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ABSTRACT Spectral computed tomography (spectral CT) is a promising medical imaging technology
because of its ability to provide information on material characterization and quantification. However, the
difficulty of decomposition increases due to the nonlinearity of the measurements and the ill-condition of
the problem, especially in the case of geometric inconsistency, which typically leads to low image qualities.
Therefore, it is a crucial issue for inconsistent spectral CT imaging to improve the accuracy of material
decomposition while suppressing noise. This paper proposes one-step multi-material algorithms based on
a statistical reconstruction model with different priors. In these approaches, the gradient sparsity based
and convolutional neural network based methods are designed for the case of the consistent numbers of
material and energies. Furthermore, volume conservation constraint is developed while the two numbers
are not equal. An efficient Newton descent method is adopted based on a simple surrogate function. For
simulation experiments with different noise levels, the largest peak signal-to-noise ratio (PSNR) obtained
by the proposed method approximately increases by 20.924 dB and 18.283 dB compared with those of other
algorithms. Magnified areas of real data also demonstrated that the proposed methods have a better ability to
suppress noise. Numerical experiments verify that the proposed methods efficiently reconstruct the material
maps and reduced noise compared with the state-of-the-art methods.

INDEX TERMS Spectral computed tomography, image reconstruction, one-step material decomposition,
inconsistent geometry.

I. INTRODUCTION
Spectral computed tomography (spectral CT) has promising
potential in wide applications due to its ability to quantitative
material discrimination for diagnostics and therapy evalua-
tion in medical imaging [1], [2], [3]. Evidence is emerging
to suggest that spectral CT can help to improve the diag-
nosis of coronavirus disease (COVID-19) [4], [5]. As one
of the typical implementations of spectral CT, the princi-
ple of dual-energy CT (DECT) has been studied for a long
time. Recent developments in energy-selective detectors have
spurred research in this area, especially improvements in
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photon-counting detectors (PCDs) [6]. However, low signal-
to-noise ratio (SNR) measurements, caused by pile-up, fluo-
rescence effect, charge sharing, and photon scattering, affect
the image quality as well as the accuracy of material decom-
position [7]. In the imaging process, quantum noise, elec-
tronic noise and reconstruction noise introduced by hardware
devices and algorithms will degrade our imaging results.
As well as the development of equipment, optimizing algo-
rithms and parameters are critical in the field of medical
imaging to improve the accuracy of material decomposition
and maintain image quality.

In recent years, there are two categories of meth-
ods for reconstructing material-specific images: two-
step methods and one-step methods. Furthermore, the

58128

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6618-527X
https://orcid.org/0000-0001-6128-0876
https://orcid.org/0009-0003-9398-2575
https://orcid.org/0000-0002-1323-1655
https://orcid.org/0000-0002-0393-9641
https://orcid.org/0000-0001-6571-9807


X. Yu et al.: Volume Conservation Constrained Multi-Material Reconstruction for Inconsistent Spectral CT Imaging

two-step methods can be divided into image-domain and
projection-domain based methods. In image-domain based
approaches [8], [9], [10], [11], CT images are first recon-
structed from polychromatic projection data, followed by
a decomposition step to obtain the corresponding material
images. Unfortunately, the quality of material results is often
severely impacted by beam-hardening artifacts and noise
explosions caused by direct matrix inversion-based decom-
position, especially when there are more than two materials
to be separated [12]. In contrast, projection-domain based
methods involve separating or decomposing the multi-energy
projections into material-specific projections, before recon-
structing them through traditional algorithms [13], [14], [15].
However, it requires the projection in multi-energy mea-
sured under strictly consistent and identical imaging geom-
etry (i.e., the same source, object, and detector positions),
which limits its application in fast kVp switching [16] or
multi-source-multi-detector [17] systems. Additionally, the
material-specific results of two-step methods depend on the
quality of the first step, and it is difficult for the second step
to compensate for the errors caused by the first step.

To avoid these problems in dual material imaging with
dual spectral CT, several methods have been proposed that
aim to directly obtain material-specific images from the non-
linear observation measurements. These methods, referred
to as one-step iterative methods, typically combine forward
models of the reconstruction with the material separation
process. For instance, Zhao et al. utilized the first-order
Taylor expansion of nonlinear observations and proposed
an extended algebraic reconstruction technique (EART) [18]
for DECT. In recent years, several variants of EART have
been developed for improving convergence efficiency, such
as the simultaneous EART (ESART) [19], the monochro-
matic images guided iteration method [20] for dual-energy,
which accelerates the convergence but needs to manually
determine the optimal values of reference energy. And the
oblique projection modification technique (OPMT) [21] for
inconsistent scanning to acquire the material-specific maps.
In addition, as the photons emitted by X-ray source often
contain statistical significance, different statistical iterative
methods have also emerged. Qiong et al. [22] have developed
a penalized-likelihood algorithm to carry out basis materials
decomposition for DECT. Several other researchers, such
as Long et al. [23], Weidinger et al. [24] and Mechlem et
al. [25], have designed separable quadratic surrogates of
spectral CT statistical models to achieve a one-step material
decomposition. Barber et al. [26] applied primal-dual pro-
totype framework to material imaging of spectral CT. Very
recently, they further proposed to investigate the convergence
theory of the nonconvex alternating direction of multipliers
method (NcADMM) [27] and conducted the reconstruction
of the PCD system to reduce beam-hardening and metal
artifacts [28]. It is more challenging to solve the inverse prob-
lem when the occasion comes into an inconsistent scanning
system.

Moreover, due to the inherent ill-conditioning of the CT
inverse problem, it is often necessary to incorporate prior
knowledge as a regularization term to suppress the noise
of basis material images. To further enhance the quality of
reconstruction, sparsity-based methods have been employed.
For example, Cai et al. [29] adopted the Huber function [30]
as the regularization term in a Bayesian approach. Chen
et al. [31], [32] applied the convex indicator function of the
gradient image to enforce an upper bound on the material
images and monochromatic images. Zhang et al. [33] pro-
posed a direct material reconstruction method that combined
total variation (TV) and block-matching and 3D filtering for
DECT. However, some of the above-mentioned one-step iter-
ative methods are even susceptible to noise because they lack
the ability to suppress noise or require manual adjustment of
the parameters of the regularization terms when the number
of materials increases. Direct extensions and applications of
these methods to multi-material reconstructions are unstable
and may even fail due to the increased ill-posedness arising
from inconsistent geometry. Therefore, it is a key issue to
design an efficient and accurate one-step method based on an
appropriate optimization model for multi-material imaging in
spectral CT.

In this work, formulti-material reconstruction under incon-
sistent geometry, a statistical reconstruction model is estab-
lished that combines different material-specific image reg-
ularization priors. When the number of spectrums matches
the number of materials, a gradient sparsity TV based prior
and a denoising convolutional neural network (DnCNN) [34]
based prior are incorporated into the statistical model. For
the case where the number of spectrums does not match
the number of materials, a volume conservation constraint
(VCC) is developed to improve the ill-condition of the inverse
problem. Additionally, an efficient Newton descent algorithm
is derived based on the simple surrogate function. To verify
the practical performance of the presented methods, a series
of numerical experiments have been conducted, which show
that the proposed algorithms demonstrate improved results of
noise suppression compared to the state-of-the-art one-step
material reconstruction methods.

The organization of this paper is as follows. Section II
introduces the physical model, and describes the proposed
reconstruction algorithms. Section III presents the numeri-
cal verifications of the proposed methods and experimental
comparisons with typical competing methods. Discussions
and conclusions are subsequently presented in Section IV and
Section V, respectively.

II. MATERIALS AND METHODS
A. STATISTICAL MULTI-MATERIAL RECONSTRUCTION
MODEL
Spectral CT is a promising imaging technique that takes
advantage of the differences in attenuation of different mate-
rials in an object when polychromatic X-ray passes through
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it. Specifically, the attenuation of an object f (x,E) at a
particular ray l under a specific spectrum Ss(E) follows the
formula:

ys,l =

∫
Ss(E) exp(−

∫
l
f (x,E)dl)dE, (1)

where l ∈ �s, s = 1, 2, . . . , S. Furthermore, f (x,E) can
be decoupled into a linear combination of energy-dependent
terms µk (E) and basis material-dependent terms f k (x), i.e.,

f (x,E) =

K∑
k=1

µk (E) f k (x), (2)

where K is the total number of basis materials. In general, the
discrete form is utilized to establish the forward transmission
model:

ys,l =

Ms∑
m=1

Ss,m exp(−
K∑
k=1

µm,kAs,l f k ), (3)

where Ss,m is the sampling point of the energy spectrum

Ss(E), and
Ms∑
m=1

Ss,m = 1. As,l represents the line integral of

basis material f k and the path of the ray l. For spectral CT
imaging, the measurements is assumed to follow the Poisson
model:

ys,l ∼ Poisson(
Ms∑
m=1

Ss,m exp(−
K∑
k=1

µm,kAs,l f k )), (4)

For the inconsistent scanning geometry, the path of the
measured ray under one spectrum does not coincide with
another spectrum. In other words, the intersection of any two
sets of the ray l is empty (�s1∩�s2 = ∅, s1, s2 ∈ {1, . . . , S}).
Assuming that the expected photons ys,l follow a Poisson
statistical model. Given the measurements ŷ, the negative log-
likelihood function with respect to the expected photons is

L( f 1, f 2, · · · f K ) =

∑
s,l

ys,l( f 1, f 2, · · · f K )

− ŷs,l ln ys,l( f 1, f 2, · · · f K ). (5)

However, minimizing the negative log-likelihood function
for the polychromatic measurements is always ill-posed due
to severe noise. It needs to combine it with some prior knowl-
edge as a regularization term to improve the condition of the
solution. Therefore, the multi-material reconstruction model
is described as

min
f 1, f 2,··· f K

L( f 1, f 2, · · · f K ) + λR( f 1, f 2, · · · f K ) (6)

where R( f 1, f 2, · · · f K ) is the mathematical symbolic rep-
resentation of prior knowledge, such as gradient sparsity of
reconstructed images and other material-specific knowledge.
λ is a scaling nonnegative factor that balances the regulariza-
tion term.

B. PRIORS BASED METHODS FOR INCONSISTENT
POLYCHROMATIC PROJECTION
From the definition of L( f 1, f 2, · · · f K ), there are the oper-
ations of summing first and then taking the logarithm. It is
challenging to obtain the analytical solution directly. One
intuitive approach is to find a simpler representation of the
complex function that is easier to solve. In order to achieve
this, we first rewrite equation (5) as

L( f 1, f 2, · · · f K )

=

∑
s,l

ys,l( f 1, f 2, · · · f K )

− ŷs,l ln ys,l( f 1, f 2, · · · f K )

=

∑
s,l

Ms∑
m=1

Ss,m exp(−
K∑
k=1

µm,kAs,l f k )

− ŷs,l ln
Ms∑
m=1

Ss,m exp(−
K∑
k=1

µm,kAs,l f k )

=

∑
s,l

Ms∑
m=1

Ss,m
α(n) α

(n)t( f 1, f 2, · · · f K )

− ŷs,l ln
Ms∑
m=1

Ss,m
α(n) α

(n)t( f 1, f 2, · · · f K ),

(7)

where t( f 1, f 2, · · · f K ) = exp(−
K∑
k=1

µm,kAs,l f k ), and α(n)

is a nonnegative parameter. To obtain a more explicit expres-
sion for the parameter α(n), it is necessary to state that α(n)

satisfies the assumption
Ms∑
m=1

α(n)
=

Ms∑
m=1

α( f (n)1 , . . . , f (n)K ) =

1. When combined with the fact that h(x) = x − y ln x is a
convex function, the above equation (7) can be transformed
into finding its upper bound by Jensen’s inequality

L( f 1, f 2, · · · f K ) =

∑
s,l

Ms∑
m=1

Ss,m
α(n) α

(n)t( f 1, f 2, · · · f K )

− ŷs,l ln
Ms∑
m=1

Ss,m
α(n) α

(n)t( f 1, f 2, · · · f K )

≤

∑
s,l

Ms∑
m=1

α(n)[
Ss,m
α(n) t( f 1, f 2, · · · f K )

− ŷs,l ln
Ss,m
α(n) t( f 1, f 2, · · · f K )]. (8)

If the equality holds, the upper bound is close to the original
objective function L( f 1, f 2, · · · f K ). Therefore, we need to
construct a proper α(n) to make the equality hold, i.e., the
equality holds if and only if the value is a constant. Hence, the
following equation at the point ( f (n)1 , . . . , f (n)K ) is established

Ss,m
α(n) t( f

(n)
1 , . . . , f (n)K ) = c, (9)
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where c is a constant. According to
Ms∑
m=1

α(n)
= 1, we get the

explicit formula of α(n) as

α(n)
=

Ss,mt( f
(n)
1 , . . . , f (n)K )

Ms∑
m=1

Ss,mt( f
(n)
1 , . . . , f (n)K )

=
Ss,mt (n)

Ms∑
m=1

Ss,mt (n)
=
Ss,mt (n)

y(n)s,l
.

(10)

We further denote β(n)
=

Ss,m
α(n) =

y(n)s,l
t (n)

, then α(n)
=

Ss,m
β(n) and

L( f 1, f 2, · · · f K ) ≤

∑
s,l

Ms∑
m=1

α(n)[
Ss,m
α(n) t( f 1, f 2, · · · f K )

− ŷs,l ln
Ss,m
α(n) t( f 1, f 2, · · · f K )]

=

∑
s,l

Ms∑
m=1

Ss,m
β(n) (β

(n)t( f 1, f 2, · · · f K )

− ŷs,l lnβ(n)t( f 1, f 2, · · · f K ))

=

Ms∑
m=1

Ss,m
∑
s,l

1
β(n) (β

(n)t( f 1, f 2, · · · f K )

− ŷs,l lnβ(n)t( f 1, f 2, · · · f K ))

=

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) (11)

where

L̂( f 1, f 2, · · · f K ) =

∑
s,l

1
β(n) (β

(n)t( f 1, f 2, · · · f K )

− ŷs,l lnβ(n)t( f 1, f 2, · · · f K )).

and
Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) is the desired final representa-

tion mentioned at the beginning of the subsection. Although
the original objective function L( f 1, f 2, · · · f K ) is approxi-
mated, the simple function is equivalent to L( f 1, f 2, · · · f K )
at a certain point in the construction process.

Algorithm 1 TV-Based Method
Input: measured projection data ŷs,l , parameter λ, nmax.
Initialization: f (0)k (k = 1, 2, . . . ,K ), n = 0.
While n ≤ nmax

Update f (n)k (k = 1, 2, . . . ,K ) via (14).
End while
Output: f k , (k = 1, . . . ,K )

C. GRADIENT SPARSITY-BASED ALGORITHM
In this subsection, TV is utilized to characterize the
material maps sparsity, i.e., the regularization term

R( f 1, f 2, · · · f K ) =

K∑
k=1

∥∥∇ f k
∥∥
1, where ∇ f k :=

(∇x f k , ∇y f k ) denotes differential operator along the x and
y directions. And the TV term is defined as∥∥∇ f k

∥∥
1 =

∥∥∇x f k
∥∥
1 +

∥∥∇y f k
∥∥
1 . (12)

Therefore, the gradient sparsity based reconstruction model
can be illustrated as

min
f 1, f 2,··· f K

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) + λ

K∑
k=1

∥∥∇ f k
∥∥
1 (13)

To solve the optimization problem, the Newton method is
applied to get new iterations in equation (14), as shown at
the bottom of the page, where diag(x) denotes the diagonal
matrix of x. Note that the continuous function ∥·∥1 is not dif-
ferentiable, but for a discrete digital two-dimensional image,
the symbols of the first and second derivatives here represent
operations pixel-wised. The overall description of the gradi-
ent sparsity based method is summarized in Algorithm 1.

D. DEEP PRIOR-BASED ALGORITHM
Rather than the TV penalty, we also consider a deep prior,
DnCNN, as a flexible module under the plug-and-play (PnP)
framework [35]. The deep prior-based multi-material recon-
struction model is

min
f 1, f 2,··· f K

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) + λ

K∑
k=1

8( f k ) (15)

f (n+1)
k = f (n)k − 1 f (n)k

= f (n)k −

∑
k

(
Mk∑
m=1

Ss,m
∂L̂( f 1, f 2,··· f K )

f k
+ λ

∂
K∑
k=1

∥∇ f k∥1

f k
)
∣∣∣ f k= f (n)k

( ∂2L̂( f 1, f 2,··· f K )
∂ f 2k

+

∂2
K∑
k=1

∥∇ f k∥1

∂ f 2k
)
∣∣∣ f k= f (n)k

= f (n)k −

∑
k

∑
s,l
ATs,l · (

ŷs,l
y(n)s,l

− 1)
Mk∑
m=1

Ss,mµm,k t (n) + λ∇
T

∥∥∇ f k
∥∥
1

∣∣∣ f k= f (n)k∑
s,l
ATs,l · As,l ·

Mk∑
m=1

Ss,mµ2
m,k t

(n) + diag(∇T∇)

, (k = 1, 2, . . . ,K ), (14)
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where 8( f k ) is the DnCNN deep prior in terms of k-th basis
material. Furthermore, auxiliary variables g1, g2, · · · gK are
introduced to transform the problem as

min
f k ,gk

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) + λ

K∑
k=1

8(gk )

+

K∑
k=1

λk

2

∥∥∥∥ f k − gk +
3k

λk

∥∥∥∥2
2
, k = 1, . . . ,K , (16)

where 3k is the Lagrangian multiplier, and λk is the nonneg-
ative penalty parameter. The alternating directions method of
multipliers (ADMM) is adopted to solve the problem (16),
it is divided into two sub-problems (17) and (18), as shown at
the bottom of the page.

The implementation of sub-problems g1, g2, · · · gK is a
denoising process based on a pre-trained DnCNN network.

Feeding f (n+1)
k +

3
(n)
k

λk
into the denoiser DnCNN network,

we obtain the solution g(n+1)
k . The parameter

√
λ
/
λk

is related
to the error estimation between the clean and noisy images.
The summary of the deep prior-based material reconstruction
(DnCNN-based) method is listed in Algorithm 2.

E. VOLUME CONSERVATION CONSTRAINT-BASED
ALGORITHM
If the numbers of the basis materials and spectrums are not
the same, i.e., the known spectrums are less than the number
of materials, the nonlinear inverse problem can be described
as 

y1,l =

M1∑
m=1

S1,m exp(−
K∑
k=1

µm,kA1,l f k ),

y2,l =

M2∑
m=1

S1,m exp(−
K∑
k=1

µm,kA2,l f k ),

. . .

ys−1,l =

Ms−1∑
m=1

Ss−1,m exp(−
K∑
k=1

µm,kAs−1,l f k ).

Algorithm 2 DnCNN-Based Method
Input: measured projection data ŷs,l , parameter
λ, nmax, λk (k = 1, . . . ,K ).
Initialization: f (0)k , g(0)k (k = 1, 2, . . . ,K ), n = 0.
While n ≤ nmax

For k = 1, 2, . . . ,K
1. Update f (n)k via (17).
2. Update g(n)k via (18).
3. 3(n+1)

k = 3
(n)
k + λk ( f

(n+1)
k − g(n+1)

k ).
End while
Output: f k , (k = 1, . . . ,K )

It means that the nonlinear equation system about the
unknown basis materials f k , k = 1, 2, . . . ,K is more
ill-posed and the existence of noise will aggravate the diffi-
culty of solving the inverse problem. Similar to the previous
two subsections, the intuitive idea is to introduce regulariza-
tion terms to suppress the adverse effects of noise. In addi-
tion, we further assume that the volume of basis materials
in a voxel or pixel is conserved. Under this assumption,
the volume conservation constraint is proposed to reduce
the difficulty through adding nonlinear equations, which for-
mulation is derived as (20). Therefore, the minimization is
reformulated as

min
f 1, f 2,··· f K

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) + λ

K∑
k=1

∥∥∇ f k
∥∥
1

s.t.
K∑
k=1

f k = T0, (19)

where T0 is a template and its pixel is 1 when the mate-
rial is present. We try to integrate this equality constraint
in the descent step of basis materials. First, we convert the
constraint into projection data at an auxiliary normalized

f (n+1)
k = argmin

f k

Ms∑
m=1

Ss,mL̂( f 1, f 2, · · · f K ) +

K∑
k=1

λk

2

∥∥∥∥∥ f k − g(n)k +
3

(n)
k

λk

∥∥∥∥∥
2

2

= f (n)k −

∑
k

∑
s,l
ATs,l · (

ŷs,l
y(n)s,l

− 1)
Mk∑
m=1

Ss,mµm,k t (n) + λk ( f k − g(n)k +
3

(n)
k

λk
)
∣∣∣ f k= f (n)k∑

s,l
ATs,l · As,l ·

Mk∑
m=1

Ss,mµ2
m,k t

(n) + λk

, k = 1, . . . ,K , (17)

g(n+1)
k = argmin

gk

K∑
k=1

8(gk ) +

K∑
k=1

1

2λ
/
λk

∥∥∥∥∥ f (n+1)
k − gk +

3
(n)
k

λk

∥∥∥∥∥
2

2

= DnCNN ( f (n+1)
k +

3
(n)
k

λk
,

√
λ
/
λk
), k = 1, . . . ,K . (18)
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spectrum ST , i.e.,

yT0,l =

MT∑
m=1

ST ,m exp(−
K∑
k=1

AT ,l f k ), yT0 =

∑
l

yT0,l,

(20)

where AT ,l denotes the path of l-th ray under the scanning
geometry, MT is the total number of sampling at the current

energy.
MT∑
m=1

ST ,m = 1 and it should be pointed out that ST ,m of

the auxiliary spectrum can be equal to 1
/
MT . We further get a

pre-computed ŷT0,l =

MT∑
m=1

ST ,m exp(−AT ,lT0). Then, similar

to the construction of β(n), t (n), we obtain

tT0 ( f 1, f 2, · · · f K ) = exp(−
MT∑
k=1

AT ,l f k ), β
(n)
T0

=
yT0,l( f

(n)
1 , f (n)2 , · · · f (n)K )

tT0 ( f
(n)
1 , f (n)2 , · · · f (n)K )

=
y(n)T0,l

t (n)T0

.

(21)

Finally, we establish the surrogate function of yT0 ,

LyT0 =

∑
l

yT0,l − ŷT0,l ln yT0,l

≤

∑
l

MT∑
m=1

ST ,m

β
(n)
T0

(β(n)
T0
tT0 − ŷT0,l lnβ

(n)
T0
tT0 )

=

MT∑
m=1

ST ,m

∑
l

1

β
(n)
T0

(β(n)
T0
tT0 − ŷT0,l lnβ

(n)
T0
tT0 )

=

MT∑
m=1

ST ,mL̂yT0 ( f 1, f 2, · · · f K ). (22)

And other derivations are similar to the previous descriptions.
Similar to the previous update, Newton’s method is applied to
obtain the iterative form of the main formula as well while the
regularization term is chosen as TV penalty as (23), shown at
the bottom of the page.

The overall description of the volume conservation con-
straint based method is summarized in Algorithm 3.

III. RESULTS
In this section, the performance of the proposed method
will be validated through a simulated walnut data [36]

Algorithm 3 VCC-Based Method
Input: measured projection data ŷs,l , parameter λ, nmax.
Initialization: f (0)k (k = 1, 2, . . . ,K ), n = 0.
While n ≤ nmax

Update f (n)k (k = 1, 2, . . . ,K ) via (19).
End while
Output: f k , (k = 1, . . . ,K )

and an industrial QRM phantom dataset. The comparison
methods are chosen as the three-material EART, the three-
material OPMT, the TV-based method listed in Algorithm
1, the DnCNN-based method listed in Algorithm 2, and the
VCC-based method listed in Algorithm 3. To further clar-
ify the effectiveness of the proposed algorithms, the root
mean square error (RMSE), the peak signal-to-noise ratio
(PSNR), and the structural similarity index (SSIM) [37] are
employed for quantitative assessment. In addition, to accel-
erate the algorithms, the ordered subsets (OS) technique [38]
is adopted to implement experiments, and the OS number is
set to 33 for our proposed methods in the numerical experi-
ments. In the simulation experiments, the regularized penalty
parameters λ of proposed methods are set to 1. And in the real
dataset, the corresponding λ of the proposed methods are set
to 10−2, 1, and 10−3, respectively. The parameters of com-
parison methods are also modified according to the condition
of different datasets. And the total number of iterations are
set to 3000 and 30 for noisy simulation and real experiments,
respectively.

A. SIMULATION EXPERIMENTS
The simulated walnut dataset with the size of 512×512 pixels
contains three materials, i.e., tissue, bone, and iodine, which
is shown in Figure 1(a1)-(a4). And the concentration of the
iodine contrast agent is 15 mg/mL. The attenuation curves
of three materials are shown in Figure 1(b). The distances
of source-to-object and source-to-detector are 300.0 mm and
600.0 mm. The three source spectrums for the simulation
data are generated by the SpekCalc software [39] at 80 kVp,
110 kVp, and 140 kVp, the distributions are shown in Fig-
ure 1(c). Projections of each spectrum are acquired from
363 views uniformly distributed in the 360◦ range under a fan
beam scanning geometry. And the number of detector units
is 1024 with the size of 0.124 mm. The ray paths of three

f (n+1)
k = f (n)k − 1 f (n)k = f (n)k

−

∑
k

∑
s,l
ATs,l · (

ŷs,l
y(n)s,l

− 1)
Mk∑
m=1

Ss,mµm,k t (n) +
∑
l
ATs,l · (ŷT0,l − y(n)T0,l) + λ∇

T
∥∥∇ f k

∥∥
1

∣∣∣ f k= f (n)k∑
s,l
ATs,l · As,l ·

Mk∑
m=1

Ss,mµ2
m,k t

(n) +
∑
l
ATs,l · As,l · y

(n)
T0,l

+ diag(∇T∇)
∣∣∣ f k= f (n)k

, (k = 1, 2, . . . ,K ).

(23)
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FIGURE 1. (a) Simulation walnut phantom that consists of (a1) tissue,
(a2) bone, and (a3) iodine, and (a4) represents the simulated object.
(b) Three normalized spectrums were used in the simulation experiments.
(c) Linear attenuations of different materials.

spectrums are inconsistent to obtain the measured projections
in the fast kVp switching scanning. In the experiments, the
initial images for all methods are set to zero, and the spec-
trums used in the VCC-based method are the high and low
voltages, i.e., 80 kVp and 140 kVp.

B. NOISE-FREE DATA VERIFICATION
In this subsection, the ideal noise-free walnut data are first
applied to verify the performance of the proposed methods.
Figure 2 shows the materials maps reconstructed by the pro-
posed method, where columns (a) to (d) represent the ground
truth (Reference), the TV-based method, the DnCNN-based
method, and theVCC-basedmethod, respectively. Rows from
up to bottom are the distributions of tissue, bone, and iodine
materials. According to the results shown in Figure 2, the
material maps reconstructed by the proposed methods are
close to the given phantommaps inmost areas. Since DnCNN
is a pre-trained network, it is easy to overfit when the number
of iterations is too large. This is also shown by the results
reconstructed by the DnCNN-based method. For example,
it shows some bone structures in the tissue map, as shown
by purple arrows in Figure 2 (b1). We further plot the RMSE
curves of different materials for the three proposed methods.

As shown in Figure 3(a), the proposed VCC-based method
has a faster descent trend compared with the TV-based
method and the DnCNN-based method. The reason for this
phenomenon is that the former only utilizes two spectrums
to update, while the latter requires three energies to acquire
three material maps. Meanwhile, DnCNN based method has
an upward trend with the increase of iteration due to the
overfitting. In addition, three different forms of the volume
conservation constraint are tested.

In Figure 3(b), the high spectrum represents the high
energy (140 kVp) used in the simulation experiments. The
equal spectrum means that the normalized spectrum used
in the VCC-based method is discretized into 140 sam-
pling points, and the intensity of every point is equal. And
2-equal spectrum indicates that we computed two volume

FIGURE 2. Results of noise-free simulation dataset obtained by the
proposed methods. Columns (a) to (d) represent the Reference, the
TV-based method, the DnCNN-based method, and the VCC-based method,
respectively. Rows from top to bottom indicate three materials: tissue,
bone, and iodine, respectively, where the display windows of the first two
columns are [0.02 1], [0.01 1], and [0.01 1], respectively.

conservation constraints in the implementation with two
equal spectrums at 140 sampling points and 80 sampling
points. The results of RMSEs show that the high spectrum
and equal spectrum have the same positive effect on the
algorithm. Their curves overlap in Figure 3(b). And the 2-
equal spectrum also declined, and at a faster rate than the
other two tested spectrums. The reason for this phenomenon
is that the two equality constraints at two spectrums are
enforced to accelerate the convergence. From these results,
it demonstrates that the introduction of the volume conserva-
tion constraint in the VCC-based method plays an important
role in multi-material reconstruction and it does not require
additional estimation of the spectrum. Note that the results of
the VCC-based method were obtained by the usage of two
equality constraints.

C. COMPARISON EXPERIMENTS WITH NOISY DATA
In this subsection, comparisons with the state-of-art algo-
rithms will be carried out to further verify the performance
of the proposed method. To make the data more realistic,
different Poisson noise levels are added to obtained projec-
tions to simulate image noises. In this work, Poisson noise is
generated and injected into the projections to simulate noisy
measurements as

P =
I k0
k!
e−I0 , pi = P · exp(−p0), (24)

where I0 stands for the number of incident X-ray photons,
p0, p are the measured projection data and the photons of
adding noise collected by the detector unit i, respectively. k
is the index of the detector unit. In this work, we set I0 =

1e5 and I0 = 1e7 to validate the effectiveness of the proposed
algorithm.

Figure 4 and Figure 5 show the materials results, virtual
monochromatic images at 75 keV reconstructed by different
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FIGURE 3. (a) The RMSE curves of the proposed three methods, (b) The verified RMSE curves of different spectrums used in
the VCC-based method. Columns from left to right represent tissue, bone, and iodine materials.

methods at two different noise levels, and the correspond-
ing difference images, where the columns (a) to (f) rep-
resent the images of Reference, EART, OPMT, TV-based
method, DnCNN-based method, and VCC-based method,
respectively. Compared with the Reference, the results of
the EART method are relatively inaccurate, especially in the
imaging of tissue, there are still parts of the bone in tissue
images. And the difference images obtained by EART are
comparatively noisy, indicated by the purple arrow in Figure 4
(b5). The results of the OPMT method have a considerable
improvement. But at the high noise level, the tissue map of
OPMT has obvious noise due to the lack of noise suppression
capability, especially in the area marked by the purple arrow
in Figure 5 (c4) and (c5). Compared with EART and OPMT
methods, the three prior-based methods have the ability to
suppress noise, which has been indicated in the reconstructed
material maps. In particular, there are somemisclassifications
in the tissue and iodine basis materials of the DnCNN-based
method. The reason is that the DnCNN method is derived
under the ADMM framework and its decreasing trend is
slower than that of the Newton method with the same iter-
ations. Furthermore, the last rows of Figure 4 and Figure 5
demonstrate the virtual monochromatic images of different
methods. The results show that the proposed methods have
the ability to suppress noise when compared with the EART
and OPMT algorithms.

Quantitative evaluations are listed in Table 1. Taking the
high noise level I0 = 1e5 as an example to illustrate the
overall performance of different methods. It can be seen from
Table 1 that the averaged PSNRs for three materials of the
proposed three algorithms are 32.951 dB, 42.009 dB, and
47.173 dB, respectively. And the highest value is obtained
by the VCC-based method, which increased PSNRs by
20.924 dB and 18.283 dB compared with those of the EART

and OPMT methods, respectively. And the averaged SSIMs
for the proposed three algorithms are all over 0.94, where
the VCC-based method obtains the highest SSIM index of
0.999, while the SSIMs of EART and OPMT are below
0.94. In addition, the highest averaged RMSE among the
three proposed algorithms is 0.00592, which reduced RMSEs
by 89.65% and 88.79% compared with those of the EART
and OPMT methods. The line profiles of different materials,
drawn from the pixels along the white dashed line in Fig. 4
(a1) and Fig.5 (a1), are further plotted in Fig.6. It demon-
strates that the TV-based method and VCC-based method
obtain more accurate structures and details than EART and
OPME methods, especially in the areas pointed by the purple
arrows.

D. REAL QRM DATA EXPERIMENT
In this section, the performance of the proposed methods
is investigated by an industrial QRM phantom, which con-
sists of five different materials including cortical mandible
bone, spongious bone, muscle, CT water, and adipose. The
diameters of the phantom and each cylinder are 100.0 mm
and 20.0 mm, respectively. It should be pointed out that two
different densities of bone are considered to the bone basis
material, CT water and adipose have seemed as water basis
material with impurities, which is shown in Figure 7.

The QRM phantom data is obtained using an industrial
CT system in our laboratory under a cone beam system,
which mainly composes of an X-ray rotary stage with an
object holder and flat panel detector (4030E, Varian, USA).
The QRM is scanned repeatedly at tube voltages 60, 80,
and 100 kVp along a circular line and the tube current is
set to 220 µA for every scanning. The central slice of each
two-dimensional projection is extracted and down-sampled
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FIGURE 4. Results of simulation dataset obtained by different methods with noise (I0 = 1e7). Columns (a) to (f) represent
the Reference, EART method, OPMT method, DnCNN-based method, TV-based method, and VCC-based method, respectively.
Rows from top to bottom indicate three materials: tissue, bone, iodine, the virtual monochromatic image at 75 keV, and the
corresponding difference images, respectively, where the display windows of the display windows are [0.02 1], [0.01 1], [0.01
1], [0.001 0.055], and [−0.01, 0.01], respectively.

TABLE 1. Quantitative results of different methods.
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FIGURE 5. Results of simulation dataset obtained by different methods with noise (I0 = 1e5). Columns (a) to (f) represent the
Reference, EART method, OPMT method, DnCNN-based method, TV-based method, and VCC-based method, respectively. Rows
from top to bottom indicate three materials: tissue, bone, iodine, the virtual monochromatic image at 75 keV, and the
corresponding difference images, respectively, where the display windows of the display windows are [0.02 1], [0.01 1], [0.01 1],
[0.001 0.055], and [−0.01, 0.01], respectively.

FIGURE 6. Profiles of different methods at different noise levels.

as 512 detector bins for the materials reconstruction in this
experiment. The source to object and detector distances are

245.0 mm and 808.0 mm, respectively. The projections cor-
responding to the three X-ray scanning are obtained in an
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FIGURE 7. QRM phantom consists of five materials: cortical mandible
bone, spongious bone, muscle, CT water, and adipose, where
(a) represents the real QRM object; (b) represents the schematic diagram
of five materials. And (c) plots the estimated three spectrums, (d) draws
the linear attenuations of three basis materials.

alternating mode, i.e., the paths of rays are geometrically
inconsistent. A total of 720 projection views are collected in
the 360◦ range for each scanning.

The pixels of the reconstructed images are 512× 512 with
each size of 0.252× 0.252 mm2. And the spectrums are esti-
mated by the expectation-maximization (EM) method [40],
which shown in Figure 7 (c). The linear attenuations of
three basis materials used in our experiments are drawn in
Figure 7 (d). Some regions of interest (ROIs) (denoted in red
dotted squares in Figure 8) are chosen to make quantitative
evaluations of the mean value of attenuation coefficients and
standard deviation (STD), which is calculated as follows

STD =

√√√√ 1
Nroi

Nroi∑
r=1

(xr − x̄)2, (25)

where xr denotes the value of r-th pixel. x̄ is the pre-computed
mean value of all Nroi image pixels of the selected ROI.
And Some ROIs (denoted in yellow dotted squares in Fig-
ure 9) are magnified to assess the noise suppression across
the different algorithms. Furthermore, the projection views
are downsampled to 360 to assess the performance of the
proposed methods.

Figure 8 shows the reconstructed results of all methods,
where columns from (a) to (e) represent the EART method,
OPMT method, DnCNN-based method, TV-based method,
and VCC-based method, respectively. Rows from up to bot-
tom represent the three materials, i.e., water, muscle, and
bone. Note that the proposed VCC-based method chooses
the spectrums generated by tube voltages 60 kVp and 100
kVp. As shown in Figure 8, all five methods can obtain the
maps of threematerials. However, due to the lack of denoising
ability, some noises appear in the results reconstructed by
EART and OPMT methods, which can be obviously seen

from the reconstruction results of water basis material in
Figure 8 (a1) and (b1), marked by purple arrows. And there
are some other structures of muscle and water in the bone
maps, as denoted by purple arrows in Figure 8 (a3) and (b3).
The remaining three methods are all the methods proposed
in this paper, and they have advantages in noise suppression
to a certain extent. To further illustrate the effectiveness of
the one-step method in eliminating beam-hardening artifacts,
virtual monochromatic images are further shown in Figure 9.
Figure 9 displays the results of virtual monochromatic images
between the five iterative methods at single energy 70, and
110 keV, respectively. The results of EART and OPMT show
that the reconstructed images are not smooth and uneven due
to the existence of noise, especially in the region marked by
purple arrows. Compared with the results reconstructed by
EART and OPMT, the other three iterative one-step methods
have abilities to suppress noises, as can be observed from the
ROIs in Figure 9. The downsampled results of 360 projection
views, shown in Figures 10 and 11, also have similar opin-
ions.

Table 2 further lists the quantitative evaluations of different
methods under 720 projection views, where the mean value
is measured to assess the accuracy of the results, while the
STD value evaluates the noise suppression ability of dif-
ferent methods. The STD values of the proposed methods
also demonstrate that the proposed methods are superior in
suppressing noises. The reference values of three ROIs are
computed according to the threshold segmentation results
of filtered backprojection algorithm reconstructions. From
Table 2, the proposed methods have similar mean values in
ROI 3 with other methods, indicating the accuracy of recon-
struction results, while the STD values show the advantages
of the proposed methods in ROI 1 and ROI 3 compared with
other methods.

IV. DISCUSSIONS
In this paper, we consider the multi-material reconstruc-
tion problem in the case of each energy spectrum having
an inconsistent scanning path. Note that the ill-condition
of the multi-material reconstruction problem will be inten-
sified with the increase of the number of materials, espe-
cially under inconsistent scanning geometry. The projection-
domain methods don’t work for the inconsistent path. It is
more difficult to obtain accurate distributions of basis materi-
als based on image-domain approaches when basis materials
have similar attenuations. Aiming at this situation, a statis-
tical multi-material based one-step reconstruction model is
considered to describe more realistic distributions of pho-
tons. The model is firstly simplified by incorporating the
statistical upper bound. Then, the fidelity data term further
combines the sparsity-based TV regularization term and deep
prior-based regularization term to integrate the noise sup-
pression in each iteration of material reconstruction when
the number of energies matches the number of materials.
In addition, when the number of energies and the num-
ber of materials do not match, a new volume conservation
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FIGURE 8. Reconstructed three material images of different methods under 720 projection views. Columns from (a) to
(e) represent the EART method, OPMT method, DnCNN-based method, TV-based method, and VCC-based method,
respectively. Rows from up to bottom represent water, muscle, and bone. And the corresponding display windows are [0
1.1], [0 0.5], and [0 0.04].

FIGURE 9. Virtual monochromatic images and the corresponding enlarged areas of different methods under 720 projection
views. The first row represents the images at 70 keV and the second row represents the images at 110 keV. And the display
windows are [0 0.04] and [0 0.03].

TABLE 2. The comparison of mean values and standard deviations for different methods.

constraint is developed to improve the ill-condition of the
inverse problem. Moreover, several numerical experiments
are carried out to verify the effectiveness of the proposed
methods. The results show that the practical performance
is consistent with the original design, and it can obtain
a relatively stable solution while suppressing noise. The
monochromatic imaging results, as shown in Figure 9, further

indicate the proposed method has the ability to suppress
noise.

Although the proposed algorithms show that it is useful for
multi-material reconstruction, model-driven methods based
on certain assumptions cannot fully express the physical
mechanism for the realistic application of CT imaging, for
example, the response of detector units are different for

VOLUME 12, 2024 58139



X. Yu et al.: Volume Conservation Constrained Multi-Material Reconstruction for Inconsistent Spectral CT Imaging

FIGURE 10. Reconstructed three material images of different methods under 360 projection views. Columns from (a) to (e)
represent the EART method, OPMT method, DnCNN-based method, TV-based method, and VCC-based method, respectively.
Rows from up to bottom represent water, muscle, and bone. And the corresponding display windows are [0 1.1], [0 0.5], and
[0 0.04].

FIGURE 11. Virtual monochromatic images and the corresponding enlarged areas of different methods under 360 projection
views. The first row represents the images at 70 keV and the second row represents the images at 110 keV. And the display
windows are [0 0.04] and [0 0.03].

certain spectrum, and noise in the measured projections is
easily multiple amplified in the reconstructed process of
basis materials. The disturbance of noise is a huge instability
factor for the convergence of the algorithm. As a result,
data-driven methods for materials reconstruction have also
been developed, such as Zhang et al. [41] proposed a but-
terfly network to realize material decomposition based on
the image-domain under dual energy. Fang et al. applied the
unsupervised denoising method called Noise2Noise [42] as
the prior knowledge to estimate the material maps directly
from the raw projection data [43]. And other researchers also
find the deep learning-basedmethod has certain advantages in
medical image analysis [44], [45], [46], [47]. These methods
also encourage us to combine model-driven and data-driven

methods to achieve accurate decomposition of materials by
eliminating the influence of beam-hardening artifacts while
suppressing noise in the future.

V. CONCLUSION
For the inconsistent material-specific reconstruction, this
paper applies a statistical model with different priors to
establish material reconstruction models. First, the gradient
sparsity-based and deep prior-based regularization terms are
incorporated into the optimization problem to update the
material mapswhen the numbers ofmaterials and energies are
consistent. Then, the volume conservation constraint is fur-
ther added to improve the convergence rate when the numbers
of materials and energies are not consistent. Furthermore,
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the ordered subsets are applied to accelerate the proposed
algorithms. The simulation and real data experiments verify
the effectiveness of the proposed methods in basis material
reconstruction, and also the capabilities in suppressing noise.
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