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ABSTRACT The negative effects caused by geometric distortion can be removed to themaximum extent pos-
sible through appropriate geometric transformations, allowing us to focus on the image content itself in sub-
sequent processing and recognition. Therefore, geometric transformations are often used as a pre-processing
step for other image processing applications. In this paper, quantum algorithms are designed to implement
geometric transformations, including two-point swapping, circular translation, flipping transformations and
right-angle rotation, across a quantum image representation QIRHSI (Quantum Image Representation based
on HSI color space) which is built on HSI (Hue-Saturation-Intensity) color space. The above geometric
transformations are realized by quantum circuits composed of elementary quantum gates. By analyzing the
complexity of the fundamental quantum gates needed for the above geometric transformations, it is found
that the global transformations (circular translation, flip transformation and right-angle rotation) are lower
than the local transformation (two-point swapping). The proposed geometric transforms are used to facilitate
the applications of quantum images with low complexity and high efficiency.

INDEX TERMS Quantum computation, quantum image representation, quantum geometric transformation,
quantum circuit, complexity.

I. INTRODUCTION
The combination of quantum mechanics and computer
science has given rise to a brand new discipline quantum
computation [1]. As a new computing paradigm, it offers a
possible solution to the failure of Moore’s law [1]. Quantum
computation has natural advantages [2], mainly in terms of
quantum coherence, entanglement and superposition of quan-
tum states, making quantum computation a greater advan-
tage than traditional computation in terms of information
storage and parallel computing. Therefore, quantum com-
putation can solve those problems that are inefficiencies
of traditional solutions. In 1994 Shor’s polynomial-in-time
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algorithm for solving integer decomposition [3] and Grover’s
quadratic accelerated database search algorithm [4] are the
most famous examples. These examples provide strong evi-
dence for the superiority of quantum computers over classical
computers.

The primary problem to be faced in the study of quantum
image processing is the quantum image representation [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. Common quantum image
representation models (see Table 1) include Qubit Lattice [5],
Real Ket [6], Entangled Image [7], Flexible Representation of
Quantum Images (FRQI) [8], Multi-Channel Representation
for Quantum Image (MCRQI) [9], Novel Enhanced Quantum
Representation (NEQR) [10], Normal Arbitrary Quantum
Superposition State (NAQSS) [11], Color Quantum Image
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TABLE 1. The different quantum image representation models.

based on Phase Transform (CQIPT) [12], Flexible Quantum
Representation for Color Images (FQRCI) [13], Simple
Quantum Representation (SQR) [14], Generalized Quantum
Image Representation (GQIR) [15], Novel Quantum repre-
sentation of Color digital Images (NCQI) [16], Bitplane Rep-
resentation of Quantum Images (BRQI) [17], Order-encoded
Quantum Image Model (OQIM) [18], Quantum Represen-
tation model of Color digital Images (QRCI) [19], Fourier
Transform Qubit Representation (FTQR) [20], Quantum
Hue, Saturation, and Lightness (QHSL) [21], Quantum Image
Representation based on HSI color space (QIRHSI) [22], etc.

Ref. [15] tells us that there are two main current research
directions in the field of quantum image processing: one deals
with the representation of quantum images as shown in the
previous paragraph, and the other with processing algorithms
based on quantum images. And eight types of image pro-
cessing algorithms are listed: simple geometric transforma-
tion [24], [25], [26], [27], image translation [28], [29], image
scaling [15], [30], [31], [32], [33], color transformation [9],
[10], [12], [16], [34], image scrambling [35], [36], [37],
[38], image segmentation [7], [39], [40], [41], feature extrac-
tion [42], [43], quantum image watermarking [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], image encryption [54],

[55], [56], [57] and quantum image encryption [58], [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70].

Geometrical image modifications like coordinate transfor-
mations and local translation, inversion, reflection, stretch-
ing, and rotation require highly space-variant systems [71].
The polynomial interpolator structure can be used for
high-quality geometric transformations of 2D and 3D images
in traditional computer systems [72]. Many applications
such as medical analysis, biomedical systems and image
guidance require effective image geometrical transformation
techniques [73].

Geometric transformation [24], [25], [26], [27], [28], [29]
is one of the important elements of image processing and
image analysis, but it is still in the infancy of quantum images.
Le et al. proposed fast geometric transformations [24] based
on FRQI representations such as two-point swapping, flips,
coordinate swapping, orthogonal rotations and their variants
of quantum images using elementary quantum gates, NOT,
CNOT and Toffoli gates. The following year, Le et al. pro-
posed three design strategies [25], including transformations
of sub-blocks in quantum images, extending the separability
of classical operations to quantum transformations, focus-
ing on the smoothness of transformations that may not be
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achieved using any of the earlier mentioned strategies. It is
then used to construct new geometric transformations on
FRQI quantum images form other transformations. In 2015,
Wang, Jiang and Wang studied quantum image translations
for the first time [28]. The entire and cyclic translation
operations were proposed and quantum circuits for each of
the two types of translation were given. In 2016, Fan et al.
designed a new quantum algorithm to implement geometric
transformations [26] based on Normal Arbitrary Superposi-
tion State (NASS) of n qubits, including two-point swapping,
symmetric flip, local flip, orthogonal rotations and transla-
tions. In 2017, Zhou, Tan and Ian designed global translation
and local translation based on quantum image FRQI [29].
The global translation is implemented using adder modulo
N , and the local translation is implemented using Gray code,
including single column translation, multi-column transla-
tion and translation of restricted areas. In the same year,
Yan et al. proposed a new method for quantum image
rotation based on the NEQR quantum image shear trans-
formation [27]. The horizontal and vertical shear mapping
required to compute the rotationwas accomplished by design-
ing three basic computational units, namely quantum self-
adder, quantum control multiplier and quantum interpolation
circuit.

Nowadays, there are two research directions based on
geometric transformations of quantum image representations.
One direction is to study more general geometric transforma-
tions based on quantum image representations, Zhang et al.
proposed the affine transformation and the rotation trans-
formation of arbitrary angle under the QUAntum Log-Polar
Image (QUALPI) [74]. Based on the Flexible Log-Polar
Image (FLPI) [75], an arbitrary rotational transformation was
designed by Wang et al. The other direction is to study other
operations on existing geometric transformations of quantum
image representations, such as encryption, watermarking,
etc. Zhou et al. in 2012 combined a variety of geometric
transformations of quantum images to achieve encryption
of quantum images, and also proposed two basic important
contents: quantum grayscale image representation and quan-
tum grayscale geometric transformation [76]. In 2014, Song
et al. proposed a quantum image encryption scheme based
on constrained geometric and color transformations [77].
In addition to this, Iliyasu et al. proposed a quantum computer
image security based on restricted geometric transform with
no key, blind watermarking and authentication strategy [45].
The above results show that there is a great need to explore
the research in this direction.

Inspired by the quantum geometric transformation algo-
rithms based on quantum image representations FRQI and
NASS, we designed the geometric transformation algo-
rithm for quantum image representation QIRHSI. Firstly,
the quantum geometric transformation algorithm of FRQI
is for grayscale images, the geometric transformation algo-
rithm of NASS is for multi-dimensional images, and
our designed quantum geometric transformation algorithm

based on QIRHSI is constructed for color images. Sec-
ondly, it can better blend the quantum image representa-
tion QIRHSI-based geometric transformation algorithm into
other quantum image algorithms, such as image encryp-
tion and image watermarking. Finally, the HSI model
divides the image into color and grayscale information,
making it more suitable for many grayscale processing
techniques.

We use identify gates, NOT gates and multi-controlled not-
gates as basic tools and aim to extend the use of quantum
image representation models for different quantum image
processing operations. The primary contribution of this paper
is to give quantum geometric transformations based on the
quantum image representation QIRHSI. In this paper, we ana-
lyze the complexity of quantum circuits using NOT gates and
CNOT gates as the basic units.

(1) Based on the QIRHSI model, definition of the two-
point swapping, circular translation, flipping transformation
and right-angle rotation of the unitary operator are given, and
the corresponding quantum circuits are given to analyze the
complexity of different quantum geometric transformation
operations in the form of theorems.

(2) The complexity of the quantum gates needed for differ-
ent quantum geometry algorithms based on QIRHSI, FRQI
and NAQSS models are compared, which corroborates from
the side that the complexity of quantum geometry algorithms
are closely related to the image size, but independent of the
image color information.

The remainder of this paper is organized as follows.
Section II introduces prior knowledge, with the basic quan-
tum gates, the quantum color image representation QIRHSI,
the plain adder and adder modulo N . Section III discusses
in detail the geometric transformations based on QIRHSI
images, including two-point swapping, circular translation,
flipping transformations and right-angle rotation. The com-
plexity comparison of the geometric transformations under
different quantum image representation models are presented
in Section IV. Experimental examples of the QIRHSI geo-
metric transformation are given in Section V. The limi-
tations of the geometric transformation algorithm are dis-
cussed in Section VI. Conclusions and future outlook are
in Section VII.

II. PRIOR KNOWLEDGE
A. BASIC QUANTUM GATES
First, we give some basic quantum gates to describe the
geometric transformation of the quantum image, as depicted
in Figure 1. These circuits are executed from left to right, and
each line in the circuit represents a wire. A quantum circuit
is equivalent to the operation of a unitary matrix.

B. QIRHSI REPRESENTATION
We review how QIRHSI [22] represents a color image based
on HSI color space. QIRHSI is an outstanding representation
of quantum color images, which is derived from FRQI [8]
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FIGURE 1. Some quantum basic gates, circuit symbols and corresponding unitary matrices.

and NEQR [10] model. According to the QIRHSI model, the
quantum color image can be described as shown in Eq. (1).

| I (θ)⟩ =
1
2n

22n−1∑
k=0

|Ck ⟩ ⊗ |k⟩

=
1
2n

22n−1∑
k=0

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |yx⟩ (1)

wherein,

|Hk ⟩ = cos θhk |0⟩ + sin θhk |1⟩

|Sk ⟩ = cos θsk |0⟩ + sin θsk |1⟩

|Ik ⟩ =

∣∣∣C0
kC

1
k . . .Cq−2

k Cq−1
k

〉

θhk , θsk ∈

[
0, 2−1π

]
, Cm

k ∈ {0, 1}

m = 0, 1, . . . , q− 1

k = yx = 0, 1, . . . , 22n − 1

i.e. |Ck ⟩ and |yx⟩ encode the color information and location
information of the quantum color image, respectively. |y⟩ =

|yn−1 . . . y1y0⟩ signifies the first n-qubits along the vertical
axis and |x⟩ = |xn−1 . . . x1x0⟩ signifies the last n-qubits along
the horizontal axis. A 4×4 color image and QIRHSI quantum
state representation is provided in Figure 2.

C. PLAIN ADDER
To calculate the sum of the two numbers stored in the two
quantum registers |a⟩ and |b⟩, it is necessary to rely on plain
adder [78], [79].
Addition can be written in the following form.

|a, b, 0⟩ → |a, b, a+ b⟩
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FIGURE 2. A 4 × 4 color image and QIRHSI quantum state representation.

FIGURE 3. Plain adder network.

Rewrites the result of the calculation to one of the input
registers, i.e.

|a, b⟩ → |a, a+ b⟩ (2)

Figure 3 presents the network structure of the plain adder,
where the sub-networks for the basic carry and sum opera-
tions are shown in Figure 4.

FIGURE 4. Basic sum and carry operation.

D. ADDER MODULO N
The adder modulo N is a quantum network that is commonly
used to calculate the modulo sum of two numbers [78], [79].
Its explicit form is illustrated in Eq. (3).

|a, b⟩ → |a, (a+ b) mod N ⟩ (3)

where a, b ∈ [0,N ). The quantum network structure of the
adder modulo N is provided in Figure 5.

III. GEOMETRIC TRANSFORMATION OF QIRHSI IMAGE
Geometric transformations of the quantum grayscale image
FRQI (two-point swapping, flipping, coordinate swapping
and orthogonal rotation) [24] and the quantum color image
NASS (two-point swapping, symmetric flip, local flip,
orthogonal rotation and translation) [26] have been inves-
tigated so far. Based on these results, we have researched
the geometric transformations of the quantum color image of
QIRHSI [22], including two-point swapping, circular transla-
tion, flip transformation and right-angle rotation. Therefore,
the general geometric transformation based on the quantum
color image QIRHSI is defined as

GT (|I (θ)⟩) =
1
2n

22n−1∑
k=0

|Hk ⟩|Sk ⟩|Ik ⟩ ⊗ G (|k⟩) (4)

where |I (θ)⟩ represents a QIRHSI quantum color image as
shown in Eq. (1). The operator GT for general geometric
transformations can also be written as

GT = I⊗2
⊗ I⊗q ⊗ G (5)

The quantum circuits of the general geometric transforma-
tion operator GT based on the quantum color image QIRHSI
are given in Figure 6.
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FIGURE 5. Adder modulo N .

FIGURE 6. The universal circuit of quantum geometric transformations on
QIRHSI images.

A. TWO-POINT SWAP
Definition 1: The two-point swap operator GP based on

QIRHSI color images is defined as

GP (|I (θ)⟩)

=
1
2n

22n−1∑
k=0

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ P (|k⟩)

=
1
2n


∣∣Hj〉 ∣∣Sj〉 ∣∣Ij〉 ⊗ |i⟩ + |Hi⟩ |Si⟩ |Ii⟩ ⊗ |j⟩

+

22n−1∑
k=0,k ̸=i,j

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩

 (6)

where |I (θ)⟩ represents a QIRHSI color image, given in
Eq. (1). The two-point swapping operator GP can also be
expressed as

GP = I⊗2
⊗ I⊗q ⊗ P

= I⊗2
⊗ I⊗q ⊗

|i⟩⟨j| + |j⟩⟨i| +

22n−1∑
k=0,k ̸=i,j

|k⟩⟨k|

 (7)

From Eq. (7), we know that P (|k⟩) = |k⟩, k ̸= i, j and
P (|i⟩) = |j⟩, P (|j⟩) = |i⟩.
In order to design quantum circuits based on the quan-

tum image QIRHSI for the two-point swapping operator GP,
we need to use Gray code [1], [26]. Given two different binary
numbers i = i2n−1 . . . i1i0 and j = j2n−1 . . . j1j0, the set of
Gray codes connected to i and j is a set of binary numbers
that starts with i and ends with j, such that the adjacent

numbers differ by exactly one bit. For instance, for 2n-bit
binary numbers i = 0 and j = 22n − 1, the binary expansion
is shown in Eq. (8)

i = 0 . . . 0 . . . 0︸ ︷︷ ︸
2n

, j = 1 . . . 1 . . . 1︸ ︷︷ ︸
2n

(8)

that there exists the following set of Gray codes presented
in Eq. (9):

0 0 . . . 0 0 0 . . . 0 0
0 0 . . . 0 0 0 . . . 0 1
...

...
...

...
...

...
...

0 0 . . . 0 1 1 . . . 1 1
...

...
...

...
...

...
...

0 1 . . . 1 1 1 . . . 1 1
1 1 . . . 1 1 1 . . . 1 1

(9)

Let g1 to gm be the elements of the Gray code that connects
i and j, and g1 = i to gm = j. It is always to be found the Gray
code that satisfies the condition m ≤ 2n + 1, as i and j have
at most 2n positions of inconsistency [1].

Here is an example of a two-point swapping circuit imple-
mentation of a quantum color image QIRHSI with total 22n

pixels as shown in Eq. (1). Suppose that the coordinates of the
two pixels to be swapped in the QIRHSI image are |i⟩ = |0⟩
and |j⟩ =

∣∣22n − 1
〉
, and that the binary expansion of i and j is

shown in Eq. (8). The Gray code connecting i and j is shown
in Eq. (9). |g1⟩ = |i⟩ = |0⟩ to |g2n+1⟩ = |j⟩ =

∣∣22n − 1
〉

are the elements of the Gray code. We just need to implement
state transformations through a series of quantum gates

|g1⟩ → |g2⟩ → . . . → |g2n⟩ (10)

and then conduct multi-controlled NOT-gate operations with
the target qubit at a different bit from |g2n⟩ and |g2n+1⟩, and
then reduce the first stage of the operation and implement the
transformation

|g2n⟩ → |g2n−1⟩ → . . . → |g1⟩ (11)

Finally, the swap of pixels |i⟩ = |0⟩ and |j⟩ =
∣∣22n − 1

〉
of the quantum color image QIRHSI is realized. The quan-
tum circuit for the QIRHSI color image implementing the
two-point swap of pixels of |i⟩ = |0⟩ and |j⟩ =

∣∣22n − 1
〉

is given in Figure 7.
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FIGURE 7. The quantum circuit of QIRHSI color images implementing the two-point swap of pixels
∣∣i 〉 =

∣∣0〉
and∣∣j 〉 =

∣∣∣22n − 1
〉
.

Because more than one Gray code connecting i and j
always exists, there is no unique that implements the swap
between the two pixels of |i⟩ and |j⟩ [1]. For example, for
i = 0010 and j = 1111, two Gray codes are shown
in Eqs. (12) and (13).

0 0 1 0
0 0 1 1
0 1 1 1
1 1 1 1

(12)

and

0 0 1 0
1 0 1 0
1 1 1 0
1 1 1 1

(13)

Theorem 1: The complexity of the quantum gate required
to implement the two-point swap operator GP on the quantum
image QIRHSI using Gray codes is O

(
n2

)
.

Proof of Theorem 1: Let the pixel positions to be
swapped in the quantum image QIRHSI by the two-point
swapping operator GP are |i⟩ and |j⟩, and the elements of a
set of Gray codes connecting 2n bits of binary numbers i and
j to g1, g2, . . . , gm−1, gm, where g1 = 0, gm = 22n − 1.
The state transformations are implemented step by step using
simply a series of quantum gates

|g1⟩ → |g2⟩ → . . . → |gm−1⟩

then multi-controlled NOT gate operations are conducted,
followed by transformations

|g1⟩ → |g2⟩ → . . . → |gm−1⟩

the final result is the two-point swap operator GP imple-
mented in quantum circuits, with the required quantum gate
complexity of O

(
n2

)
[1], [80]. In the following we will start

to analyze the complexity of the quantum circuit in detail.

The first step is to swap the states of |g1⟩ and |g2⟩. Let
|g1⟩ and |g2⟩ have different values for the lth bit, then we
can complete the swap by flipping one of the controlled bits
of the lth qubit, the condition to be satisfied is that the both
|g1⟩ and |g2⟩ have the same qubit for the rest of the bits.
Next, use a controlled operation to swap |g2⟩ and |g3⟩, and so
on, until |gm−2⟩ and |gm−1⟩ have been swapped. The above
m− 2 operations complete the operations in Eq. (14)

|g1⟩ → |gm−1⟩

|g2⟩ → |g1⟩

|g3⟩ → |g2⟩

. . .

|gm−1⟩ → |gm−2⟩ (14)

It should be noted that all other states of the computational
basis remain unchanged during the sequence of operations.
In the second step, let the w th bits of |gm−1⟩ and |gm⟩

are different, and under the condition that the other bits of
|gm−1⟩ and |gm⟩ are the same, conduct a multi-control NOT
gate operation targeting the wth qubit. Finally, the reductive
swap operation is used to complete the multi-control NOT
gate operation: |gm−1⟩ and |gm−2⟩ are swapped, followed by
|gm−2⟩ and |gm−3⟩, and so on, until |g2⟩ and |g1⟩ are swapped.
Since i and j differ in at most 2n positions, it can always

find a Gray code that satisfies m ≤ 2n + 1 [1]. To imple-
ment the two-stage unitary operation up to 2 (2n− 1) con-
trolled not-gate operations are required to swap |g1⟩ to |gm−1⟩

and back again. And each such controlled operation can be
implemented using O (n) NOT gates and multi control oper-
ation NOT gates. The achievement of a multi-control NOT
gate operation with the wth qubit as the target also requires
O (n) elementary quantum gates. Thus, the implementation
of |g1⟩ to |gm−1⟩ requires the quantum elementary gate of
O

(
n2

)
. Therefore, the complexity of the elementary quantum
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gate required for the quantum circuit implementation of the
two-point swap operator GP on QIRHSI is O

(
n2

)
.

B. CIRCULAR TRANSLATIONS
The circular translation of the QIRHSI image along the
coordinate axis is described in Definition 2. Figure 8 gives
an example of a circular translation of the image along the
coordinate axis.

FIGURE 8. The image Tree was cyclically translated along the coordinate
axis.

Definition 2: The operators Ty+l and Tx+l based on
QIRHSI color image translated by l pixels along the y and
x axis respectively are defined as

Ty+l (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ ∣∣(y+ l)mod 2n, x
〉

(15)

Tx+l (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ ∣∣y, (x + l)mod 2n
〉

(16)

whereby |I (θ)⟩ represents a QIRHSI color image, see
Eq. (1). l = ln−1 . . . l1l0 and l ∈ (0, 2n − 1],
so li (i = 0, 1, . . . , n− 1) is not all zero. The translation oper-
ators Ty+l and Tx+l can be expressed respectively as

Ty+l = I⊗2
⊗ I⊗q ⊗

2n−1∑
j=0

∣∣(j+ l) mod 2n
〉
⟨j| ⊗ I⊗n

= I⊗2
⊗ I⊗q

⊗

{
|(0 + l) mod 2n⟩ ⟨0| + . . .

+ |(2n − 1 + l) mod 2n⟩ ⟨2n − 1|

}
⊗ I⊗n

(17)

Tx+l = I⊗2
⊗ I⊗q ⊗ I⊗n ⊗

2n−1∑
j=0

∣∣(j+ l) mod 2n
〉
⟨j|

= I⊗2
⊗ I⊗q ⊗ I⊗n

⊗

{
|(0 + l) mod 2n⟩ ⟨0| + . . .

+ |(2n − 1 + l) mod 2n⟩ ⟨2n − 1|

}
(18)

The quantum circuits of the circular translation operators
Ty+l and Tx+l are given in Figures 9 and 10.

FIGURE 9. Quantum circuit of the QIRHSI image translated by l pixels
along the y axis.

FIGURE 10. Quantum circuit of the QIRHSI image translated by l pixels
along the x axis.

Theorem 2: The complexity of the quantum gates needed
for the circular translation operators Ty+l and Tx+l on the
quantum image QIRHSI is O (n).

Proof of Theorem 2: In ordered to calculate the number
of quantum gates required for the circular translation opera-
tors Ty+l and Tx+l , it is only needed to calculate the number of
quantum elementary gates required for the module 2n adder.
As one Toffoli gate is equivalent to six CNOT gates [78].

In the basic carry and sum operation (see Figure 4), the
number of CNOT gates taken is 13 and 2 respectively. And
the plain adder (see Figure 3) contains 2n−1 carries, n sums
and 1 CNOT gate, so the number of CNOT gates required for
the plain adder is 28n − 12. The linear relationship with the
input n of the quantum circuit.

Themodule 2n adder (see Figure 5) contains 5 plain adders,
2 NOT gates and up to 2n+4 CNOT gates. Thus, the module
2n adder needs 2 NOT gates and up to 142n − 56 CNOT
gates, i.e. the complexity of the quantum gates required for
the module 2n adder is O (n). That is, the complexity of the
quantum gates required for the circular translation operators
Ty+l and Tx+l is O (n).

C. FLIP TRANSFORMATIONS
The flip transformation of the QIRHSI image along the
coordinate axis is shown in Definition 3. Figure 11 gives

21890 VOLUME 11, 2023



X. Song et al.: Quantum Geometric Transformation Based on QIRHSI Quantum Color images

an example of the image flipping transformation along the
coordinate axis.

FIGURE 11. The image Tree was flipped along the coordinate axis.

Definition 3: The QIRHSI color image based flip transfor-
mation operators Fy and Fx along the y and x axis respec-
tively are defined as

Fy (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |yx̄⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣y, 2n − 1 − x
〉

(19)

Fx (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |ȳx⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣2n − 1 − y, x
〉

(20)

where |I (θ)⟩ represents a QIRHSI color image, see Eq. (1).
And

|y⟩ = |yn−1 . . . y1y0⟩

|x⟩ = |xn−1 . . . x1x0⟩

|ȳ⟩ = |ȳn−1 . . . ȳ1ȳ0⟩ =
∣∣2n − 1 − y

〉
|x̄⟩ = |x̄n−1 . . . x̄1x̄0⟩ =

∣∣2n − 1 − x
〉

ȳi = 1 − yi, x̄i = 1 − xi
i = 0, 1, . . . , n− 1

The flip transformation operators Fy and Fx are denoted as

Fy = I⊗2
⊗ I⊗q ⊗ I⊗n ⊗ X⊗n (21)

Fx = I⊗2
⊗ I⊗q ⊗ X⊗n

⊗ I⊗n (22)

The quantum circuits of the flipping transform operators
Fy and Fx are shown in Figures 12 and 13.
Theorem 3: The complexity of the quantum gates needed

for the flip transformation operators Fy and Fx on the quan-
tum image QIRHSI is O (n).

Proof of Theorem 3: The flip operators Fy and Fx are
shown in Eqs. (21) and (22), and it can be seen that both
operators Fy and Fx use n NOT gates, so the complexity of

FIGURE 12. QIRHSI color image of the quantum circuit flipped along the
y-axis.

FIGURE 13. QIRHSI color image of the quantum circuit flipped along the
x-axis.

the quantum gates required to implement the flip operators Fy
and Fx on the QIRHSI image is O (n).

The QIRHSI image is flip transformed along the y = x and
y = −x axis as shown in Definition 4. Figure 14 shown an
example of the image flipping transformation along the y = x
and y = −x axis.

FIGURE 14. The image Tree is transformed by flipping along the y = x
and y = −x axis.

Definition 4: The QIRHSI color image based flipping
operators Fy=x and Fy=−x along the y = x and y = −x
axis respectively are defined as

Fy=x (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ V (|yx⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |xy⟩ (23)

Fy=−x (|I (θ)⟩)

VOLUME 11, 2023 21891



X. Song et al.: Quantum Geometric Transformation Based on QIRHSI Quantum Color images

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |x̄ȳ⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣2n − 1 − x, 2n − 1 − y
〉

(24)

whereby |I (θ)⟩ represents a QIRHSI color image, see Eq. (1).
The flip transformation operators Fy=x and Fy=−x can be
expressed respectively as

Fy=x = I⊗2
⊗ I⊗q ⊗ V (25)

Fy=−x = Fy=xFyFx (26)

The quantum circuits of the flip transformation operators
Fy=x and Fy=−x are shown in Figures 15 and 16, and the
quantum circuit of the operator V is given in Figure 17.

FIGURE 15. QIRHSI image of a flipped quantum circuit along the y = x
axis.

FIGURE 16. QIRHSI image of a flipped quantum circuit along the y = −x
axis.

FIGURE 17. Quantum circuits of the operator V .

Theorem 4: The complexity of the quantum gates needed
for the flipping operators Fy=x and Fy=−x on the quantum
image QIRHSI is O (n).

Proof of Theorem 4: The flipping operators Fy=x and
Fy=−x are shown in Eqs. (25) and (26), which show that the
operator Fy=x uses n swap gates, and the operator Fy=−x uses
2n NOT gates and n swap gates. Because one swap gate is
equivalent to three CNOT gates [1], the complexity of the
quantum gates needed to implement the flipping operators
Fy=x and Fy=−x on the QIRHSI is O (n).

D. RIGHT-ANGLE ROTATIONS
The transformation of the QIRHSI image rotation angle to
π/2, π and 3π/2 are shown in Definition 5. Figure 18 shows
an example of the transformation with image rotation angles
π/2, π and 3π/2.

FIGURE 18. Image Tree and right angle after rotation.

Definition 5: The right angle rotation operators Rπ/2, Rπ

and R3π/2 based on QIRHSI color image rotation angles of
π/2, π and 3π/2 transformations are defined as

Rπ/2 (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |xȳ⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣x, 2n − 1 − y
〉

(27)

Rπ (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |ȳx̄⟩
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=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣2n − 1 − y, 2n − 1 − x
〉

(28)

R3π/2 (|I (θ)⟩)

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |x̄y⟩

=
1
2n

2n−1∑
y=0

2n−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ ∣∣2n − 1 − x, y
〉

(29)

where |I (θ)⟩ represents a QIRHSI color image, see Eq. (1).
The right-angle rotation operators Rπ/2, Rπ and R3π/2 can be
expressed respectively as

Rπ/2 = Fy=xFx (30)

Rπ = FyFx (31)

R3π/2 = Fy=xFy (32)

The quantum circuits of the operators Rπ/2, Rπ and R3π/2
are shown in Figures 19, 20 and 21.

FIGURE 19. QIRHSI image of the quantum circuit with a rotation angle
of π/2.

FIGURE 20. QIRHSI image of the quantum circuit with a rotation angle
of π .

Theorem 5: The complexity of the quantum gates required
for the right-angle rotation operators Rπ/2, Rπ and R3π/2 on
the quantum image QIRHSI is O (n).

Proof of Theorem 5: The right-angle rotation operators
Rπ/2, Rπ and R3π/2 are shown in Eqs. (30), (31) and (32),
and it can be known that the operator Rπ/2 uses n NOT gates
and n swap gates, the operator Rπ uses n NOT gates, and the

FIGURE 21. QIRHSI image of the quantum circuit with a rotation angle
of 3π/2.

operator R3π/2 uses n NOT gates and n swap gates. Thus,
the complexity of the quantum gates needed to implement
the right-angle rotation operators Rπ/2, Rπ and R3π/2 on the
QIRHSI is O (n).

IV. COMPARISON OF THE COMPLEXITY OF QUANTUM
GEOMETRIC TRANSFORMATIONS
The geometric transformation of quantum images has been
a highly interesting research topic for scholars. As yet,
geometric transformations based on the two-dimensional
quantum gray-scale image FRQI [24] and geometric transfor-
mations based on the multidimensional quantum color image
NASS [26] are the two ways that can be used. Table 2 gives
the complexity of the quantum gates needed for the geometric
transformation operations based on the quantum image repre-
sentation models FRQI, NASS and QIRHSI. It was indicated
that this table compares images of size 2n × 2n.

TABLE 2. The complexity of the quantum gates required for geometric
transformations based on different quantum image models is compared.

As can be seen from Table 2, the quantum gray-scale image
FRQI involved no circular translation, while the complexity
O (n) of quantum gates required for the quantum circular
translation operation designed in this paper based on the
quantum 2D color image QIRHSI is much lower than the
complexityO

(
2nn2

)
of the quantum circular translation oper-

ation designed based on the quantummulti-dimensional color
image NASS.

In classical computers, the global operators of geomet-
ric transformations require 22n matrices to be implemented,
therefore the complexity of the implemented operations are
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at least O
(
22n

)
. However, in quantum systems, no matter for

quantum image representation FRQI, NASS and QIRHSI,
quantum global transform operations (circular translation,
flipping transform and right-angle rotation) require less com-
plexity of quantum gates than local transform operations
(two-point swapping), which are required to be implemented
by O (n) quantum gates, and the reason for this result is due
to the parallelism of quantum computing. Therefore, quan-
tum geometric transformation techniques based on quantum
image representation FRQI, NASS and QIRHSI are applied
to image encryption [70], [81], watermarking [47] and so on.

V. EXPERIMENTAL EXAMPLE OF THE QIRHSI
GEOMETRIC TRANSFORMATIONS
In order to make the geometric transformation based on the
QIRHSI image more visual, a quantum color image QIRHSI
of size 4 × 4, where n = 2 and q = 8, is shown in Figure 22
as an example. A 4 × 4 color image of QIRHSI is given in
Figure 22 and is represented in Eq. (33).

|I (θ)⟩ =
1
22

24−1∑
k=0

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩

=
1
4

22−1∑
y=0

22−1∑
x=0

∣∣Hyx 〉 ∣∣Syx 〉 ∣∣Iyx 〉 ⊗ |yx⟩ (33)

FIGURE 22. A 4 × 4 color image of QIRHSI.

A. TWO-POINT SWAP
Figure 23 gives an example of a QIRHSI color image where
two pixels |i⟩=|1⟩ = |00⟩|01⟩ and |j⟩ = |11⟩ = |10⟩|11⟩

FIGURE 23. (a) Original image; (b) After the two-point swap.

are swapped. The corresponding quantum circuits are given
in Figure 24. The two-point swap operator GP is defined as

GP = I⊗2
⊗ I⊗8

⊗ P

= I⊗2
⊗ I⊗8

⊗


|1⟩ ⟨11| + |11⟩ ⟨1| +

15∑
k=0,k ̸=1,11

|k⟩ ⟨k|

 (34)

FIGURE 24. The quantum circuit for two-point swapping.

Applying Eq. (34) to image |I (θ)⟩ gives

GP (|I (θ)⟩)

=
1
4

15∑
k=0

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ P (|k⟩)

=
1
4


|H11⟩ |S11⟩ |I11⟩ ⊗ |1⟩ + |H1⟩ |S1⟩ |I1⟩ ⊗ |11⟩

+

15∑
k=0,k ̸=1,11

|Hk ⟩ |Sk ⟩ |Ik ⟩ ⊗ |k⟩


where P (|k⟩) = |k⟩, k ̸= 1, 11, and P (|1⟩) = |11⟩,
P (|11⟩) = |1⟩.

Observing Figure 23, it can be seen that we swapped the
two pixels labeled with the alphabets B and L, corresponding
to the pixel positions 1 and 11, respectively. From the quan-
tum circuit shown in Figure 24, it can be seen that swapping
pixel positions 1 and 11 requires six NOT gates and three
controlled not-gates. Since one three-controlled not-gate is
equivalent to four Toffoli gates, one Toffoli gate is equiv-
alent to six controlled not-gates. Therefore, swapping pixel
locations 1 and 11 needs six NOT gates and 72 controlled
not-gates.

B. CIRCULAR TRANSLATION
An example of circular translation of a QIRHSI color image
along the x-axis is given in Figure 25, where l = 3. The
corresponding quantum circuit are given in Figure 26. The
circular translation operator Tx+3 is defined as

Tx+3 = I⊗2
⊗ I⊗8

⊗ I⊗2
⊗

3∑
j=0

|(j+ 3) mod 4⟩ ⟨j|

= I⊗2
⊗ I⊗8

⊗ I⊗2

⊗ (|3⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨2| + |2⟩ ⟨3|)
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Applying the circular translation operator Tx+3 to the
image |I (θ)⟩ to obtain

Tx+3 (|I (θ)⟩)=
1
4

3∑
y=0

3∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ |y, (x+3)mod 4⟩

Obviously, it is a circular translation of Figure 22 by
3 pixels along the positive direction of the x-axis to obtain
Figure 25(b). Analysis of the quantum circuit shown in
Figure 26 shows that the use of a module 4 adder is equiv-
alent to the use of 5 plain, 2 NOT gates and no more than
8 controlled not-gates (See Theorem 2). In other words, the
circular translation of 3 pixels along the positive direction of
the x-axis uses 5 NOT gates and 228 controlled not-gates.

FIGURE 25. (a) Original image; (b) After circular translation.

FIGURE 26. Quantum circuits of circular translations.

C. FLIP TRANSFORMATION
Figure 27 gives an example of a QIRHSI color image flipped
along the x axis. The corresponding quantum circuits are
shown in Figure 28.
The flip transformation operator Fx is described by the

definition of

Fx = I⊗2
⊗ I⊗8

⊗ X⊗2
⊗ I⊗2

Applying the flip transformation operator Fx to the image
|I (θ)⟩ gives

Fx (|I (θ)⟩) =
1
4

3∑
y=0

3∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ |3 − y, x⟩

FIGURE 27. (a) Original image; (b) After the flip transformation.

FIGURE 28. The quantum circuit of the flip transformation along the x
axis.

Obviously, a flipping transformation of Figure 22 along
the x-axis to obtain Figure 27(b) requires only 2 NOT gates
(see Figure 28).

D. FLIP TRANSFORMATION
An example of a QIRHSI color image flipped transformation
along the y = x axis is given in Figure 29. Figure 30 gives
the corresponding quantum circuits.

FIGURE 29. (a) Original image; (b) After flipping along the y = x axis.

The flip transformation operator Fy=x defined as

Fy=x = I⊗2
⊗ I⊗8

⊗ V

where the operator V is shown in Figure 31.
The flip transformation operator Fy=x is applied to the

image |I (θ)⟩ to obtain

Fy=x (|I (θ)⟩) =
1
4

3∑
y=0

3∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ |xy⟩
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FIGURE 30. The quantum circuit flipped along the y = x axis.

FIGURE 31. Quantum circuit of the operator V .

The flipping transformation of Figure 22 along the y = x
axis results in Figure 29(b), which requires only two swap
gates to complete the operation (see Figure 30). One swap
gate is equivalent to three controlled not-gates. Therefore, six
controlled not-gates are needed for the flipping transforma-
tion operation along the y = x axis.

E. RIGHT-ANGLE ROTATION
An example of a QIRHSI color image rotated an angle
of π/2 is given in Figure 32. The corresponding quantum
circuits are provided in Figure 33. The right-angle rotation

FIGURE 32. (a) Original image; (b) After rotation π/2.

FIGURE 33. The quantum circuit of rotated π/2.

operator Rπ/2 is

Rπ/2 = Fy=xFx

Applying the right-angle rotation operator Rπ/2 to the
image |I (θ)⟩ gives

Rπ/2 (|I (θ)⟩) =
1
4

3∑
y=0

3∑
x=0

∣∣Hyx 〉∣∣Syx 〉∣∣Iyx 〉 ⊗ |x, 3 − y⟩

Rotating Figure 22 by π/2 to obtain Figure 32(b), only two
NOT gates and two swap gates are needed (see Figure 33),
i.e., only two NOT gates and six controlled not-gates are
needed to complete this operation.

VI. DISCUSSIONS
This paper presents geometric transformations (two-point
swapping, circular translation, flip transformation and right-
angle rotation) based on quantum color image QIRHSI. How-
ever, there are not enough geometric transformations in the
abovementionedmethods. Firstly, we cannot verify the above
algorithm directly on a quantum computer under the current
conditions. Secondly, it only gives the algorithm and quantum
circuit for circular translation, and not for general translation.
Finally, the flip transformation and right-angle rotation are
only designed for some special types of transformations, and
their applications are limited.

VII. CONCLUSION AND FUTURE OUTLOOK
In this paper, quantum geometric transformations based on
the quantum color image QIRHSI are proposed, covering
two-point swapping, circular translation, flipping transforma-
tions and right-angle rotation. The quantum circuits for the
four types of geometric transformation operations mentioned
above are designed immediately afterwards, and the com-
plexity analysis of the quantum gates needed for the differ-
ent types of geometric transformation unitary operators are
given. The complexity of the global transformation (circular
translation, flipping transformation and right-angle rotation)
operator of the quantum color image QIRHSI is lower than
with the local transformation (two-point swapping) operator.
Finally, the quantum geometric transformation operation of
QIRHSI color image is illustrated by a simple 4×4 example.

The future research work covers:
1) The circular transformations, flipping transformations

and right-angle rotations covered in this paper are
whole geometric transformations, and it is essential
to implement local circular translations, local flipping
transformations and local right-angle rotations.

2) Flipping transformations (along the y axis, x axis, y = x
axis and y = −x axis) and right-angle rotations (π/2,
π and 3π/2) are both special quantum geometric trans-
formations and how to design flipping transformations
along the arbitrary axis and rotating transformations at
arbitrary angles.

3) How to design general translation operations in the
field of quantum image processing after designing cir-
cular translation operations with modulo N adder.
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4) How to construct arbitrary geometric transformations
using the two-point swapping operator, while making
the designed quantum circuits for arbitrary geometric
transformations with lower complexity is still a prob-
lem to be further considered.

5) Additional applications in quantum image process-
ing combined with quantum geometric transformations
are of higher value, for example, in quantum image
encryption, where pixel position scrambling in quan-
tum image encryption can be accomplished by com-
bining sequences generated by chaotic mapping with
quantum circuits.

6) In practical applications, how to better use quan-
tum geometric transformations to correction of images
taken by artificial satellites and how to use quantum
geometric transformations to processing satellite cloud
images commonly used in weather forecast, etc.
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