlusion,
fog, cloudiness, and precipitation (weather). In release 0.9.12,
there are 14 predefined environmental conditions, obtained
by the combination of two daytimes (Noon and Sunset), and
seven weather conditions (Clear, Cloudy, Wet, WetCloudy,3

SoftRain, MidRainy, HardRain).

B. Customization

To enhance the quality of the collected data, we customized
the source code of CARLA, as detailed in the following.

First, we adjusted the parameters of the predefined envi-
ronmental conditions, modifying the weather scattering and
fog properties, and the position of the sun, to maximize
the diversity between the environmental conditions and their
photo-realism. Then, we introduced the Night daytime (Fig. 1)
and the Mid Fog and Hard Fog weather conditions (Fig. 2).
Thus, the number of daytimes and weather conditions has been
increased from 2 and 7 to 3 and 9, respectively, bringing the
total number of environmental conditions to 27.

Second, we modified the CARLA semantic classes, to make
them compatible with existing benchmark datasets, and added

3Wet and WetCloudy indicate that the road is more reflective and contains
puddles. Notably, the former (latter) specifies that observations are acquired
in clear (cloudy) sky.

Fig. 3. Comparison between the original version of the CARLA simulator
and that with our modifications. Dashed regions indicate classes that were
originally missing in CARLA. Notice that our implementation now distin-
guishes riders from people and trucks from cars.

new vehicle models to increase the class diversity. Specifically,
the remapping of the classes was done in the source code
to affect both the semantic LiDAR and the semantic camera.
We introduced the Train class, adding a train and a tram model,
and we added two bus and two truck models to the existing
classes. Then, our modifications to the source code allowed
us to introduce the Rider class, adding the corresponding tag
and separating the rider from its bike/motorbike tag. A visual
example is reported in Fig. 3. Finally, as of release 0.9.12,
the parked vehicles were not labeled correctly. Exploiting the
CARLA API, we removed the corresponding map layer, saving
the location information to place vehicles with the correct tag
in the exact same position.

Then, the UE4 content was modified to meet the strict
requirements that we set for the SELMA dataset. Namely,
bikes could only exist along with their rider on board, which
prevented parked bikes to be deployed. Nonetheless, bikes
are amongst the main road actors, and CV algorithms greatly
benefit from visual variability. Indeed, we deemed fundamental
for our dataset to include the bike class in all the contexts.
Therefore, we added hundreds of parked bikes into the existing
CARLA maps. Similarly, the number of traffic lights and
signs in the default towns did not reflect their distribution
in a real setting, thus possibly compromising the learning
ability of the algorithms. Thus, we distributed tens of addi-
tional traffic lights and signs in every town. The final class
distribution matches that of real-world reference datasets such
as Cityscapes, as shown in Fig. 4. The customized simulator
is freely available.4

IV. SELMA DATASET DESIGN

In this section we present our SELMA dataset, with a focus
on the acquisition setup (Sec. IV-A) and splits (Sec. IV-B).

A. Acquisition Setup

We designed the acquisition pipeline to exploit the full
potential of CARLA, while maximizing the diversity of the
acquired data. Acquisitions were made equipping a vehicle,

4Our customized version of CARLA is available at
https://github.com/LTTM/SELMA.
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Fig. 4. Class distributions in the SELMA dataset.

Fig. 5. Side and top views of the sensor setup in SELMA. RGB, depth and
semantic cameras are co-located in 7 spots. LiDARs are placed in 3 locations.

named the ego vehicle, with a full sensor suite depicted in
Fig. 5, consisting of:

• 7 RGB cameras, with the post-processing effects enabled,
a 90-degree horizontal FoV, and a native resolution
of 5120 × 2560, which is downsampled to 1280 ×

640 to achieve a ×4 anti-aliasing enhancement. The
post-processing effects include vignette, grain jitter,
bloom, auto exposure, lens flare and depth of field. RGB
images are saved in JPEG format.

• 7 depth cameras with a 90-degree horizontal FoV and
1280×640 resolution. For the depth images, anti-aliasing
is not required and would compromise depth information.
Depth images are saved in PNG format.

• 7 semantic cameras, that have the exact same attributes
of the depth cameras.

• 3 semantic LiDARs, each with 64 vertical channels,
generating 100 000 points per second, with a range of
100 meters. Point clouds are saved in PLY format.

The different camera types are co-registered at 7 different
locations, and are set up to have the same FoV and resolution,
so that their data can be easily matched. The variability of
viewpoints and maps is shown in Fig. 6.

Furthermore, we compute the 3D surface normals at each
pixel of the image acquired by the desk camera for all
samples of the default random split (see Sec. IV-B). To do
so, we employ a state-of-the-art differential technique as done
in [63] and [64]. While the result is an approximation of the
true normals, the overall precision is very high, as can be
seen in the last column of Fig. 7, thanks to the detailed (i.e.,
synthetic ground truth) and dense depth maps used for the
estimation procedure.

Data were acquired in 30 909 independent locations, across
8 virtual towns as reported in Table II and in the Suppl. Mat.

TABLE II
NUMBER OF WAYPOINTS (WPS) PER TOWN. DATA ARE ACQUIRED

AT EACH WAYPOINT, INDEPENDENTLY FOR ALL
ENVIRONMENTAL CONDITIONS

The locations were selected extracting a list of waypoints at a
given distance. For our dataset, we selected points on the roads
on every lane and junction, at the distance of 4 meters, which
was chosen after several empirical tests as it offered the best
trade-off between area coverage and acquisition diversity. The
full list of waypoints with their ID is provided with the dataset
for each town. At each position, the ego vehicle is created,
traffic is generated around it, and pedestrians are randomly
placed on the sidewalks. After one second of simulation for
the transient to end, the sensors are fired simultaneously, and
their data retrieved and saved. The server is then reset and the
simulation goes on with the following waypoint.

The same process is repeated in 27 different environmental
conditions. These include 3 daytimes (i.e., Noon, Sunset and
Night) and 9 weather conditions (i.e., Clear, Cloudy, Wet, Wet
and Cloudy, 2 Fog intensities and 3 Rain intensities). Traffic
and pedestrians are generated randomly at every iteration, thus
the same waypoint simulated under different environmental
conditions presents different traffic conditions. We refer to
the combinations of environmental conditions and towns as
scenes. Our dataset consists of 216 scenes, obtained consid-
ering all the sensors and the complete combinations of the
available weather and daytime conditions, viewpoints, and
towns.

B. Splits

Exploiting the fine-grained control on environmental con-
ditions offered by SELMA, we designed some default splits.
Particularly, we considered 6 different weather distributions:
Random (SELMA default), Mostly Clear (MC), Noon, Night,
Rain and Fog. For more details on the splits, we refer the
interested readers to the Suppl. Mat.

The Random split contains samples from all weather con-
ditions and daytimes, sampled according to the probability
distributions reported in Table III. Most of the samples come
from high-visibility weather conditions: Clear, Wet (road),
Cloudy and WetCloudy make up for 75% of the split.

In order to preserve the separation among training, valida-
tion and test samples, the splits are provided in CSV format,
which allows to easily assign a given weather condition to a
sample (and to override it, if needed). The samples separation
was done according to an 80:10:10 split rule for training,
validation and test, respectively.

V. EXPERIMENTAL VALIDATION

In this section we carefully analyze and validate the
SELMA dataset. We start with a series of baseline experiments
which serve as a reference benchmark for future studies
(Sec. V-A). Then, we analyze the thematic subsets of our
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Fig. 6. Randomly sampled images from the SELMA dataset in clear noon setup, demonstrating its diversity. Rows show different cameras, while columns
show different (synthetic) towns (thus settings).

Fig. 7. Sample acquisitions with semantic LiDAR, semantic camera overlaid to the RGB samples, depth camera, and surface normals.

TABLE III
PROBABILITY DISTRIBUTIONS OF ENVIRONMENTAL CONDITIONS IN THE DIFFERENT SPLITS

TABLE IV
MIOU OF BASELINE SS ARCHITECTURES ON CITYSCAPES (CS) AND

SUBSETS OF SELMA FOR BOTH RGB IMAGES (FIRST 7 COLUMNS)
AND DEPTH (LAST COLUMN)

dataset (Sec. V-B). To conclude, we show how different sen-
sors can be employed jointly to improve the final segmentation
accuracy (Sec. V-C), and report some experiments exploiting
multiple viewpoints (Sec. V-D).

A. Baseline Experiments

The first set of experiments is designed to provide a series
of benchmark results for the SELMA dataset. The results
in Table IV show the performance achieved employing dif-
ferent baseline SS architectures, i.e., UNet [69], FCN [67],
PSPNet [68], DeepLab-V2 [65], [66], DeepLab-V3 [66] and
SegFormer [70]. All the networks are trained with SGD
with momentum of rate 0.9. The learning rate was decreased

TABLE V
DETAILED VIEW OF THE LABEL SETS CONSIDERED

according to a polynomial decay of coefficient 0.9, starting
from 2.5 × 10−4. The batch size was set to 3 and the weight
decay to 10−4. Additional results for the individual classes are
reported in the Suppl. Mat.

1) RGB: Initially, we perform a series of experiments using
the RGB images from Cityscapes and from the SELMA desk
camera in different environmental conditions. First, we observe
that the UNet architecture achieves poor results, since it is
unable to deal with the large visual variability of the SELMA
dataset. The other architectures share the same encoder mod-
ule, i.e., a ResNet-101, and they all achieve similar mean
Intersection over Union (mIoU) performance. As expected,
the more recent transformer-based architecture SegFormer [70]
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Fig. 8. Qualitative results for the SS task from RGB images (DeepLab-V2 [65]), depth maps (DeepLab-V2 [65]) or point clouds (Cylinder3D [71]).

TABLE VI
PER-CLASS AND MEAN IOU RESULTS FOR THE SUPERVISED TRAINING AND TESTING ON THE SAME DOMAIN WITH THE

DEEPLAB-V2 ARCHITECTURE. THE MEAN IS COMPUTED OVER DIFFERENT LABEL SETS

outperforms the others, achieving an mIoU of 80.3. Overall,
also DeepLab-V2 and V3 offer good performance. Then,
to facilitate the comparison with the other methods considered
in this paper, in the following experiments we decided to
refer to the standard DeepLab-V2 architecture as a baseline,
which represents a common benchmark for the evaluation.
The highest accuracy is obtained with the SELMA Noon split,
as RGB images are easier to segment. On the contrary, Night,
Fog and Rain are more challenging.

In Table VI we show the per-class IoU scores training
DeepLab-V2 on our dataset (first group), on common syn-
thetic benchmarks (second group), and on real-world datasets
(last group). For each dataset, we evaluate the trained model
on the label splits most commonly considered in the literature.
Table V reports the names of the classes of each label set.
The most widely used label set is City19, which is also
the most complete. For the sake of fairness with respect to

all the datasets, in Table VI we test our models on all the
possible label sets. SELMA demonstrates similar, or often
higher, performance compared to other synthetic and real
benchmarks due to its extreme variability in daytime and
weather conditions, as well as its large-scale property with
more than 30 000 unique (labeled) samples.

2) Depth: We run the same experimental evaluation using
a single input channel representing the depth of the scene.
More precisely, since the range of true values is extremely
unbalanced and their distribution is highly skewed, we nor-
malize and rescale the depth values: starting from the original
depth produced by the simulator, normalized to 1, we compute
its fourth root to compress the high-distance information and
expand the low-distance information. This is necessary as the
sky is marked with the maximum distance possible, and over-
shadows the other pixels. Then, we rescale and shift the values
to the [−1, 1] range. Also in this case, the best performing
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TABLE VII
BASELINE LIDAR SS METHODS ON SELMA POINT CLOUDS.

RESULTS ON THE CS LABEL SPLIT, REMOVING SKY. LAST ROW:
RGB AND LIDAR FUSION

architectures achieve comparable performance, as shown in the
rightmost column of Table IV. The models trained on depth
images can more easily segment objects of different classes,
outperforming the results achieved on RGB samples. The
reason for this behavior is that such experiments are based on
ground-truth depth maps, synthetically originated from the 3D
geometry of the scene and unaltered by atmospheric conditions
(that would instead heavily degrade the RGB performance)
and by noise, whereas depth maps derived from real data are
generally noisy.

Indeed, the lack of noise is one of the major factors con-
tributing to the gap between synthetic and real data. Modeling
the sensor data noise is a complex task [72], and depends
on several factors, e.g., the model of the sensor [73] or
the processing technique [74]. SELMA provides noiseless,
sensor-agnostic ground-truth maps, and leaves the users the
freedom to choose the preferred noise model, according to
their requirements and the target sensor of interest. For exam-
ple, an advanced model based on a Generative Adversarial
Network (GAN) can be found in [75].

3) LiDAR: Table VII reports the LiDAR SS results obtained
with RangeNet++ [76] with two backbones (SqueezeSeg-
V2 [77] and DarkNet-21 [78]) and with Cylinder3D [71].
Furthermore, we report the results obtained by flattening the
point cloud via spherical projection and creating an image
with 4 channels containing the depth from the LiDAR and
the RGB color from the cameras that is fed to a DeepLab-V2
network for segmentation. All the backbones are trained with
batch size of 4 for 40 epochs with early stopping enabled. The
other learning parameters are left to the default values provided
in the respective codebases. We can observe that Cylinder3D
outperforms the other architectures, achieving an outstanding
mIoU of 80.3.

Fig. 8 reports the qualitative results for the best segmenta-
tion architectures, i.e., the DeepLab-V2, for the RGB and the
depth samples, and Cylinder3D for the point clouds. Compar-
ing the RGB and depth-based prediction, we can appreciate
that the latter offers great improvements in the recognition
of far, small and challenging items in the background, such
as poles, traffic lights and traffic signs. However, the use of
geometric information leads to uncertainty in the prediction
of traffic lights and signs, which are mixed up in the depth
prediction, but not in the RGB one. On the other hand,
looking at the point cloud segmentation, we can appreciate the
great overall precision, as expected given the high quantitative
score. Nevertheless, some artifacts are still present since the
prediction is based solely on geometric information, e.g., the

TABLE VIII
MIOU PERFORMANCE OF RGB AND DEPTH FUSION

sidewalk region on the left is partially confused for ground in
proximity of the vegetation class. Another interesting artifact
lies in the geometrical arrangement of the errors. Due to the
intrinsic working principle of Cylinder3D [71], we observe
that most of the errors are propagated along the same radial
coordinates. For instance, we see that the network predicts
ground in spite of sidewalk for a few consecutive scans in
a couple of regions denoted by light blue rectangles. Finally,
the prediction performance of semantic labels is poor for small
classes such as traffic signs or lights, which are often confused
for poles.

B. Thematic Subsets

Then, to highlight the capability of SELMA to incorporate
different visual domains, we define 6 subsets, the so-called
thematic splits, sampling images with specific daytime or
weather conditions, as mentioned in Sec. IV-B.

The mIoU results for the splits are shown in Fig. 9, where
we report the supervised accuracy in the diagonal elements and
the source-only accuracy (i.e., trained on the source domain
and tested on the target domain) on off-diagonal elements.
Here, we can appreciate that training and testing on the same
visual domain gives almost always the highest mIoU (diagonal
elements), except for some cases where the target domain is
much easier than the source domain, as is the case for the
SELMA Noon as target dataset.

In absolute terms, the hardest subsets (i.e., lowest supervised
accuracy) are SELMA Night, Fog, and Rain, respectively.
Adapting the source knowledge acquired from a subset con-
taining a single daytime (e.g., Noon or Night) proves to be
less robust to domain variability at test time, rather than
adapting knowledge from a subset containing multiple daytime
domains (e.g., Rain or Fog): in the first case we can observe
lower off-diagonal accuracy scores compared to the second
case.

C. Fusion Experiments

To prove the importance of SELMA as a multimodal
dataset, we show how we can improve the segmentation
quality by coupling acquisitions from different sensors. Indeed,
different sensors have variable performance depending on the
visibility conditions of the scenes, and can be used jointly
to leverage understanding scores. To highlight this aspect,
we report some experiments in Table VIII, starting from the
single sensors, proposing two simple approaches to give some
insights on the potential of multimodal segmentation, and
finally testing a state-of-the-art algorithm on SELMA.
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Fig. 9. mIoU results on thematic splits sub-sampled from the complete
SELMA dataset.

Notably, using RGB images allows to achieve an mIoU of
68.9, while using the depth alone could improve the mIoU
to 73.4. As a comparison, using the grayscale version of the
image (single channel) we achieve an mIoU of 68.0, which is
lower than the result on RGB images, as expected.

Building a combined RGB and depth representation at the
input level (denoted as RGBD, i.e., an input of 4 channels),
we achieve an mIoU of 72.4, which is higher than using RGB
alone, but lower than using depth alone. Hence, we argue
that simply combining the input representations as they are
provided is not enough to increase the SS accuracy. There-
fore, we include an additional convolutional layer (followed
by batch normalization and ReLU activation function) to
extract features from RGB and depth samples separately. Then,
we concatenate the outputs and feed the result as the input
of the first layer of the ResNet101. We denote this fusion
method as “RGBD @layer1” in Table VIII. With this simple
provision, we could achieve an mIoU of 74.3, an improvement
of 5.4 points with respect to using RGB alone, and by
0.9 points with respect to using depth alone.

Finally, the highly performing multi-modal CMX archi-
tecture [79] trained on SELMA achieves an mIoU of 91.7,
improving by 22.8 and by 17.4 points the RGB-only and
the simple fusion approach, respectively. Encouraged by these
promising results, we believe that future research could lever-
age the multimodal design of SELMA to extensively inves-
tigate a wide range of fusion strategies for different sensors,
such as RGB, depth and LiDAR.

D. Multi-View Experiments

As baseline experiments for the multi-view aspect of our
dataset, we consider an architecture trained on the desk camera
and tested on the available points of view. This permits to
verify the intra-domain shift caused by the variable camera
viewpoints, which we expect to be more significant in the
cameras facing different directions (like Left, Right and Back).
We measure the domain shift by computing the Kullback-
Leibler (KL) divergence between the label distribution of
the DESK camera and that of the other cameras, reported
in Table IX together with the average mIoU score and the

TABLE IX
MIOU MULTI-VIEW RESULTS. DEEPLABV2 [65] IS TRAINED ON

SAMPLES FROM THE DESK CAMERA AND TESTED ON OTHER
CAMERAS. THE KL-DIVERGENCE BETWEEN THE LABEL DISTRI-

BUTION SEEN BY THE DESK CAMERA AND BY THE OTHER
CAMERAS IS ALSO REPORTED, TO QUANTIFY THE DOMAIN

SHIFT. THE ARROWS INDICATE WHETHER A METRIC IS
HIGHER-IS-BETTER (↑) OR LOWER-IS-BETTER (↓)

corresponding degradation with respect to the reference DESK
camera.

The mIoU scores confirm our expectations, i.e., all
front-facing cameras have minimal performance degradation
(2.3 mIoU) and are all similar to each other due to their
reciprocal proximity (see Fig. 5), as confirmed by the KL
score, equal for all the three cameras. The LEFT camera
also shows limited degradation (only −0.4 compared to the
front-facing cameras), with an mIoU of 66.2. On the other
hand, the RIGHT camera shows a significant loss of 6.7
mIoU compared to the DESK camera, as also demonstrated
by the large KL divergence. This is because CARLA is a
right-lane driving environment, meaning that the point of view
of the right-facing camera changes significantly with respect
to the front-facing camera used for training, which leads to
performance degradation.

Moreover, we can observe an inverse correlation between
the mIoU score and the KL divergence from the DESK
camera, as expected, for all the cameras except for the BACK
camera. This discrepancy is probably due to the fact that,
while the frequencies of objects from the BACK camera is
consistent with that of the FRONT cameras, they might still
look different on some aspects (e.g., vehicles will be turned
towards the camera, rather than away from it). Still, the BACK
camera performs similarly to the LEFT camera, with an mIoU
score of 65.9, that is only 0.3 lower than the latter.

VI. EXPERIMENTS ON REAL-WORLD DATASETS

In the last set of experiments we validate the SELMA
dataset on different SS models. We run an extensive evaluation
by training the DeepLab-V2 segmentation architecture on the
SELMA dataset and testing it on different real-world datasets.

A. Training With a Mixture of Synthetic and Real Data

To start, we show in Fig. 10 the mIoU accuracy on source
and target sets when training the segmentation network on
samples drawn either from the target real-world domain, i.e.,
the Cityscapes dataset (with probability r ), or from the source
domain, i.e., our SELMA dataset (with probability 1 − r ).
Adding as few as 5% to 10% of data from a different
domain improves domain generalization, i.e., the network can
perform well on both domains. Even more, we highlight that
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Fig. 10. Accuracy (mIoU) with images sampled either from the Cityscapes
dataset (target) or from our SELMA dataset (source). Using more samples
from the target dataset in the training (i.e., moving along the positive direction
of the x-axis in (a)) degrades the mIoU on the source data (blue), while
improving that of the target (orange). Similarly, (b) compares the mIoU of
the source with that of the target, showing how the former increases when
using only source data (r = 0.0) and reaches its minimum when using only
target data (r = 1.0) for the training.

a 5% of samples from SELMA can improve the performance
on the target domain from 67.4 to 68.4. Similarly, 10% of
target samples improve the performance on the source domain
from 68.9 to 69.7. The per-class accuracy is reported in the
Suppl. Mat.

To analyze the performance gain when considering impre-
cise labels, we trained the same architecture using a mixture
of SELMA and coarsely-annotated samples from Cityscapes.
We achieved an mIoU score of 59.5, which is 7.9 lower than
the fully supervised training on Cityscapes, and 2.3 lower than
the mixed training score when r = 0.5. This demonstrates that
we can bridge the domain gap with few coarsely-supervised
samples in the target domain, thus reducing the cost for
accurate labeling.

B. Training With Synthetic Data Only

We then considered an unsupervised setup where no data
from the target dataset were used for the training. We per-
formed an extensive validation in the presence of domain shift,
whose results are reported in Fig. 11: we considered four
synthetic datasets (in red) and seven real-world datasets (in
blue) with extremely variable time and weather conditions.
We trained a DeepLab-V2 architecture (with ResNet-101 as
backbone) on each dataset, and performed the testing on all
the domains. Values on the diagonal correspond to training and
testing performed on the same dataset, i.e., standard supervised
training, while values off the diagonal correspond to training
on a source domain (on the rows) and testing on a different
target domain (on the columns). As expected, the values on the
diagonal are larger than the others, since there is no domain
shift.

In general, the mIoU performance depends on the source
domain where training is performed. For example, a source
training on SELMA performs well on IDDA, and vice-versa,
since the rendering engine is common for the two datasets.
Also, a source training on Cityscapes performs well on

Fig. 11. mIoU performance for different synthetic and real-world datasets.
The network is trained on a source domain (rows) and tested on a target
domain (columns). Off-diagonal elements correspond to the presence of
domain shift. The asterisk (*) indicates that a different label set is employed
for testing (see Suppl. Mat. for further details).

Fig. 12. mIoU performance results taken from the heatmap in Fig. 11, and
aggregated by synthetic or real domain. The asterisk (*) indicates a different
label set (see Suppl. Mat.).

Cityscapes Fog or Cityscapes Rain, and vice-versa, since the
city-level domain is common for the two datasets.

On the other side, training on datasets which only account
for daytime images, such as Cityscapes, SYNTHIA or IDDA,
struggles to generalize to nighttime images, e.g., sampled
from the NightCity dataset. Training on statistically variable
datasets, such as SELMA or Mapillary, can greatly improve
the generalization capabilities in challenging domains.

Furthermore, we can observe that architectures trained
on the SELMA dataset outperform those trained on other
synthetic datasets on the widely-used real-world Cityscapes
dataset. Indeed, source knowledge acquired on SELMA trans-
fers well to Cityscapes, achieving 42.0 of mIoU, higher than
transferring knowledge from GTA5 (40.4), IDDA (22.0) or
SYNTHIA (28.6). Remarkably, SELMA outperforms both
GTA5 (which is the most popular dataset for this task)
by 1.6 of mIoU, and IDDA (i.e., the most similar dataset
based on the same graphic engine) by an outstanding 20
of mIoU.
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Then, in Fig. 12 we show the results averaged according
to synthetic or real domains. We observe that evaluating a
model trained on synthetic data on another set of synthetic
data - not necessarily from the same domain - achieves better
performance than applying the same model to real data, and
vice versa. This is due to different textures, colors, and bright-
ness rendered by the synthetic graphic engines versus the true
target properties of real-world datasets. In general, we observe
that acquiring source knowledge on the SELMA dataset (or its
subsets) leads to much higher accuracy scores (e.g., 34.3 from
SELMA) on both source and target domains, rather than
IDDA [23] (27.5) or SYNTHIA [21] (23.7) datasets. Overall,
SELMA achieves similar scores as obtained by acquiring
source knowledge from the GTA5 dataset.

Finally, to provide an Unsupervised Domain Adaptation
(UDA) baseline, we applied the AdaptSegNet [80] approach
to SELMA. In particular, to align with the other experiments,
the AdaptSegNet architecture was trained in the single-level
configuration, and obtained a final performance score of
42.5 mIoU, corresponding to an improvement of 1.1 mIoU
compared to the score reported in [80] when adapting from
GTA5 to Cityscapes.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented SELMA, a synthetic dataset with
driving scenes that contain a large amount of labeled samples
acquired considering several different sensors, weather, day-
time and viewpoint conditions. The experimental evaluation
shows that SELMA allows to efficiently train deep learning
models for scene understanding in the autonomous driving
context, achieving a good generalization to real-world data.

In general, we noticed that the accuracy of synthetic data
compared to real data is limited by the quality and realism
of the rendering engine and by the implementation of the
synthetic sensors. Another limiting factor, common to many
synthetic datasets, is the lack of proper models for the data
noise and the artifacts generated by the sensor imperfections.
Given that, in future releases, the CARLA Simulator may fill
these gaps, SELMA will be updated accordingly. Finally, since
by design SELMA contains independent samples, it cannot
be used for temporal analyses, thus limiting its application to
the training and evaluation of static segmentation networks.
As part of our future work we may consider adding temporal
sequences of multimodal data to the dataset.

The SELMA dataset is publicly available, in the hope that
it will be useful to the research community.

The availability of large-scale multimodal acquisitions in
variable weather, daytime and viewpoints in SELMA promotes
research towards key challenges, for example scene under-
standing for autonomous driving applications like multimodal
sensor exploitation, domain generalization from synthetic
datasets to real scenes, and autonomous driving in adverse
weather conditions.
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