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Abstract—Landslides pose a serious threat to human life, safety,
and natural resources. Remote sensing images can be used to
effectively monitor landslides at a large scale, which is of great
significance for pre-disaster warning and post-disaster assistance.
In recent years, deep learning-based methods have made great
progress in the field of remote sensing image landslide detection.
In remote sensing images, landslides display a variety of scales and
shapes. In this article, to better extract and keep the multiscale
shape information of landslides, a shape-enhanced vision trans-
former (ShapeFormer) model is proposed. For the feature extrac-
tion, a pyramid vision transformer (PVT) model is introduced,
which directly models the global information of local elements
at different scales. To learn the shape information of different
landslides, a shape feature extraction branch is designed, which
uses the adjacent feature maps at different scales in the PVT model
to improve the boundary information. After the feature extraction
step, a decoder with deconvolutional layers follows, which combines
the multiple features and gradually recovers the original resolution
of the combined features. A softmax layer is connected with the
combined features to acquire the final pixel-wise result. The pro-
posed ShapeFormer model was tested on two public datasets—the
Bijie dataset and the Nepal dataset—which have different spectral
and spatial characteristics. The results, when compared with those
of some of the state-of-the-art methods, show the potential of the
proposed method for use with multisource optical remote sensing
data for landslide detection.

Index Terms—Landslide detection, remote sensing image, vision
transformer (ViT).

I. INTRODUCTION

LANDSLIDES refer to the natural phenomenon of the land
cover on a slope sliding down under the effect of natu-

ral or human activities such as rainfall, earthquake, flooding,
groundwater activity, or destruction of forest [1]. They are one
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of the most common natural disasters in mountainous areas
and represent a serious threat to people’s lives and property, as
well as the surrounding natural environment [2], [3]. Therefore,
it is crucial to identify landslide areas quickly and accurately
for postdisaster reconstruction and predisaster warning [4]. The
remote sensing technique provides a new perspective for the
rapid monitoring of landslide occurrences in large areas and can
reduce the cost and improve the efficiency, compared with the
traditional geological investigation [5], [6].

According to the data source, the landslide detection task can
be achieved through the use of optical data [7], [8], [9], ther-
mal infrared data [10], synthetic aperture radar data [11], [12],
LiDAR data [13], [14], or multisource data, such as geographic
information system (GIS) and digital elevation model data [15],
[16]. Among the above data sources, optical remote sensing
images have the advantage of being able to provide abundant
spectral information and a high spatial resolution, which can
help to distinguish landslides from other land-cover types [17].
The optical remote sensing landslide detection techniques can
be classified into traditional methods and deep learning-based
methods. The traditional methods typically involve designing
features according to prior knowledge and then using a ma-
chine learning algorithm to identify the landslides. For example,
Zhao et al. [18] used vegetation and soil indices to distinguish
landslides in Landsat 8 data. Chen et al. [19] used a morpho-
logical operation to extract the spatial features of landslides.
Object-oriented analysis can also be introduced to improve the
boundaries of the landslide detection results [20]. For example,
Li et al. [21] combined object-oriented analysis and a machine-
learning algorithm to process LiDAR data for the identification
of forested landslides. Rau et al. [22] proposed a semiautomatic
object-oriented landslide detection method for multisource data.
Multitemporal data can also be used for landslide detection,
through considering both the short- and long-term change fea-
tures. Li et al. [23] used the change detection technique for the
landslide detection task. In [24], a random field model was used
to improve the boundaries of the results. Travelletti et al. [25]
used high-resolution time-series optical imagery to monitor the
continuous movement of landslides. Rossi et al. [26] studied the
performance of multitemporal unmanned aerial vehicle (UAV)
images for landslide recognition. Although the traditional meth-
ods have acquired good results in landslide detection, they are
still faced with some challenges for more accurate detection.
First, landslides display various characteristics, because of the
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effect of different geological environments, weather, hydrology,
and other factors. As a result, it is difficult to select and design
appropriate features and classifiers under different conditions.
Second, the development of remote sensing sensors also brings
the problem of data heterogeneity, which requires algorithms
that are more robust and have a good generalization ability.

As a data-driven method, deep learning has gradually
achieved some promising results in remote sensing image pro-
cessing applications, such as classification [27], [28], segmenta-
tion [29], [30], detection [31], and super-resolution [32]. Deep
learning-based methods have also shown their potential for re-
mote sensing image landslide detection [33], [34]. Convolutional
neural networks (CNNs), as representative deep learning mod-
els, have the ability to hierarchically extract multiple features of
the images, which is of benefit for optical remote sensing image
landslide detection. Wang et al. [35] studied the performance
of different convolution operations (i.e., 1-D, 2-D, and 3-D)
in CNN models for landslide susceptibility mapping, based on
multisource remote sensing and GIS data. High-level features
from 16 factors were then automatically extracted based on
the proposed method. Ghorbanzadeh et al. [36] used Dempster-
Shafer theory to combine the prediction results of CNN models
trained on different data sources, to improve the accuracy of
landslide detection. Ji et al. [37] proposed a 3-D CNN model with
spectral and spatial attention for high-resolution remote sensing
image landslide detection. The attention mechanism is used to
pay more attention to the important parts in the channel and
spatial dimensions, to better recognize landslides. Su et al. [38]
proposed an encoder–decoder architecture called LanDCNN,
where ResNet-50 [39] is used in the encoder for the extraction of
deep features, and the decoder of U-Net [40] follows to recover
the original resolution of the imagery. Liu et al. [41] analyzed the
performance of a traditional CNN model, ResNet, and DenseNet
[42] for landslide detection with remote sensing imagery and
conditioning factors. The authors made the conclusion that the
combination of DenseNet with remote sensing imagery and
conditioning factors could acquire the best results. Gao et al. [43]
also studied the performance of DenseNet for landslide detection
and proposed the FC-DenseNet model, which improves the fea-
ture extraction ability and model efficiency with the help of dense
connection and bottleneck layers. Chen et al. [44] introduced a
pretrained CNN for feature fusion and landslide detection. Xia
et al. [45] introduced atrous spatial pyramid pooling to improve
the landslide detection network’s ability to preserve details in
high-resolution remote sensing images. CNN models can also
be combined with multitemporal images and change detection
methods for landslide detection. For example, Lei et al. [46]
introduced spatial pyramid pooling into a fully convolutional
network (FCN) to extract the change features of landslides from
bi-temporal aerial images; Lv et al. [47] proposed a dual-branch
FCN which extracts the features of bitemporal images from
two separate branches to reduce the pseudo-changes; and Shi
et al. [48] proposed the CDCNN model, where the CNN is
combined with an object-based change detection method and a
conditional random field model to take both speed and accuracy
into consideration.

Although the CNN models have achieved some satisfactory
results, the hierarchical feature extraction strategy based on

convolution kernels has some limitations in modeling the global
information of the imagery. The transformer models provide a
different perspective to model the global information based on
a multihead self-attention (MSA) mechanism, where the inter-
action of local patches is directly considered. The transformer
model was first proposed in 2017 [49] in the field of natural
language processing (NLP) and was extended to deal with a
computer vision task in 2020 [50]. The vision transformer (ViT)
models have also been introduced into the field of remote sensing
image processing, for applications such as semantic segmenta-
tion [51] and object detection [52], and have achieved competi-
tive results, compared with CNN models. Some researchers have
also studied the performance of ViT models in remote sensing
image landslide detection [53]. However, the ViT structure in
[53] used an input of a fixed size, which results in difficulty
in exploring some small objects. Landslides display different
spectral and spatial characteristics, compared with the artificial
features, such as buildings and roads. With the effect of a natural
disaster, the scale and shape of landslides are irregular and vary
a lot. Thus, it is important to consider the scale and shape
characteristics of landslides, to improve the accuracy of the
model. Therefore a ViT-based network structure is proposed in
this article to better consider the landslide objects with complex
scale and shape.

The major contributions of this article are as follows.
1) The shape-enhanced ViT (ShapeFormer) model is pro-

posed to perform the task of optical remote sensing image
landslide detection. The features of landslides with differ-
ent sizes and shapes are considered and enhanced based
on two encoder branches.

2) The scale feature extraction branch introduces the pyramid
vision transformer (PVT) model to acquire the hierarchical
spectral and spatial features of the landslide images, in
order to better keep the landslides with a small size. A
set of deconvolutional layers follows the output of the
PVT model to recover the original resolution of the feature
maps. The connection between each scale of feature and
the deconvolutional layer is added to help preserve the
details.

3) The shape feature extraction branch utilizes the difference
information between adjacent features in the PVT model
to enhance the boundary information of the landslides,
based on an attention mechanism. The shape features and
the scale features are connected before the final pixel-wise
classifier layer, to improve the feature representation of the
network.

The rest of this article is organized as follows. The pro-
posed ShapeFormer model is described in detail in Section II.
Section III gives the experimental results and an analysis of the
proposed method, compared with some of the state-of-the-art
methods. A brief conclusion is given in Section IV.

II. PROPOSED METHOD

A. Overview of the ShapeFormer Model

The flowchart of the ShapeFormer model is shown in Fig. 1.
The proposed method follows an encoder–decoder structure.
The encoder plays the role of feature extractor, and the decoder
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Fig. 1. Flowchart of the ShapeFormer model.

recovers the extracted features into the original resolution and is
followed by a softmax layer to obtain the pixel-wise result. The
encoder contains two branches, which are called the scale feature
extraction branch and the shape feature extraction branch. For
the scale feature extraction branch, the PVT model is utilized
as the backbone to extract multiscale features from the original
remote sensing image. For the shape feature extraction branch,
the correlation of adjacent features extracted from each stage in
the PVT model is calculated with the help of an attention mech-
anism, to enhance the boundary information of the landslides. In
the decoder, the original spatial size of the features extracted by
the PVT model is recovered by several deconvolutional layers,
and the features from the two branches are stacked. Finally, the
softmax classifier is used to achieve pixel-wise mapping from
the stacked features and the labels, which indicates whether a
landslide has occurred or not. In the following parts, the encoder
and the decoder of the ShapeFormer model are introduced in
detail.

B. Encoder of the ShapeFormer Model

1) Scale Feature Extraction Branch: In this branch, the PVT
model [54], [55] is used to extract features from the
original image, based on a ViT model. The original ViT
model utilizes nonoverlapping patches of the imagery as
the input. The self-attention operation is then performed
on these patches. However, patches with a fixed size
result in the ViT model having a limited ability to capture
multiscale features.

We let X ∈ RH×W×C be the original input image, where
H,W, andC indicate the height, width, and channel of the
image. The PVT model contains four stages, to hierarchically
extract the features at different scales. Each stage consists of

several attention and feed-forward network layers. For each
stage i = 1, 2, 3, 4, the input feature is represented as Fi−1

and the output as Fi. Note that, for the first stage, F0 = X.
The height and width of the output features of each stage are
1
4 ,

1
8 ,

1
16 ,

1
32 of the original spatial size of X.

The input feature Fi−1 for each stage is first split into several
overlapping patches x = {x1,x2, . . . ,xN ,}, where xj ∈ pi ×
pi × ci−1 and N indicates the number of patches. The overlap-
ping patches are used to preserve some of the local correlation in-
formation. The size of each patch is defined aspi = 7, 3, 3, 3, and
the stride of the sliding window is sti = 4, 2, 2, 2. The patches
are then flattened and projected to ci-dimension embeddings
to acquire the token series T = {t1, t2, . . . , tN ,}. In the PVT
model, the token is the basic processing unit, which contains
some local spatial and spectral information. In each stage, the
patch size pi is adjusted, and thus the PVT model can extract
multiscale features without the convolution operation used in a
CNN. Each stage i has several encoder layers, which contain
an MSA layer and a feed-forward layer. The MSA mechanism
considers the correlation between tokens by introducing three
queries, called Q, K, and V. These queries are initialized by the
token T = {t1, t2, . . . , tN ,} and can be formulated as follows:

MSA(Q,K, V ) = concat(head1, . . . , headHj
)W (1)

headk = softmax

(
QWQ

k

(
KWK

k

)T
√
dk

)
VWV

k (2)

whereW ∈ Rci×ci is the weight matrix for the linear projection;
WQ

k ∈ Rci×dk , WK
k ∈ Rci×dk , and WV

k ∈ Rci×dk refer to the
weights of the three queries; and Hj is the number of heads in
the jth encoder layer. In order to reduce the computational cost,
a spatial reduction operation is performed on the original MSA
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layer. The queriesKandV are reshaped and linear projected into
the ci-dimension embeddings, based on WSR ∈ R(R2

i ci)×ci

SR(·) = LN (Reshape (·,Ri)WSR) (3)

where Ri is the reduction ratio. The output of the encoder layers
is reshaped into a 3-D cube Fi as the input of the next stage i+1.

2) Shape Feature Extraction Branch: The scale feature ex-
traction branch generates hierarchical spatial and spectral
features of the original image. However, some details of
small objects and boundaries will be lost in the high-level
features. In this branch, the boundaries of the features Fi

generated from each stage in the PVT model are enhanced
with the help of the boundary attention operation [56], to
better consider the shape information of the landslide.

As displayed in Fig. 1, the output feature Fi for stage i is
first upsampled to recover the original resolution H ×W of the
image. The output feature Fi is then fed into a residual block
followed by a convolutional layer, to reduce the number of chan-
nels and obtain the feature F′

i. The adjacent feature Fi+1 from
stage i+1 is also processed under the same operation to obtain
F′

i+1. BecauseF′
i andF′

i+1 are generated at different scales in
the scale feature extraction branch, the boundary information of
the objects in these feature maps can be enhanced by considering
the difference between these features.

Here we use the attention mechanism to emphasize the bound-
ary information. First, the attention weight A is computed by
a 1-D convolution operation and nonlinear projection, which is
formulated as shown in (4)

Ai = σ (conv1d (concat (F′
i,F

′
i+1))) (4)

where σ(�) is the sigmoid function. The shape information in
F′

i is then improved based on the element-wise production,
followed by a residual block

F′′
i = ((F′

i �Ai) + F′
i)Wi (5)

where Wi is a projection matrix to reduce the channels. Note
that there are four stages in the scale feature extraction branch,
and thus the output features F1, F2, and F3 are enhanced by
the boundary attention operation in the shape feature extraction
branch. In order to acquire more details from the original image,
the boundary information of the original image is calculated
by the Canny edge detector [57] and stacked withF3 to generate
the final output of the shape feature extraction branch Fshape.

C. Decoder of the ShapeFormer Model

The objective of the decoder of the ShapeFormer model is
to merge the features generated from the two encoder branches
and recover the original spatial size of the image, to achieve
end-to-end pixel-wise classification. Usually, the upsampling
operation can be performed based on interpolation or deconvo-
lution. Inspired by the structure of U-Net [40], we designed the
decoder of ShapeFormer under a hierarchical structure, based on
deconvolutional layers and skip connections. Although bilinear
interpolation is fast and convenient, it will lose some details
because the recovered features are simply based on the adjacent

values. The advantage of this structure is that some learnable
parameters are introduced, and the original spatial size can be
recovered without losing much detail. The hierarchical structure
of the decoder also makes it more convenient to combine the
multistage features generated in the encoder to further keep the
details and improve the accuracy.

As displayed in Fig. 1, the output feature of the scale feature
extraction branch F4 is first upsampled by the deconvolution
operation to match the spatial size of F3. The two features are
then stacked as the input of a deconvolutional layer. The output of
the first deconvolutional layer is stacked with F2 as the input of
the next deconvolutional layer. After the three deconvolutional
layers, a bilinear interpolation operation follows to generate
feature Fde, which has the same spatial size as the original
image. Fde is then stacked with the output of the shape feature
extraction branch Fshape to acquire the final feature expression
Ffinal before the classification layer.

III. EXPERIMENTS AND ANALYSIS

In this part, we describe the experiments conducted with
two public landslide detection datasets—the Bijie dataset [38]
and the Nepal dataset [58]—where the images were acquired
from different remote sensing platforms and areas, to verify the
performance of the ShapeFormer model. We also selected some
of the related state-of-the-art landslide detection methods as the
comparison methods. The methods used in the experiments were
the two classical CNN-based methods of ResUNet [39] and
DeepLabv3+ [59], and two state-of-the-art landslide detection
methods, i.e., TransUNet [54] and FC-DenseNet [43]. We also
analyzed the effectiveness of the shape feature extraction branch
by introducing the PVT-UNet method, which uses only the PVT
model as the encoder. The landslide detection can be viewed as a
binary segmentation task where the foreground and background
samples are imbalanced. Thus, the precision, recall, F1-score,
and intersection over union (IoU) of the landslide class are used
as the quantitative indices

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2× TP

2× TP + FP + FN
(8)

IoU =
TP

TP + FP + FN
(9)

where TP, FP, and FN represent the true positives, false
positives, and false negatives of the landslide pixels,
respectively.

All the experiments were performed on an NVIDIA RTX
3090 GPU, and the deep learning environment was PyTorch.
The experimental settings and the result analyses for the two
datasets are given as follows.



LV et al.: ShapeFormer: A ShapeFormer VIT MODEL FOR OPTICAL REMOTE SENSING IMAGE LANDSLIDE DETECTION 2685

TABLE I
ACCURACY ASSESSMENT FOR THE BIJIE DATASET (%)

A. Experiment 1: Bijie Dataset

The study area of the first dataset is the city of Bijie, which lo-
cates in the northwest of Guizhou province, China. The average
altitude of the city of Bijie is 1600 m, and the city is surrounded
by mountains and rivers. Because of the geographical position,
complex geological features, fragile ecological environment,
and frequent rainfall, the area is very prone to landslides. The
images in the Bijie dataset were acquired by the TripleSat
satellite from May to August 2018, with a spatial resolution
of 0.8 m and three visual bands. There are 770 labeled images in
this dataset, and the spatial sizes of these images are different.
Thus, in the experiment, we resized the images to 224× 224
pixels, according to [53], for all the comparison methods.

For the experimental settings, the ratio of the training set,
validation set, and test set was 0.7, 0.2, and 0.1 for all the
experiments. Each experiment was run five times, and we calcu-
lated the mean value of each quantitative index. The same data
augmentation was conducted in all the experiments, i.e., random
flips horizontal and vertical, random rotation, and salt-and-
pepper noise. For ShapeFormer and PVT-UNet, cross-entropy
loss was selected to be the loss function during the training stage.
Moreover, in order to reduce the influence of sample imbalance,
we set the weight of landslide and background to 10 and 3 in the
loss function. The AdamW optimizer was used, and the weight
decay was set to 0.0005. The initial learning rate started from
0.001. The training epochs numbered 230 and the batch size
was 48. The above parameters were acquired according to a
trial-and-error strategy. For TransUNet, the parameters were set
according to the original paper.

The accuracy results are listed in Table I. As shown in
Table I, for the CNN-based methods, ResUNet acquires a better
performance, compared with DeepLabv3+ and FC-DenseNet,
which indicates that using ResNet as the backbone can achieve
good feature representation on the Bijie dataset. When the
accuracy results of ResUNet and TransUNet are compared,
TransUNet shows an obvious improvement in these four quanti-
tative measurements. This is because TransUNet uses the output
feature of ResNet as the input of the ViT encoder, which extracts
more useful semantic information for recognizing the landslide
areas. When the PVT model is selected as the backbone, the re-
sults of PVT-UNet are also satisfactory, compared with ResUNet
and DeepLabv3+, which shows that multiscale features can also
be extracted well from the pure ViT backbone. The accuracy of
TransUNet is higher than that of PVT-UNet because the input of
TransUNet is the multiple CNN features, while the input of PVT-
UNet is the original image. The proposed ShapeFormer model
acquires the best performance in recall, F1-score, and IoU,

TABLE II
ACCURACY ASSESSMENT FOR THE NEPAL DATASET (%)

at 89.52%, 88.11%, and 78.72%, respectively. The precision
of the ShapeFormer model is also acceptable. The prominent
improvement of the F1-score of ShapeFormer indicates that the
proposed method can keep a good balance between the truly
detected landslides and the false alarms. The highest value of
IoU on the landslide type also shows the effectiveness of the pro-
posed shape feature extraction branch in keeping the boundary
information.

In Fig. 2, several images from the test set with different
spectral and shape characteristics are selected and displayed.
As can be seen in Fig. 2, ResUNet can find the major area of the
landslides, but loses some details. DeepLabv3+ can preserve
some local details with the help of the atrous convolution.
However, it also introduces some false alarms. TransUNet can
keep a good balance between the details and the noise, but it still
has some limitations when the shape of the landslide is complex.
For the results of the ShapeFormer model, it performs well in
the landslide areas with complex shapes and various sizes. This
suggests that the shape feature in the proposed framework is
very effective, especially on landslides of a small size.

B. Experiment 2: Nepal Dataset

The study area of the second dataset is Nepal, which is located
in the southern foothills of the Himalayas, with an altitude be-
tween 4877 and 8844 m. The complex terrain, frequent seismic
activity, and torrential monsoon rains make Nepal a landslide-
prone area. The dataset consists of 275 landslide images, all
from the Landsat 8 satellite. The spatial size of each image
in this dataset is 256× 256. Because the spatial resolution of
the images in the Nepal dataset is lower than that of the Bijie
dataset, it brings more challenges for the algorithms to find clear
boundaries of the landslides.

In the training process, according to [58], there were 230
images contained in the training set, 35 images in the validation
set, and 10 images in the test set. The hyperparameters of
ShapeFormer and PVT-UNet were set to be the same values
as used in the Bijie dataset. The parameters were again selected
based on the grid search strategy.

The quantitative results for the Nepal dataset are listed in
Table II. Differing from the Bijie dataset, where the images
have a high spatial resolution, the images in the Nepal dataset
have a medium resolution and cover more complex scenes. As
a result, it is difficult for the networks to extract the landslides
based on the spatial details, and the accuracies are not as good
as for the Bijie dataset. The networks should utilize the multiple
spectral and spatial features in these images to acquire good
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Fig. 2. Visual results for the Bijie dataset. Rows 1–8 indicate the original images, the labels, the results of ResUNet, the results of DeepLabv3+, the results of
FC-DenseNet, the results of TransUNet, the results of PVT-UNet, and the results of ShapeFormer.

results. For the CNN-based methods, DeepLabv3+ obtains a
better performance in F1-score and IoU, which indicates that
DeepLabv3+ can better use the spectral features contained in
the multispectral images. For TransUNet, the F1-score and IoU
results are also acceptable because this method combines the
advantages of both CNN and ViT models, but the accuracy
could still be improved. The higher precision and lower recall
indicate that TransUNet introduces more false alarms in the
Nepal dataset. For PVT-UNet, the precision and recall values

are 69.69% and 68.95%, which shows that it is quite accurate
with regard to the detected landslides, but it misses more true
landslides than the other methods. The proposed ShapeFormer
model obtains the highest values in the recall, F1-score, and
IoU, at 73.05%, 69.34%, and 53.09%, respectively. The recall
of ShapeFormer is about 10% higher than that of the other
methods, showing the ability of the proposed method to find
true landslides in complex scenes when the shape information is
emphasized. The highest IoU of ShapeFormer also shows that it
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Fig. 3. Visual results for the Nepal dataset. Rows 1–8 indicate the original images, the labels, the results of ResUNet, the results of DeepLabv3+, the results of
FC-DenseNet, the results of TransUNet, the results of PVT-UNet, and the results of ShapeFormer.

can effectively distinguish the boundaries of the landslides from
the background.

The visual results are displayed in Fig. 3. The first row shows
the false-color images selected from the test set of the Nepal
dataset. It can be seen that, differing from the Bijie dataset,
it is very difficult to find the landslides in the images by vi-
sual interpretation. For the CNN-based methods, DeepLabv3+,
which considers the multiresolution features, has the ability to
find more detailed landslides in this dataset. There are more false
alarms in the results of TransUNet. When the PVT model is used
as the backbone in PVT-UNet, it loses some true landslide areas,
although the detected parts are accurate. The visual results of

TransUNet and PVT-UNet are consistent with their quantitative
accuracy in Table II. The proposed ShapeFormer model acquires
the best visual results, keeping a balance between the landslides
and the background types.

C. Model Analysis

The parameters and floating point operations per second
(FLOPs) of the models used in the experiments are listed in
Table III. From Table III, it can be seen that the CNN-based
models have fewer parameters than the ViT-based methods.
When the accuracy values in Tables I and II are also considered,
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TABLE III
PARAMETERS AND FLOPS OF THE DIFFERENT MODELS

it can be concluded that, although the size of the TransUNet
model is very large, it does result in some improvement in
accuracy. Overall, the proposed ShapeFormer keeps a good
balance between the model size and the running efficiency.

IV. CONCLUSION

In this article, we have mainly focused on the problem of land-
slide detection based on optical remote-sensing images through
deep learning-based methods. We analyzed the spectral and
spatial characteristics of the landslides in multisensor satellite
imagery and proposed solving this problem from a new per-
spective. The performance of ViT models was studied in depth
for the landslide detection task, and the ShapeFormer model
was proposed to take the complexity of the different shapes of
landslides into account. In the proposed ShapeFormer model,
a PVT model is used to extract multiscale deep features from
the original imagery, based on a self-attention operation. The
shape information of the features extracted from each stage in the
PVT model is enhanced by taking the difference of the adjacent
features into consideration, with the help of a boundary attention
operation. The results, compared with those of some of the
state-of-the-art deep learning methods on two public datasets,
showed the potential of the proposed method, which indicates
the benefit of ViT models when dealing with the remote sensing
image landslide detection problem.
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