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Abstract—The promise of Deep Learning (DL) in solving hard
problems such as network Traffic Classification (TC) is being
held back by the severe lack of transparency and explainabil-
ity of this kind of approaches. To cope with this strongly felt
issue, the field of eXplainable Artificial Intelligence (XAI) has
been recently founded, and is providing effective techniques
and approaches. Accordingly, in this work we investigate inter-
pretability via XAI-based techniques to understand and improve
the behavior of state-of-the-art multimodal and multitask DL
traffic classifiers. Using a publicly available security-related
dataset (ISCX VPN-NONVPN), we explore and exploit XAI
techniques to characterize the considered classifiers providing
global interpretations (rather than sample-based ones), and define
a novel classifier, DISTILLER-EVOLVED, optimized along three
objectives: performance, reliability, feasibility. The proposed
methodology proves as highly appealing, allowing to much sim-
plify the architecture to get faster training time and shorter
classification time, as fewer packets must be collected. This is
at the expenses of negligible (or even positive) impact on clas-
sification performance, while understanding and controlling the
interplay between inputs, model complexity, performance, and
reliability.

Index Terms—Deep learning, encrypted traffic, explainable
artificial intelligence, multimodal learning, multitask learning,
traffic classification.

I. INTRODUCTION

TRAFFIC Classification (TC) is a key activity instrumen-
tal to traffic management, resource planning, and security

enforcement in today’s networks, which are characterized by
high heterogeneity and dynamicity of transmitted traffic. To
meet these challenging demands, recent research is strongly
focusing on Deep Learning (DL) methods for designing effec-
tive tools for accurate TC [1]. While promising unparalleled
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performance, and the capability to adapt (without an expert
human in the loop) to the change of observed traffic, these
methods constitute a black-box whose behavior is extremely
hard to explain, and therefore to improve, or secure against
attacks: as such, they can not be trusted. As a result, all the
main stakeholders agree there is a strong need to research
the explainability of Artificial Intelligence (AI) solutions
applied to TC and more generally to networking, with the
aim of improving performance, reliability, and feasibility of
such solutions.

Indeed, having explanations for AI systems is no longer just
an attractive and desirable feature, but has become the funda-
mental basis of any AI design solution that users and network
operators can consider safe, reliable, and fair. In fact, in critical
contexts such as network management, it is no longer sufficient
to have accurate systems: network administrators and users
must trust the results and policies suggested by AI algorithms
to decide whether to act and how.1 This is more pressing as
AI is being increasingly proposed to govern the complexity of
real-time network resources management and network secu-
rity, whose landscape has been subject to continuous evolution,
last originated by the pandemic events.

This need for transparency motivated the Defense Advanced
Research Projects Agency (DARPA) to launch its program
for eXplainable AI (XAI) already in 2017 [2], with the aim
of shaping new learning processes that (a) produce better-
explainable models, (b) design effective explanation interfaces,
and (c) understand the psychological requirements for effec-
tive explanations. Notably, while these needs apply generally
to AI, they are specifically felt in the communications and
networking field, with several telecommunications companies
investigating how to produce AI-based solutions that can be
the (safe) engine for their core business activities. For instance,
Telefonica has focused on “Responsible Use of AI” [3] to
address potential discrimination, lack of interpretability of the
results provided by the algorithms, and transparency of the
personal data they use, and has published its AI Principles
in 2018, covering fair AI, transparent and explainable AI,
human-centric AI, privacy and security by design. Besides,
many other institutions and companies have defined rules

1We underline that when referring to “trust” in results/decisions, we do not
imply network security aspects.
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and principles to guide their research. In line with the EU
Commission guidelines for Trustworthy AI, Ericsson defined
this concept [4] by focusing mainly on the explainability,
safety, and verifiability of AI solutions. They also included
traceability and accountability, always considering the human
being at the center of the whole process. The lack of explain-
ability is, according to Huawei, the main reason for the
security vulnerabilities of AI systems. Indeed, unlike tradi-
tional systems, this lack of explainability poses specific and
serious security threats to DL-based applications that can be
exploited by adversarial machine learning methods such as
evasion, poisoning, and backdoor attacks [5]. Equally impor-
tant, the relevance and timeliness of XAI adoption are also
motivated by the rising adoption of encryption (e.g., TLS
encapsulation) in modern Internet traffic [6], [7].

Therefore, in response to the needs arising from DL adop-
tion for effective TC, the field of XAI is providing tools to
link the outcome of the classification to the structure of the
DL model and the input, making the model explainable, in a
number of ways [8]. In addition to explainability, in this work
we consider also reliability [9], measuring to which extent
the confidence associated with a given decision by a (possibly
opaque) DL algorithm can be deemed reliable—i.e., low (resp.
high) confidence in labeling a certain traffic object actually
leads to low (resp. high) accuracy in classifying it. This prop-
erty is crucial as it informs decisions with an impact on user
experience and economic efficiency of network management.
Finally, we also assess how XAI can be instrumentally used to
ensure the prototyping of feasible (viz. ready-to-be-deployed)
TC models [10]. Indeed, the understanding of the behavior of
the learned model enables focused performance enhancements,
much more efficient than a less-informed search over the huge
hyper-parameters space. As the adoption of DL is relatively
new, even more so in the field of network traffic analysis, it is
no wonder that XAI has not yet found mature application to
TC as well, despite its acute need: with this work we move an
important step in the direction of tackling this open challenge.

In detail, the main contributions of this paper can be
summarized as follows:

• Based on our recently proposed general framework
(DISTILLER [11]), we design a novel architecture oper-
ating at biflow level which (i) effectively exploits the
heterogeneous nature of the different views of a traf-
fic object by distilling both intra- and inter-modalities
dependence via multimodal learning and (ii) is able to
solve multiple (related) TC tasks simultaneously via mul-
titask learning. To support this improvement, we devise
a general methodology for interpreting and assessing
the reliability of multimodal multitask DL-based traf-
fic classifiers in practical experimental scenarios. The
above analysis includes different levels of granularity or
viewpoints, including: (a) relative importance of differ-
ent input modalities for each task and down to specific
parts of each modality; (b) how each task affects the
others’ behavior. Specifically, our study goes through
a number of stages, each associated with a different
realization of the general DISTILLER framework, as
detailed hereinafter.

• We propose and systematically evaluate a first variation
of the original realization based on the DISTILLER

framework—named DISTILLER-EMBEDDINGS—and
compare its performance against state-of-the-art mul-
titask TC baselines [12], [13], [14], including our
original multimodal multitask proposal [11] referred to
as DISTILLER-ORIGINAL herein. We investigate the
intrinsic working behavior of DISTILLER-EMBEDDINGS

applying state-of-the-art XAI tools (i.e., Deep SHAP [15]
and Integrated Gradients [16]) to understand input impor-
tance associated with each modality, and within each
single modality. In this context, a qualitative inter-
pretability comparison with DISTILLER-ORIGINAL is
also put forward.

• We leverage the results of interpretability analysis to
improve our proposal and obtain a faster version of
it—named DISTILLER-EARLIER—with reduced training
times and allowing earlier classification. This is obtained
by using a limited number of inputs and discarding irrele-
vant ones for both modalities without losing performance.
We also compare the aforementioned method with (a) a
classic feature selection method that relies on estimating
mutual information, and we assess the results with (b) a
complete sensitivity analysis based on grid search.

• We evaluate the reliability of DISTILLER-EARLIER via
a calibration analysis, in order to assess how reliable
the confidence value reported with the prediction is. This
analysis supports further improvements of the proposed
architecture by leveraging the label smoothing technique
to improve the generalization capability of the model
associated with each TC task, leading to DISTILLER-
CALIBRATED. Indeed, the adopted calibration tech-
nique reduces the excessive confidence associated with
predictions and consequently reduces overfitting.

• Aiming at improving the feasibility in terms of model
size (and related memory occupation), in order to make
the attained architecture deployable even on resource-
constrained devices, we investigate (i) pruning, (ii)
quantization, and (iii) knowledge distillation techniques
to compress DISTILLER-CALIBRATED and obtain our
final proposal, named DISTILLER-EVOLVED. In this
context, we assess in detail if (and, in positive case,
how) performance, interpretability, and reliability are
affected by the consequent model simplification. Overall,
DISTILLER-EVOLVED enhances the previously-proposed
DISTILLER-ORIGINAL from different viewpoints: archi-
tecture and training procedure, input dimension, reliabil-
ity (via calibration analysis), and feasibility (in terms of
model size).

• The experimental campaign is conducted on ISCX VPN-
NONVPN [17], a publicly-released human-generated
encrypted-traffic dataset, to foster reproducibility.

The rest of the paper is organized as follows. Section II
surveys the current state-of-the-art on TC via multimodal mul-
titask DL and the recent application of XAI to networking
and TC, positioning our contributions against related lit-
erature. Section III describes the considered XAI-based
multimodal multitask TC methodology; the experimental setup
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considered and the experimental results discussed are reported
in Sections IV and V, respectively; Section VI ends the paper
with conclusions and future directions of research.

II. BACKGROUND AND RELATED WORK

In this section, we first review the current state-of-the-art
on TC via multimodal multitask DL (Section II-A). Then,
we discuss the current application of XAI methods to the
networking field (Section II-B). Finally, we position our con-
tribution against existing methods adopting XAI to DL-based
TC (Section II-C).

A. Traffic Classification via Multimodal Multitask DL

Several works perform encrypted TC by means of
a variety of DL algorithms, including Deep Neural
Networks (DNNs) [12], [13], different types of AutoEncoders
(AEs) [1], [33], [34], [35], [36], one- and two-dimensional
Convolutional Neural Networks (1D- and 2D-CNNs) [1], [11],
[14], [26], [29], [30], [32], [35], [37], [38], [39], [40], [41],
[42], [43], variants of Recurrent Neural Networks (RNNs)
such as Long Short-Term Memory (LSTM) [1], [29], [34],
[39], [44], [45] and Gated Recurrent Unit (GRU) [11], [30],
[38], [45], [46], possibly exploiting the composition capa-
bilities of hybrid DL architectures [1], [30], [44]. The way
input data are fed to such architectures is paramount for tak-
ing full advantage of the DL paradigm. Unfortunately, some
works [12], [13], [14], [41] counter-productively conduct a
preliminary ad-hoc feature extraction and do not exploit the
key advantage of DL of automatic extracting knowledge from
raw traffic data without the need of human-expert intervention.
Conversely, other works [37], [40], [44], [45] feed DL models
with input data containing traffic-trace metadata (e.g., times-
tamps or ad-hoc IDs) or biased fields (e.g., local IP addresses
or source/destination ports) which are likely to introduce
bias and misleadingly inflate TC performance. Differently,
in the present work, we exploit unbiased raw input data
providing different views on traffic (i.e., payload bytes and
packet sequence information) to take advantage of its intrinsic
heterogeneity via multimodal approaches.

Indeed, even when using unbiased raw traffic data as input,
most previous studies still partially capitalize the capabilities
of DL by leveraging myopic single-modal architectures, while
only few works exploit the intrinsic heterogeneity of network
traffic data by means of multimodal proposals [11], [29], [30],
[38], [39], [42], where the lower layers of the deep architecture
are trained on heterogeneous subsets of input data with the aim
of learning intra- and inter-modality dependencies.

On the other hand, a larger number of works propose
multitask DL models which make use of a shared repre-
sentation to improve their learning ability. Specifically, they
train multiple tasks in parallel and exploit for each task the
information in the training signals of related ones. Multitask
approaches have been used to jointly tackle various prob-
lems associated with as many operators’ needs: (i) malware
detection/classification and TC [12], [40], [41], (ii) traffic clas-
sification and prediction [14], [34], (iii) different TC tasks,
such as classification of duration, flow rate, and application

(with the former two preprocessed via a two-level quan-
tization) [13], classification of VPN-encapsulated traffic at
different granularity [11], or joint classification of applica-
tion, application category, user operation, operating system,
and browser [45]. Moreover, the multitask paradigm has been
applied in the context of federated learning [12], transfer learn-
ing [13], [14], and one-shot learning [13]. We underline that
all the works proposing multitask architectures—with only
one exception [34]—leverage such a learning paradigm in
a supervised manner, namely the solution of the considered
tasks (regardless of the specific task dealt with) is taken into
account when training the layers of the shared representation.
We point the interested reader to our recent work [11] for a
more in-depth analysis of the state-of-the-art concerning TC
via multitask DL.

B. XAI for Networking

As AI techniques have been increasingly adopted to tackle
networking tasks in recent years, networking researchers are
starting to explore XAI techniques to make AI models inter-
pretable, trustworthy, and manageable [10]. Table I highlights
the main aspects of recent works facing such networking tasks
in the light of interpretability (e.g., anomaly detection [18],
resource allocation [19], global and local network control [22],
and various networking-related prediction tasks [20], [21],
[23], [24], [25]), with a specific focus on TC whose related
literature is clustered in the bottom half of the table. It is worth
noting that Tab. I does not report the other works dealing with
multitask TC described in Section II-A because no XAI tech-
nique is applied in them (with the sole exception of [11],
containing a calibration analysis of the proposed multitask TC
classifier). Still, these works are later reported in Tab. III and
considered as baselines in the experimental phase.

AI techniques applied belong to both supervised and unsu-
pervised Machine Learning (ML) and DL approaches, or
they are reinforcement learning solutions. Consequently, the
considered traffic object (i.e., the relevant elementary sam-
ples of analysis) strongly depends on the specific networking
task—with biflows dominating the studies performing TC—
while multimodal (MM) or multitask (MT) architectures are
exploited only to face traffic prediction and classification.

Focusing on the specific XAI methodology adopted, we
can notice that the related works mostly apply interpretability
techniques to provide post-hoc explanations [30] in vari-
ous forms. These include (i) different types of perturbation
analyses (e.g., occlusion analysis [26], [29] or universal
perturbation attacks [31]), (ii) attribution based on Shapley
values [23], [30], [39] (iii) Layer-wise relevance propaga-
tion [18], (iv) Interpretable local surrogates [20], [21], [23],
and (v) Integrated or smoothed gradients. Other approaches
(e.g., saliency/feature maps, t-SNE) are based on visual repre-
sentations [19], [27] that help to highlight the most important
“features”—and ultimately the portion of input data—that led
to the classification outcome (e.g., by inspecting the activation
of intermediate neurons in hidden layers). Easier-to-interpret
models than DL ones have been also exploited, namely per-
forming distillation toward (naturally interpretable) decision
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TABLE I
RELATED WORKS IN THE NETWORKING DOMAIN APPLYING XAI METHODOLOGIES FOR DIFFERENT GOALS (IMPROVING MODEL PERFORMANCE,

TRUSTWORTHINESS, AND FEASIBILITY). THE SECOND PART OF THE TABLE GROUPS THE PAPERS TACKLING TRAFFIC CLASSIFICATION.
IN EACH GROUP, THE PAPERS ARE REPORTED IN CHRONOLOGICAL ORDER. THE MEANING OF

ACRONYMS AND SYMBOLS IS SHOWN AT THE BOTTOM OF THE TABLE

Sections

trees [22], [23], hypergraphs [22] or Markov models [24], [25].
These gray-box models despite being more simple and inter-
pretable than DL, usually show poorer performance and need
carefully hand-crafted features. Going further, solutions aim-
ing at explainability-by-design based on the detection of
class prototypes and communication to the end-user are also
investigated [32].

Finally, the reliability of DL outcomes is also investigated
to check whether such probabilistic outputs are calibrated,
namely to verify whether the confidence actually reflects the
reliability of the final decision. Techniques for both evaluating
calibration and improving it—to make the DL models more
reliable—are adopted in conjunction with TC tasks [11], [30].

According to our review, the considered body of litera-
ture applies XAI methodologies to different extents, aiming at
improving the proposed solutions in one or more aspects (see
the three rightmost columns in Tab. I). Specifically, XAI is

used to improve (i) model performance (P): it provides means
to scrutinize the model for revealing bias/variances and dis-
cerning whether the decisions are derived from the intended
portions of input data, thus allowing model performance
improvement as well as robustness and vulnerability assess-
ment (e.g., susceptibility to adversarial attacks); (ii) trust-
worthiness (T): as humans are reluctant to trust decisions
made by AI-based solutions without proper insights into their
internal mechanisms, XAI techniques can expedite the valida-
tion of functional coherence, constraints violation, and policy
obligations, and can make decisions and recommendations
more trustworthy; (iii) feasibility (F): it can assist model
refinement in order to allow these models to be accommodated
by resource-constrained network devices.

Hereinafter, we focus on XAI techniques applied to
interpret, refine, and improve solutions that tackle the problem
of network-traffic classification. Beliard et al. [27] propose
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a platform to graphically visualize the inference process of
a TC engine based on CNNs. Wang et al. [28] use Deep
SHAP [15] to explain a few representative outcomes obtained
through a 1D-CNN for mobile-app TC. Rezaei et al. [26]
perform an occlusion analysis that allows to inspect how
the CNN model proposed for the classification of mobile-
app traffic can classify SSL/TLS flows, revealing that certain
handshake fields can leak the information exploited in the TC
process. Sadeghzadeh et al. [31] tackle the robustness of DL-
based TC models against adversarial samples, and demonstrate
that they are vulnerable to universal adversarial perturbation.
Fauvel et al. [32] propose an explainable-by-design CNN for
TC which also fulfills lightweight and efficiency purposes.
Akbari et al. [29] perform a feature engineering study that con-
siders exclusively encrypted Web traffic in which they occlude
parts of the input that allow the DL model to learn a lazy and
unsophisticated logic.

Concerning reliability of TC results, in a recent work [11]
we perform a calibration analysis for a proposed multimodal
multitask DL architecture (but with no attempt in improv-
ing it). Differently, in another work [30] we investigate
interpretability and reliability to improve the behavior of
state-of-the-art multimodal DL traffic classifiers by applying
global-interpretation XAI techniques based on Deep SHAP and
methods to both assess and improve the reliability of classifiers.

C. Positioning of This Work

In this work, we exploit XAI methodologies to enhance
state-of-the-art multimodal multitask TC solutions along the
three previously mentioned dimensions: model performance,
trustworthiness (via improved reliability), and feasibility. Such
solutions are clearly appealing because they can tackle several
TC problems simultaneously (multitask) by inspecting the traf-
fic from complementary viewpoints (multimodal). Particularly,
we leverage XAI methodologies to directly provide the expla-
nation (i.e., evaluate the importance) of raw traffic data and not
of manually-extracted features, a task not only more challeng-
ing but also more useful for shedding light on the black-box
nature of complex DL-based traffic classifiers.

Concerning interpretability techniques, differently than our
previous work [30] and most of the surveyed literature tack-
ling TC—and similarly to Terra et al. [23]—we apply multiple
XAI approaches (Deep SHAP and Integrated Gradients) to
compare and cross-validate the outcomes of these techniques.
Furthermore, unlike Fauvel et al. [32]—which also tackle the
problem of enhancing performance, trustworthiness, and fea-
sibility in the context of TC—we do not subvert the nature of
the original DL architecture for explainability purposes (along
explainable-by-design principles) but rely on post-hoc analyses
that can be applied to any black-box ML/DL-based solution
previously proposed.

Moreover, we exploit methods to assess (reliability dia-
grams and related metrics [47]) and improve (focal loss [48]
and label smoothing [49]) the reliability of traffic classifiers.
The latter methods enhance the generalization capability of
classifiers through the reduction of excessive confidence asso-
ciated with predictions and consequently the possibility of

overfitting. Also, by means of the reliable confidence score
coupled with the classification outcome, actionable context is
provided to the (human or automated) user.

Concerning feasibility, our investigation on model com-
pression covers and compares a number of approaches (i.e.,
knowledge distillation, pruning, and quantization) providing a
more systematic study than previous works.

Finally, similarly to Aceto et al. [11], we employ a
multimodal multitask DL architecture. In detail, we capi-
talize on the general DISTILLER framework proposed in
the latter work and extend it by considering additional or
(partially-)unexplored aspects to overcome different limita-
tions of its very first realization leveraged in [11], here named
DISTILLER-ORIGINAL. In doing so, through a process of
sequential enhancements, each associated with a different real-
ization (see Section V for details on every novel realization),
we come to the final definition of DISTILLER-EVOLVED.
Enhancements are here meant from different viewpoints,
namely classification performance, reliability, and feasibility.
Indeed, these aspects have been either improved w.r.t. [11]
(i.e., performance and reliability) or addressed for the first time
here (i.e., feasibility). Overall, to the best of our knowledge,
the present paper provides the first attempt in interpret-
ing and enhancing this kind of multimodal multitask DL
architectures with the support of XAI methodologies.

III. MULTIMODAL MULTITASK DEEP LEARNING–BASED

EXPLAINABLE TRAFFIC CLASSIFICATION

In this section, we describe our general methodology for
interpreting and designing improved multimodal multitask DL-
based traffic classifiers. Specifically, in Section III-A, we refresh
the general DISTILLER framework recalling its peculiar char-
acteristics. Then, in Section III-B, we introduce the concept of
interpretability in DL architectures and describe our approach
based on Deep SHAP and Integrated Gradients techniques. In
Section III-C, we motivate the role of reliability and introduce
metrics to assess—and techniques to improve—the calibration
of DL-based TC approaches. Finally, Section III-D describes
model compression techniques capitalized in this work.

A. Multimodal Multitask DL-Based Traffic Classification

Herein, we recall the DISTILLER framework [11] we exploit
for encrypted TC via multimodal multitask DL and the cor-
responding training procedure adopted for each classifier
based on it. Details of each instance are reported in later
Section IV-B.

Generally speaking, multimodal DL is able to automatically
learn a hierarchical representation of traffic data by jointly
exploiting multiple “views” (viz. modalities) of the same traffic
object, for instance: raw bytes of payload data and informative
protocol fields of packet sequences. Additionally, multitask
learning improves the ability to tackle a given network vis-
ibility task (e.g., classifying the mobile app generating each
flow) by exploiting the information distilled from other related
tasks (e.g., predicting the average packet length of each flow
and detecting mice/elephant flows), particularly by learning
them in parallel via a shared representation. It allows a DL
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model to reduce redundancy and computational overhead by
leveraging a one-comprehensive model while providing better
generalization and classification performance.

1) DISTILLER Overview: Our goal is solving v =
1, . . . ,V different related TC tasks, for example inferring the
traffic-type and the particular application generating a traffic
object. Formally, given a traffic object (i.e., a subset of network
packets sharing some common properties and constituting our
TC sample), the v th TC task (Tv ) consists in assigning a
label among Lv classes (e.g., apps or services) within the set
{1, . . . ,Lv}. When tackling multitask TC, each traffic object
is labeled with as many labels as the TC tasks to be solved. We
define the mth traffic object of the training set (encompassing
M samples) as x(m), while the corresponding label of the v th

classification task as �v (m). Such a label may belong to one
out of the Lv different classes, namely �v (m) ∈ {1, . . . ,Lv}.

To fully exploit the highly-structured information con-
tained in each sample x(m), we distill such information via
a multimodal DL architecture. A multimodal DL architecture
leverages different data types (e.g., header fields or pay-
load bytes) to capitalize complementary views or modalities
of the same traffic object exploiting an advanced form of
information fusion—named intermediate fusion—for capital-
izing the heterogeneity of network traffic data when solving
multiple (related) tasks in parallel.

2) DISTILLER Architectural Definition: The generic
DISTILLER architecture is made of P different modalities
(each corresponding to a different input type). The first
part of such a framework consists of a certain number of
input-specific single-modality layers, which extract the dis-
criminative features distilling the intra-modality dependencies
of the pth modality. On top of these layers, such features are
fused via a merge layer, which is in charge of channeling
the modality-specific features in a joint multimodal multitask
(shared) representation. The second part of the DISTILLER

framework is made of some shared-representation layers
followed by task-specific layers. The former layers extract
the features distilling inter-modality dependencies; the latter
layers synthesize the task-oriented features (of the v th

task) from the shared ones. The DISTILLER architecture is
terminated with one softmax layer for each TC task to be
solved.

3) DISTILLER Training Procedure: We train DISTILLER

via a two-stage procedure: a preliminary pre-training to distill
the features of each single-modality branch and a succes-
sive fine-tuning of the whole DISTILLER architecture. In more
detail, when performing pre-training, each single-modality
branch is topped with V softmax “stubs”.2 In this case, a
weighted sum of the categorical cross-entropy of each TC task
is minimized for promoting the capability of the pth modality
to solve V different TC tasks alone. Since DISTILLER solves
multiple learning tasks in parallel, each weight represents the
preference level of the v th task in the multitask categorical
cross-entropy to be minimized. For the fine-tuning, we remove
the softmax stubs and train the whole DISTILLER architecture,

2In the next Section III-B, we will show how the auxiliary outputs of the
stubs are exploited to perform per-modality interpretation analysis.

i.e., by introducing the shared-representation and task-specific
layers. Nevertheless, during fine-tuning, the “lowest” single-
modality layers (i.e., those aimed at intra-modality feature
extraction) are frozen, namely their weights keep the value
learned during the pre-training. Both the categorical cross-
entropy functions concerning pre-training and fine-tuning are
minimized via standard first-order local optimizers.

B. Interpreting Multimodal Multitask DL Traffic Classifiers

The starting point for interpreting complex DL architec-
tures is to consider a simpler explanation model g(·), which is
designed to closely-approximate the original model f (·). In the
present work, we focus on local explanation methods, which
explain the original model f (x) in the neighborhood of a partic-
ular per-biflow instance x using the so-called simplified inputs
x ′ that map to the original ones through a mapping function
x = hx (x

′). Per-sample explanation outcomes based on local
methods are then aggregated to obtain global explanations, as
illustrated at the end of this subsection.

The majority of interpretability techniques (e.g., LIME,
LEMNA, DeepLIFT) assumes a peculiar functional form for
the explanation model g(·) leading to the definition of Additive
Feature Attribution (AFA). Formally, AFA methods are linear
functions of binary variables:

g
(
z ′) = φ0 +

M∑

m=1

φm z ′m (1)

where z ′ ∈ {0, 1}M , M denotes the number of simplified
inputs, and φm ∈ R. Hence, they provide an explanation
model associating an “effect” φm to each input: the origi-
nal model output f (x) can be approximated by summing the
effects of all input attributions.

In the present work, we leverage Deep SHAP [15] and
Integrated Gradients, both detailed hereinafter.

1) Deep Shap: The first way to compute AFA solutions
is by means of the well-known Shapley values. The initial
concept of Shapley values originates from cooperative game
theory and specifies the contribution of player m to the payoff
v(P) achieved by the whole coalition P [50]. To this aim,
the method assesses the payoff of every subset of cooperating
players S ⊂ P and evaluates the effect of removing or adding
the player m to S on the total payoff v(S) obtained by S if
the players cooperate. When leveraging this method for the
interpretation of a DL-based model, the input data correspond
to the players of the cooperative game, and the output of the
DL architecture f (x) to the payoff function.

Since the exact computation of Shapley values grows expo-
nentially with the input size M, we approximate them (in a
lightweight form) via SHapley Additive exPlanation (SHAP)
by eliminating the need to re-train the models. Specifically,
SHAP approximates these values via the conditional expecta-
tion [15] formally defined as:

f
(
hx

(
z ′)) ≈ E{f (z )|zS} (2)

where S denotes the set of non-zero indices within z ′.
We can further simplify the formulation in Eq. (2) by

assuming the statistical independence of the inputs and the
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linearity of the model [15], formally: f (x ) =
∑M

m=1 wmxm+
b. When both these hypotheses hold, the φm ’s are in closed-
form and equal to φm(f ,x ) = wm (xm −E{xm}). We exploit
the latter assumption to actually calculate the Shapley values.

In more detail, we leverage DeepLIFT [51] for the explicit
computation of the SHAP values. DeepLIFT is an AFA recur-
sive explanation method for the decisions of DL architectures,
which attributes to each input xm a value CΔxmΔo repre-
senting the effect of that input being set to a reference value
as opposed to its original value. Specifically, DeepLIFT cap-
italizes a linear composition rule for the calculation of the
CΔxmΔo ’s, which is based on the linearization of the non-
linear components of a DNN, such as (soft)max, products, or
divisions. The reference value f (r) is a user-defined parame-
ter typically chosen to be an uninformative background value
for the mth input. When setting φ0 = f (r) in Eq. (1) the
explanation model of DeepLIFT is compliant with the func-
tional form of AFA methods and Shapley values represent
the unique solution. Consequently, DeepLIFT can be used to
obtain a compositional and fast approximation algorithm of
Shapley values, named Deep SHAP [15]. We underline that
since Deep SHAP relies on an approximate computation of
Shapley values, the local accuracy property f (x) = g(x) may
be not satisfied with perfect equality.3

2) Integrated Gradients (IG): The second interpretability
technique we used in the present work is the Integrated
Gradients (IG). IG is based on the founding concept of input
baseline. The underlying idea springs from the human incli-
nation to make attributions based on counterfactual intuition,
namely by implicitly comparing a certain effect (e.g., the deci-
sion of a classifier) against the absence of the effect. IG
models such an “absence” using a single baseline input. In
other words, we interpret the IG value φm as the importance
value of the mth input in moving the confidence relative
to the same class with the baseline as input (along the i th

dimension for an input). Accordingly, IG is obtained by (a)
considering the straightline path from the baseline (x ′) to
the input (x), (b) computing the gradients at all points along
the path and (c) cumulating them. Hence, given an input
x = {x1, . . . , xM } ∈ R

M , the “effect” φm of each input
xm is given by:

φm(x ) =
(
xm − x ′m

) ×
∫ 1

α=0

∂pi
(
x ′ + α

(
x − x ′))

∂xm
dα (3)

According to the completeness axiom, all the effects add up
to the difference between the output of the model relative to
the i th class, pi (x ), at the input x and the baseline x ′:

M∑

m=1

φm (x ) = pi (x )− pi
(
x ′) (4)

Other axioms satisfied by this technique are: (i) sensitivity–
for every input and baseline that differ in one feature but have
different predictions, the differing feature should be given a

3In our previous work [30], we have experimentally proven that only a
negligible discrepancy (always lower than 1%) exists.

non-zero effect and (ii) implementation invariance–the effects
for two functionally-equivalent networks4 are always identical.

3) From Local to Global Explanations: Hereinafter, Deep
SHAP and IG methods are used to evaluate the (relative)
importance of input data extracted from raw traffic (see
Section IV for details) of a given traffic object when perform-
ing a certain TC task.5 Therefore, to explain the predictive
behavior of DL-based traffic classifiers, the prediction model
f (x) is chosen as the soft-output associated with the i th class
(regardless of the specific task considered), i.e., pi (x ). Hence,
we interpret the Deep SHAP or IG φm as the importance value
of the mth input in forming the confidence pi associated with
labeling the traffic sample (whose overall input is x) with the
i th class.

It is worth noticing that φm can be also negative.
Consequently, an importance value can be interpreted as
follows: positive (negative) values increase (decrease) the con-
fidence pi (x ) in the classification of the i th class w.r.t. its
average E{pi} or baseline pi (x

′) value for Deep SHAP or
IG, respectively. In more detail, for Deep SHAP, the sum of
the importance values equals the considered soft-output value
(pi (x )) minus the so-called base output. The latter represents
the average of the same soft-output obtained in correspondence
of the samples associated with the background set. Herein,
for each traffic object, we focus on explaining the soft-output
associated with the predicted class p̂(x ), as this represents the
most relevant (and highest) output for a given TC task.

The additive form of employed methods enables the evalua-
tion of importance attributed to non-overlapping input subsets.
This investigation fits evaluating to which degree the different
modalities of a multimodal DL traffic classifier contribute to
the interpretation of the decisions made (on a given TC task).
Formally, we denote the input subsets associated with the P
modalities as x1, . . . ,xP , where x =

⋃P
p=1 xp . Then, to

quantify the importance of the pth modality to multimodal
TC effectiveness (we omit in what follows the index asso-
ciated with the v th task), we resort to a pooled importance
value φMp

. The latter represents the importance value of the
input subset xp (corresponding to the pth modality) in clas-
sifying the traffic object associated with the overall input x
with the label �̂. The pooled importance value is obtained as
φMp

�
∑

m∈Mp
φm , where Mp denotes the index set asso-

ciated with the pth input subset within x, and its interpretation
with is analogous to that of the unpooled value φm .

On the other hand, to focus on a given modality and assess
the related importance contribution of each individual input,
we consider the stub output associated with the pth modality
as our f (·) only depending on xp . In such a way, we can
exclusively focus on the behavior of the pth single-modality
branch, namely before the combined effect of intermediate
fusion achieved by the shared-representation layers. This pro-
cedure isolates the interacting effect of other modalities on

4Two functionally-equivalent networks have the same output for all inputs,
despite different implementations.

5To simplify the notation, in the following, we avoid explicitly indicating
the v th task considered. Indeed, all the considerations are valid for all the
TC tasks constituting our multitask formulation.
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the pth modality and permits per-modality interpretation. The
(isolated) importance values associated with the input subset
xp (feeding the pth modality) are represented by the impor-

tance values φ
(p)
m , where m = 1, . . . , |Mp |. In the latter case,

before proceeding to the calculation of the importance values,
we perform an additional fine-tuning of both single-modality
branches topped with the stubs—which follows the conven-
tional pre-training and fine-tuning phases performed to train
the classifiers based on the DISTILLER framework. This fur-
ther step does not affect the performance of classifiers but it
is required to update the stub weights to reflect on them the
changes made to the rest of the DL architecture during the
(conventional) fine-tuning phase (see Section III-A).

Notably, a soft-output can assume a range of different val-
ues. Accordingly, the absolute importance of the mth input
may differ from sample to sample. Therefore, once we have
obtained a local explanation for a single instance, our proposed
global explanation approach relies on aggregating explana-
tions over different samples x1, . . . ,xN . The aggregation step
is carried out on normalized importance values, obtained by
dividing each value by their overall sum, namely:

φ̃m � φm/

M∑

m=1

φm . (5)

Considering φ̃m allows focusing on the relative importance of
each input (indeed, for each sample, the sum of the importance
values equals one). Additionally, as in [28], [30], we aggregate
only on correctly-classified samples to focus on the correct
behavior of considered classifiers and to allow to interpret their
counter-intuitive (while right) decisions a posteriori.

The above methodology for interpreting the behavior of
multimodal multitask DL traffic classifiers will be applied
to the models based on DISTILLER framework described
in Section III-A. Specifically, to obtain the global explana-
tions pertaining to different granularities, we will consider
the following views of aggregation: (i) over the whole ISCX
VPN-NONVPN dataset and (ii) related to certain classes of
a given task (e.g., P2P, FTPS). Nevertheless, we underline
that the proposed interpretability approach is general and can
be potentially applied to any multitask and/or multimodal
DL-based architecture exploited for TC.

C. Calibration in Multitask Deep Learning

As discussed in Section II, it is of paramount importance
to assess the reliability of (traffic) classifiers, which is one
of the considered pillars of XAI. Specifically, we evaluate
the reliability of a classifier in providing TC decisions with
high confidence (or not), namely if they are calibrated (or
not). Additionally, given the multitask nature of traffic clas-
sifiers considered, we assess how reliability on a given task
(i.e., on a specific network visibility problem) is affected by
correct/wrong decisions on other tasks.

Formally, given the generic input sample x fed to the mul-
titask DL traffic classifier, we investigate the reliability of the
whole confidence vector (i.e., pv (x ) = pv1 (x ), . . . , p

v
Lv

(x ))
and of the confidence associated to the predicted class (i.e.,

p̂v (x ) = maxi=1,...,Lv
pvi (x )) when solving the v th task. In

detail, a confidence-calibrated multitask classifier is such that
for each sample, the confidence of a prediction p̂v related to
the v th task equals Pr{�̂v = �v | p̂v}, where �v is the actual
class and �̂v is the predicted one. On the other hand, a miscali-
brated classifier returns excessively optimistic (or pessimistic)
confidence outputs associated with its decisions.

To illustrate this property when varying p̂v , we exploit the
reliability diagrams [47], which depict the accuracy as a func-
tion of the confidence (i.e., Pr{�̂v = �v | p̂v} vs. p̂v ) for each
of the V different tasks. The so-obtained diagram is com-
monly compared with the ideal Pr{�̂v = �v | p̂v} = p̂v identity
line: a perfectly-calibrated classifier has a reliability diagram
corresponding to the identity function. Going into detail, a
reliability diagram is obtained by partitioning the predictions
into M equally-spaced bins (with width 1/M) and calculat-
ing the accuracy of each bin. Let Bm be the set of evaluated
samples such that the confidence associated with the predicted
class falls into the range Im � (m−1

M ; m
M ], the corresponding

bin-accuracy equals:

acc(Bm ) = |Bm |−1
∑

n∈Bm

1
(
�̂v (n) = �v (n)

)
(6)

where �v (n) and �̂v (n) � argmaxi=1,...,Lv
pvi (n) are the

true and predicted labels of the v th task for the nth sample,
respectively. Confidence values range in the interval [1/Lv , 1],
where Lv is the number of classes of the v th TC task. Hence,
the starting point of the confidence interval is 1/Lv .

We complement the reliability diagrams with the Expected
Calibration Error (ECE), a concise metric measuring the
deviation from a perfect calibration. The ECE for the v th

task is defined as Ep̂v {|Pr{�̂v = �v | p̂v} − p̂v |} and
expresses the expected absolute deviation between confi-
dence and confidence-conditional accuracy. We approximately
calculate it using the formula:

ECE ≈
M∑

m=1

( |Bm | /N ) |acc(Bm )− conf(Bm )| (7)

which depends on the total number of tested samples N
and the confidence averaged within the bin Bm , obtained
as conf(Bm ) = |Bm |−1 ∑

n∈Bm
p̂v (n). In the last term

p̂v (n) � maxi=1,...,Lv
pvi (n) denotes the predicted confi-

dence of the v th task for the nth sample.
In what follows, other than analyzing the calibration of each

TC task separately, we also investigate how the reliability of
a task is affected by the other tasks. To do so, we generalize
the above concepts to the task-conditional reliability diagram
(Pr{�̂v = �v | p̂v , tsk} vs. p̂v ) and task-conditional ECE
(Ep̂v | tsk{|Pr{�̂v = �v | p̂v , tsk} − p̂v |}), where tsk denotes
the generic task-conditional intersection of classification
events on the other tasks, defined as:

tsk �
⋂

v�=1,...,V ; v� �=v

(
�̂v

� =
�= �v

�
)

(8)

The above notation takes into account compactly all the com-
binations of correct (=) and wrong ( �=) classification events
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on all the tasks except v . Clearly, the task-conditional relia-
bility diagram and ECE can be both approximated similarly
as the unconditional case. Task-conditional calibration anal-
ysis is useful in multitask DL traffic classifiers as it allows
understanding if (and, in affirmative case how much) soft-
outputs may become over-optimistic (or over-pessimistic) due
to a correct/wrong decision on a related network visibility task.

To improve the calibration (and consequently the reliabil-
ity) of a DL traffic classifier we resort to the label smoothing6

technique which is a type of loss regularization aiming at
improving the generalization ability of DL models and reduc-
ing an overly high prediction confidence [49]. More in detail,
during the training phase, the label smoothing dictates that the
cross-entropy loss minimizes the prediction w.r.t. a smoothed
one-hot representation of the ground truth for the v th task
�v (n), computed as

tv ls(n) = (1− α) tv (n) +
α

Lv
1Lv

(9)

where tv (n) �
[
tv1 (n) · · · tvLv

(n)
]T

is the one-hot rep-
resentation of the label �v (n). The smoothing parameter α
defines the amount of uncertainty enforced on the ground
truth, with α → 0 collapsing to the usual non-smoothed
cross-entropy-based training procedure.

D. Deep Learning Model Compression

As mentioned earlier, another key objective of our analysis
is to assist model refinement to enable the deployment of DL
architectures in resource-constrained environments such as on
network devices. This is also one of the main reasons underly-
ing the design of a (single) multitask DL architecture to solve
multiple related TC tasks [11]. Specifically, we aim at com-
pressing (multitask) DL models while limiting any potential
loss in model “quality” (in terms of TC performance and cali-
bration on all the tasks). The techniques we have individually
considered for performing such model compression are prun-
ing, quantization and knowledge distillation [52]. Moreover,
we investigate the results obtained when applying quantiza-
tion to a pruned model. Compression techniques considered
are briefly described in the following.

1) Knowledge Distillation: it has been initially proposed
for compressing the knowledge of an ensemble of models into
a single one [53]. By extension, the same methodology can be
applied to train a smaller model (“the student”) to imitate the
(soft) predictions of a larger (and more accurate) pre-trained
model (“the teacher”).

The underlying idea is to exploit the soft outputs of the
teacher model to train the student for capitalizing on the high
informative value of soft outputs in combination with the com-
mon hard decisions. Indeed, to attain the best performance, a
balance—expressed by a λ factor—between two loss functions

6We have also tried to employ the focal loss (in place of the cross-entropy
loss) function which is commonly used to deal with class imbalance, but
that can be leveraged also to improve calibration by capitalizing its implicit
regularization properties [30]. Unfortunately, using the focal loss (even in an
optimized fashion) we have attained a notable deterioration of performance,
which majorly impacts the hardest TC task. Moreover, the results (whose
details are omitted for brevity) suggest its weaker impact on calibration when
compared with label smoothing.

should be reached, taking into account both soft and hard out-
comes. In detail, such loss functions are: (i) the cross-entropy
between one-hot encoded labels and student hard decisions and
(ii) the cross-entropy7 between teacher and student soft out-
puts. To effectively convey more and even better information
to the student, the soft outputs and hard decisions are obtained
from the logits scaled by a factor T, called temperature. The
data used to train the student model is the so-called transfer
set: in this work, we make the common choice of using the
entire training set. Moreover, we train the student model for as
many epochs as the teacher model since longer training should
be beneficial for performance [55].

Since both the teacher and student architectures are based
on the DISTILLER framework, we apply knowledge distillation
to both pre-training and fine-tuning phases. Hence, to distill
knowledge from the single-modality branches during their pre-
training, we consider the stub outputs of the teacher model to
obtain its hard and soft outcomes.8

2) Pruning: it involves purging connections between neu-
rons or some neurons altogether, that contribute less to
the performance of the model. This procedure potentially
improves the inference time and energy efficiency of mod-
els having sparse connection matrices: hence it is expected
to work well with DL-based traffic classifiers. In this work,
we exploit the gradual pruning approach [56], in which the
sparsity increases from an initial value Si (usually zero) to a
final value Sf , over a span of n pruning steps. In detail, this
method introduces a binary mask variable in each layer to be
pruned, having the same size and shape of the layer weights,
and specifying the weights that contribute to the forward exe-
cution of the optimization procedure. The aim is to mask to
zero the smallest magnitude weights until a specified sparsity
level Sf is reached: zeroed weights do not get updated in the
back-propagation step. In our analyses, pruning is applied to
either (i) an already-trained model or (ii) to a model to be
trained (i.e., within the training phase).

3) Quantization: it approximates a DL model that employs
floating-point values with a model using lower precision data-
types for storing model weights and performing computation.
As a result, the memory requirements and computing costs
of the quantized model are drastically reduced by limit-
ing the number of bits (viz. resolution) to represent each
trainable parameter. More specifically, we apply post-training
quantization [57] which is a desirable (and popular) compres-
sion strategy not requiring re-training of the DL model (or
access to the whole training set) and thus circumventing the
usual difficulties in performing such an activity (e.g., lack
of computing-resource or data). The simplest form of post-
training quantization statically approximates the weights of an
already-trained model, e.g., from 32-bit to 16-bit floating point
numbers (or to 8-bit precision integers).

7Other functions (e.g., Kullback–Leibler divergence or focal loss [54]) can
be also used for computing the loss between student and teacher soft outputs,
however, these functions lead to worse results than the common cross-entropy
loss function.

8We have also tested other scenarios performing distillation either only
during the pre-training or the sole fine-tuning, without substantial differences
in performance.
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IV. EXPERIMENTAL SETUP

This section describes the experimental setup considered
in this work. Specifically, in Section IV-A a brief descrip-
tion of the ISCX VPN-NONVPN dataset is provided. Then,
we introduce in Section IV-B the specific DL-based traffic
classifiers originating from the general DISTILLER framework
and the multitask baselines used for comparative performance.
Finally, in Section IV-C, we report implementation details for
reproducibility.

A. Dataset Description

For our experiments, we used the ISCX VPN-NONVPN
dataset [17] collected at the Canadian Institute for
Cybersecurity. It contains human-generated traffic related to
different traffic types and applications and collected through
sessions both regular and encapsulated over VPN. The dataset
is provided in raw (PCAP) format, and the ground-truth is
generated at trace-level: each PCAP trace corresponds to an
encapsulation technique (VPN or nonVPN), a traffic type
(6 classes), and a specific application (15 classes). For this
reason, it is possible to associate a three-view label (i.e., encap-
sulation, traffic type, and application) to any traffic object and
for each of them define three TC tasks to be tackled. As the
vast majority of papers tackling (multitask) TC works with
either unidirectional or bidirectional flows (viz. biflows), we
segment the raw traffic collected in the ISCX VPN-NONVPN
dataset in biflows. A biflow is defined as the set of packets shar-
ing the same quintuple (Src_IP, Src_Port, Dst_IP,
Dst_Port, L4 Protocol) where source and destination
IP addresses and ports of the quintuple can be swapped [1].

Notably, analyzing the dataset, we have found that ≈ 65% of
biflows extracted from ISCX VPN-NONVPN raw traffic data
have only one UDP packet with (Dst_IP, Dst_Port)
equal to (255.255.255.255, 10505). After further
inspection, we have found that these packets are network
broadcasts periodically sent by BlueStacks, an Android emula-
tor for PCs.9 Moreover, we also noted some biflows pertaining
to certain protocols (e.g., SNMP, Dropbox LanSync Protocol,
BOOTP) used in LANs for different purposes not strictly
related to the traffic types or applications constituting the
dataset. Therefore, as opposed to the other works leveraging
ISCX VPN-NONVPN as is, we carried out careful pre-
processing cleaning operations to remove this noisy traffic and
thus obtain more meaningful results.

As a consequence, the final dataset contains ≈ 10.5k biflows
whose distribution among the different classes for each task
is shown in Fig. 1. In the same figure we also highlight
(with different hatches) the portion of VPN and nonVPN
traffic for each class. For the applications, in almost all
the cases (12 out of 15), the traffic type is unique: Aim
and ICQ (100% Chat), Email (100% Email), Spotify,
Netflix, Vimeo, VoipBuster and YouTube (100%
Streaming), Torrent (100% P2P), FTPS, SFTP and
SCP (100% File Transfer). However, there are also
apps for which the situation is different as they represent a

9https://www.bluestacks.com/

Fig. 1. Number of per-class biflows for each ISCX VPN-nonVPN dataset
task. Hatches underline the number of nonVPN and VPN biflows for each
class.

mix of traffic types: Facebook (16% Chat, 84% VoIP),
Hangouts (28% Chat, 72% VoIP), Skype (8.4% Chat,
42.5% FileTransfer, 49.1% VoIP).

Finally, we also report (as a complementary viewpoint)
that the distribution of ISCX VPN-NONVPN in terms of
protocols10 is as follows: 33.76% TLS, 37.79% UDP:DATA,
15.23% HTTP, and the remaining 13.22% associated with
gQUIC, STUN, SSH, TCP:DATA, and other undetected pro-
tocols.11

B. Multitask Traffic Classifiers

Hereinafter, we describe the traffic classifiers we have inves-
tigated in this work, based on the general multimodal multitask
DISTILLER framework introduced in Section III-A, along with
the other baselines considered for performance comparison.
Given the ISCX VPN-NONVPN dataset, we tackle a multi-
task TC problem with V = 3 TC tasks: (T1) encapsulation
identification (L1 = 2 classes), (T2) traffic type recognition
(L2 = 6 classes), and (T3) application classification (L3 = 15
classes).

As mentioned in Section IV-A, aiming at a consistent com-
parison with the state-of-the-art, all considered models operate
with biflow traffic objects and use the same inputs. Specifically,
the latter are chosen among those proposed in the most related
(recent) literature based on a preliminary investigation (not
shown for brevity): we consider the first Nb bytes of transport-
layer payload arranged in byte-wise fashion (PAY input type)

10In detail, the Python wrappers PyShark (https://kiminewt.github.io/
pyshark) and Scapy (https://scapy.net/) were employed.

11TCP:DATA and UDP:DATA indicate that the payload of the correspond-
ing TCP or UDP packets, respectively, can not be identified more exactly (e.g.,
unavailable protocol dissector, non-standard ports used, missing beginning of
the communication).
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or informative unbiased fields extracted from the sequence of
the first Np packets (PSQ input type), namely (i) the number
of bytes in the transport-layer payload (PL), (ii) the direction
(DIR) ∈ {0, 1}, (iii) the TCP windows size (TCP_WS) equal to
0 for UDP packets, and (iv) the time elapsed since the arrival
of the previous packet, i.e., the inter-arrival time (IAT). More
in detail, we set Nb = 784 bytes and Np = 32 packets—by
truncating longer samples and zero-padding shorter ones—and
normalize both input data within [0, 1].12

We underline that we leverage neither biased inputs
(e.g., raw PCAP metadata encompassing timestamps or ad-
hoc IDs and other biased fields as local IP addresses
or source/destination ports) which could wrongly inflate
performance leading to misleading outcomes [1], nor
manually-extracted features (e.g., statistics extracted on the
sets of packet/payload lengths or inter-arrival times) to fully
exploit the benefits of DL, namely the possibility of working
directly with raw traffic significantly limiting human-expert
intervention. It is worth noting that PAY input could be possi-
bly affected by the ratio of cleartext data (e.g., encryption
based on TLS 1.2 vs. 1.3), while PSQ input by network-
specific conditions, application-specific behaviors, and OS-
specific patterns. Nevertheless, in this regard, XAI allows us to
trace back and evaluate the importance of each input (and even
part of it) and how importance can mutate as a result of envi-
ronmental fluctuations. On the other hand, both PAY and PSQ
input types are suited for “early” TC—as opposed to classifi-
cation decisions that need to wait for the whole traffic object
to be taken—and they refer to different levels of abstraction
(biflow vs. packet) and standpoints (encryption-dependent vs.
encryption-independent).

1) Distiller-Based Traffic Classifiers: All the classifiers
described hereinafter are designed according to the DISTILLER

general framework and trained based on the two-phase pro-
cedure illustrated in Section III-A. Our starting point is the
DISTILLER-ORIGINAL classifier we have firstly exploited
in [11]. DISTILLER-ORIGINAL is made of P = 2 single-
modality branches: the PAY-modality branch is fed with the
PAY input, while the PSQ-modality branch with the PSQ one.
The single-modality layers of the PAY-modality branch are two
1D convolutional layers (with 16 and 32 filters, respectively,
kernel size of 25, and unit stride), each followed by a 1D max-
pooling layer (with unit stride and spatial extent equal to 3)
and, finally, by one dense layer (with 128 neurons). The single-
modality layers of the PSQ-modality branch are instead a
bidirectional GRU (BiGRU with 64 units and return-sequences
behavior) and a dense layer (128 neurons). To capture the inter-
modality dependencies, the abstract features extracted by such
branches are fused using a concatenation layer and fed to a
shared-representation dense layer (with 128 neurons). The lat-
ter is then connected to V = 3 layers, each constituting one
task-specific dense layer (with 128 neurons), before perform-
ing the v th TC task via the corresponding softmax (i.e., a

12To properly exploit the Integrated Gradients technique (see Section III-B),
we need to distinguish actual from padded zeros. To this end, we add 1 to all
bytes of the PAY input before normalization (by dividing each byte by 256)
and zero-padding. Similarly, for the PSQ input, we constrain the quantile
transformer to map padding values to zeros.

TABLE II
VARIANTS OF DISTILLER-ORIGINAL INVESTIGATED IN THIS

WORK AND RELATED ENHANCEMENTS

dense layer with Lv neurons and softmax activation). Except
for the last softmax, all the layers are equipped with Rectifier
Linear Unit (ReLU) activations. To provide regularization and
avoid overfitting, a 20% dropout is applied after each dense
layer (including the concatenation one) and after flattening the
2D representation of both the stack of convolutional/pooling
layers and BiGRU.

Starting with this traffic classifier, in our analyses, we follow
a process of sequential improvement of the basic DISTILLER-
ORIGINAL architecture via various optimizations. All the
DISTILLER-based variants, along with their improvements,
are introduced throughout Section V and are summarized
in Tab. II. They are all trained via the two-phase proce-
dure involving the independent pre-training of single-modality
branches for 30 epochs each, and the successive fine-tuning
of the whole architecture for 40 epochs during which the
lowest two 1D convolutional (of PAY-modality) and BiGRU
(of PSQ-modality) layers are frozen. Specifically, pre-training
and fine-tuning minimize the respective multitask categorical
cross-entropy loss functions (set with a uniform allocation of
the preference weights, that is each per-task weight equals
1/3) via the standard ADAM optimizer (set with a batch size
of 50 samples). Finally, to further reduce the chance of over-
fitting, we apply the early-stopping technique by monitoring
the variation of the training accuracy.13

2) Multitask Traffic Classification Baselines: In the fol-
lowing, we provide some details on the baselines against
which we compare DISTILLER-based classifiers. We report in
parentheses the input with which we feed each baseline.

We have implemented a modified version—henceforth
named 2D-CNN (PAY)—of the multitask (single-modal)
architecture made of two 2D-CNN branches originally
presented in [40]. In its original formulation, this baseline
is fed with biased input data (i.e., raw PCAP formatted as
images) and characterized by an excessively ad-hoc structure.
We adapted it to our scenario by (i) feeding it with the unbi-
ased PAY input and (ii) considering a different task mapping

13The most common approach monitors early-stopping by means of a val-
idation set. Nevertheless, some classes in the training set (e.g., Aim, ICQ,
SFTP) have a reduced number of samples due to the class-imbalance inher-
ent in the ISCX VPN-NONVPN dataset (cf. Section IV-A) but also typical
of a real TC scenario. Therefore, using part of the training set for validation
could impair the performance associated with these minority classes. For this
reason, we use early-stopping on training data by evaluating the “knee” of
the training accuracy, and exiting when this condition is satisfied.
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to the two CNN-based branches, namely one binary (T1 -
Encapsulation) and two multi-class learning tasks (T2 - Traffic
Type and T3 - Application).

We have also extended three state-of-the-art DL-based
single-task traffic classifiers to the multitask setup, namely the
1D-CNN (PAY) architecture proposed in [37] and the LSTM
(PSQ) and HYBRID (PSQ) architectures proposed in [44].
The former encompasses two 1D convolutional layers and a
dense layer. The latter two are an LSTM and a hybrid cascade
of two 2D convolutional layers and an LSTM layer, respec-
tively. We have extended these single-task architectures by
replacing the last softmax with three separate softmax layers,
one for each task.

Finally, we compare DISTILLER-based classifiers with
five native multitask DL architectures proposed for TC:
two different (deep) MLP (PAY/PSQ) architectures adopted
in [12], [13] and the 1D-CNN (PSQ) proposed in [14]. For
the first two MLP baselines, we evaluate the performance with
PAY and PSQ input types, as in the reference works, they used
handcrafted PL/IAT stats as input. For the 1D-CNN (PSQ)
baseline, we exploit the best-performing PSQ input type [11],
as opposed to the original work in which the authors used a
subset of PSQ (signed PL and IAT) as input.

To be consistent with DISTILLER-based classifiers, all the
baselines are trained to minimize a multitask categorical
cross-entropy loss function set with a uniform allocation of
preference weights and using the ADAM optimizer and the
early-stopping technique to prevent overfitting. The maximum
number of training epochs is set to 100, corresponding to
the number of epochs obtained summing up those of pre-
training and fine-tuning stages of DISTILLER-based classifiers.
Other training parameters are set in accordance with the
recommendation provided in the respective original studies.

C. Implementation Details

To allow reproducibility, we provide specific imple-
mentation details on the whole experimental workbench.
All the APIs refer to Python (3.7) programming
language. Specifically, we exploit the DL models pro-
vided by Keras (https://keras.io) and TensorFlow 2
(https://www.tensorflow.org/), to implement, test, and cal-
ibrate the traffic classifiers described above. For pruning,
we leverage the TensorFlow Model Optimization
Toolkit, a suite of tools for optimizing ML and DL
models for deployment and execution. For quantization,
we exploit the functionalities provided by TensorFlow
Lite (https://www.tensorflow.org/lite) which enables
to convert TensorFlow models for the deployment on
lightweight devices. Also, we use the shap library
(https://github.com/slundberg/shap) to leverage its Deep
SHAP implementation and the open source Python library
Alibi (https://www.seldon.io/tech/products/alibi/) to
calculate the IG. Data pre- and post-processing opera-
tions have been performed mainly by means of numpy
(https://numpy.org/) and pandas (https://pandas.pydata.org/)
libraries. Finally, the graphical data representation has been
obtained using matplotlib (https://matplotlib.org/) and
seaborn (https://seaborn.pydata.org/) libraries.

All the experiments refer to the same hardware architecture:
an OpenStack virtual machine with 16 vCPUs and 32 GB of
RAM, and Ubuntu 16.04 (64 bit) operating system, running
on a physical server with 2 × Intel Xeon E5-4610v2 CPUs @
8 × 2.30 GHz and 64 GB of RAM. For the evaluation of (per-
epoch) training complexity of DL approaches, we computed
the execution times via time.process_time() to con-
sider only the actual runtime on the CPUs (i.e., in a sequential
fashion).

V. EXPERIMENTAL EVALUATION

This section reports the experimental evaluation performed
in this work. First, we introduce a new version of the classifier
(namely DISTILLER-EMBEDDINGS) by introducing trainable
embedding layers14 for both the modalities and a learning rate
scheduler.15 We compare its performance against some of the
state-of-the-art multitask traffic classifiers and analyze it in
depth w.r.t. the three TC tasks (Section V-A).

Then, in Section V-B we analyze the importance of the
traffic modalities used by the classifier, considering them both
together and separately. To this aim, we employ two well-
known techniques, namely Deep SHAP and IG. By leveraging
the median importance obtained with Deep SHAP for each
modality input, we perform an analysis to choose the most
appropriate input dimensions, discarding non-influential inputs
that do not help in classifying the instances (Section V-C).
In this way, we obtain another variant for the classifier, fed
with a subset of the original inputs, that is more suitable for
early classification (named for the above reason DISTILLER-
EARLIER).

In Section V-D, we assess and improve the calibration of
this by using label smoothing during the training phase, thus
achieving DISTILLER-CALIBRATED. We also analyze whether
and how calibration changes when considering some combi-
nations of instances that have been correctly or incorrectly
classified according to the three TC tasks.

Finally, in Section V-E, we compare different techniques
(e.g., knowledge distillation, pruning and quantization) to
define a lightweight architecture with similar performance
to the classifier optimized so far. With all these improve-
ments in place, we define DISTILLER-EVOLVED, which is
enhanced from different points of view: input size, calibration,
performance, and dimension.

To conclude our study, in Section V-F we provide an
interpretability analysis of DISTILLER-EVOLVED. Table II
summarizes the variants of DISTILLER-ORIGINAL that we
obtain in our study, with the characterizing enhancements. We
compare the different versions of DISTILLER-ORIGINAL in
Section V-G.

In all the following analyses, the performance evaluation
is based on a stratified ten-fold cross-validation. Indeed, the
latter represents a solid assessment setup since it keeps the
sample ratio among classes for each fold: in this case, since

14Each input element is embedded into a vector of dimension e = 10.
To reduce the training complexity, in the PSQ-modality we embed only the
number of bytes in transport-layer payload.

15The newly introduced learning rate scheduler implements an adaptive
learning rate which is halved every five epochs during both the pre-training
and the fine-tuning.
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TABLE III
COMPARISON OF DISTILLER-EMBEDDINGS (HIGHLIGHTED IN ORANGE) ACCURACY AND F-MEASURE WITH STATE-OF-THE-ART BASELINES.

RESULTS ARE IN THE FORMAT avg. (± std.) OBTAINED OVER 10-FOLDS. RANK IS BASED ON THE AVERAGE OF ALL

PERFORMANCE METRICS ON ALL THE TASKS. THE LAST ROW SHOWS DISTILLER-EMBEDDINGS GAIN [%]
ON THE OVERALL-BEST-BASELINE: DISTILLER-ORIGINAL (HIGHLIGHTED IN BLUE)

we are facing multiple TC tasks, the stratification is performed
herein on T3, representing the hardest task. Hence, we report
both the mean and the standard deviation of each performance
measure as a result of the evaluation on the ten different folds.

A. Performance Comparison With State-of-the-Art Baselines

In this section, we compare DISTILLER-EMBEDDINGS

against the considered baseline architectures w.r.t. the three
TC tasks considered. Table III summarizes the results in terms
of (i) Accuracy (i.e., the fraction of correctly classified biflows
over their total number) and (ii) F-measure, (which takes into
account recall and precision in a more concise way). In detail,
as we consider multi-class traffic classifiers, we employ their
arithmetically-averaged (viz. macro) versions.

Experimental results highlight that DISTILLER-
EMBEDDINGS performs better than all the considered
baselines according to both the considered performance
metrics. Indeed, it provides remarkable improvements w.r.t.
the best-performing baseline that is DISTILLER-ORIGINAL

in all the cases. More in detail, DISTILLER-EMBEDDINGS

reports performance improvements of 1.32% and 1.57% for
task T1, of 2.69% and 2.51% for task T2 and of 1.91%
and 1.45% for task T3 in terms of Accuracy and F-measure,
respectively. It is worth noting that the performance rank of
the architectures witnesses that multimodal approaches (i.e.,
DISTILLER-EMBEDDINGS and DISTILLER-ORIGINAL) are
able to achieve better performance as they capitalize on two
different views of traffic data. Generally speaking, results
highlight that classifiers based on the PAY input outperform
those exploiting PSQ input.

To understand the performance of DISTILLER-
EMBEDDINGS in more detail, we also investigate the
relationship among classification results on different tasks.
Hence, the bar plot in Fig. 2 reports the joint probability of
classification outcomes for the three tasks, with each outcome
being either correct (�) or wrong (×). For each probability,
we report the mean and standard deviation averaged over

Fig. 2. Detailed performance of DISTILLER-EMBEDDINGS. Error bars report
average standard deviation of the joint probability of classification outcomes
for V = 3 TC tasks: Encapsulation, Traffic Type, and Application (T1,T2,
and T3, respectively). Each outcome can be either correct (�) or wrong (×),
thus leading to 2V = 8 configurations.

the 10 folds. Results show that for most of the instances
(≈70%) DISTILLER-EMBEDDINGS succeeds in classifying
correctly on all the tasks simultaneously, i.e., (�,�,�), thus
allowing full network visibility. Moreover, it is evident that
the cases where the classifier is able to recognize the two
most difficult tasks (T2–Traffic Type and T3–Application)
while failing at the simplest one (T1–Encapsulation), i.e.,
(×,�,�), are very infrequent. In addition, the probability of
wrongly predicting all three tasks (×,×,×) is about twice
as high as the probability of identifying one of the two most
difficult tasks when the other two have not been correctly
classified, namely (×,×,�) or (×,�,×).

B. Interpretability Analysis

This section presents the interpretability analysis for
DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS to
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Fig. 3. Modality contributions of DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS with Deep SHAP (a, b) and IG (c, d) techniques. Normalized
importance ˜φMp

for both PAY-modality and PSQ-modality is reported for the three considered TC tasks. Whiskers show 5th and 95th percentiles.

highlight their differences in terms of performance explain-
ability when investigated with Deep SHAP or IG. In detail,
in Section V-B1 we assess the contribution of each modality
to compare their relative importance. Then, in Sections V-B2
and V-B3 we analyze in more detail PAY- and PSQ-
modalities.16

1) Contribution of the Modalities to Correct TC Decisions:
In Fig. 3, we investigate the (relative) contribution that PAY
and PSQ give to TC, focusing on DISTILLER-ORIGINAL

and DISTILLER-EMBEDDINGS and using both Deep SHAP
(Figs. 3(a) and 3(b)) and IG (Figs. 3(c) and 3(d)). We con-
sider the pooled Deep SHAP values and the pooled IG φ̃M for
each modality and for each of the three TC tasks. The corre-
sponding distributions (shown via boxplots) are then obtained
by selecting the correctly classified test samples of the whole
dataset and they refer to PAY-modality (red) and PSQ-modality
(green). Focusing on DISTILLER-ORIGINAL and Deep SHAP
(Fig. 3(a)), PAY-modality contributes with higher importance
values: the median value is higher than ≈ 65% for all the
considered TC tasks. The situation is very similar when con-
sidering the outcome of the analysis with IG (Figs. 3(c)), but
reporting lower values in absolute terms.

On the other hand, the results of the analysis are remarkably
different for DISTILLER-EMBEDDINGS (Figs. 3(b) and 3(d)).
Indeed, the differences among median values of pooled Deep
SHAP are less significant, with the two modalities contributing
almost equally to the model predictions. Specifically, for the
task T1 with both the techniques, we can observe that the
PSQ-modality median value exceeds that of the other modality.

16Implementation Details for Interpretability Methods: the baseline for
IG is set to all zero values for both modalities. Moreover, for DISTILLER-
ORIGINAL, we calculate IG w.r.t. the input layers. Conversely, for DISTILLER-
EMBEDDINGS, we calculate IG w.r.t. the embedding layer and then we sum
the attribution of each input’s vector representation [58]. Specifically, when
we investigate its PSQ-modality, we refer to the layer concatenating the output
of the embedding layer used for PL with the other fields (and then we isolate
its representations). Similarly, when we investigate the PAY-modality of the
same architecture, we refer to the output of the embedding layer. Conversely,
for Deep SHAP, not being based on a gradient definition, the effect is always
evaluated w.r.t. the original inputs.

In summary, regardless of the specific interpretability
technique adopted, DISTILLER-EMBEDDINGS results in a
more balanced importance between the two input modal-
ities w.r.t. DISTILLER-ORIGINAL. This can be attributed to
the addition of embedding layers to the basic architecture of
DISTILLER-ORIGINAL.

2) Interpretability of PAY-Modality: In this section, we
focus on providing global explanations for the PAY-modality
of DISTILLER-ORIGINAL and DISTILLER-EMBEDDINGS,
which rely on the first Nb = 784 transport-layer payload
bytes of each biflow. In the following, sample-wise posi-
tive and negative Deep SHAP values are highlighted with
red and blue colors, respectively. Also, for completeness, the
median importance value of each byte (over different samples)
is reported as a solid black line. This allows for highlight-
ing regions that are more consistently influential (if any) for
predictions. We conducted this analysis for each of the three
TC tasks.

When considering the traffic pertaining to the two
classes of task T 1 (i.e., VPN and non-VPN), clear influ-
ential regions can be hardly highlighted, regardless of the
classifier and the technique. This behavior results from the
fact that a mix of traffic generated by different applications
is found at this level, with biflows exposing dramatically
different characteristics.

Moving to task T2 (Traffic Type), for some classes the
situation appears to be clearer. In Fig. 4, we compare the
explanations obtained for the P2P traffic type as an explana-
tory example. We show the outcomes provided by Deep SHAP
and IG for both models. Looking at Figs. 4(a) and 4(b), relat-
ing to the explanations obtained with Deep SHAP, the first
100 bytes of the biflows result to be essential. The same con-
clusion can be drawn according to IG (Figs. 4(c) and 4(d)),
although the importance reports more extreme values and the
explanation is less clear overall. We can notice that the median
assumes exactly a zero value after 100 bytes (IG assigns
zero importance to the bytes with the same value of the
baseline). Comparing the two models, a more precise expla-
nation is obtained for DISTILLER-EMBEDDINGS (Figs. 4(b)
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Fig. 4. Importance for the inputs (transport-layer payload bytes) of PAY-modality. Exemplifying service type (T2): P2P.

and 4(d)), probably due to the “focusing effect” brought by
the embedding layer.

By inspecting the content of these biflows, the bytes
with higher importance values often correspond to strings
get_peers1 and info_hash20 which are typical of DHT
Protocol used by BitTorrent. These packets start with the
expression d1:ad2:id20 and have padding values bytes
in the final part. In the analyzed cases this padding receives
very low values differently from the initial ≈ 100 bytes.
Among Torrent biflows, there are also HTTP biflows (GET)
and for them, it is difficult to recognize consistently influential
regions.

For the task T 2, the importance peak is always found
in the first 100–200 bytes (even if it is less evident than in
Fig. 4 in some cases). As a notable exception, for the Email
class, there are a few groups of important bytes both in the
central and the last part of the considered portion of the biflow.

The same phenomenon occurs for the classes associ-
ated with the task T 3, with the exception of some apps
(including Email, Hangouts, SCP, Vimeo and YouTube)
which have groups of bytes of non-negligible importance in
addition to the initial ones. There are also other apps for
which we cannot generalize and identify the most influen-
tial regions. For such apps, this observation does not imply
that the first 100–200 bytes are not important, but that areas
with higher importance are more hardly identifiable. More
specifically, this occurs for some apps either having very
few correctly classified samples (such as ICQ and Aim) or
whose traffic is composed of different traffic types (such
as Skype, Facebook, and Hangouts). For instance, in
the latter case (e.g., Skype), the traffic mix corresponds to
8.4% Chat, 42.5% FileTransfer, and 49.1% VoIP (see
Section IV-A).

3) Interpretability of PSQ-Modality: Similarly to the
previous section, here we use the above-mentioned inter-
pretability techniques and investigate the importance of the
inputs associated with the PSQ-modality of DISTILLER-
ORIGINAL and DISTILLER-EMBEDDINGS, thus discussing the
branch fed with the 4 header fields extracted from the first
32 packets of each biflow. Hence, considering the importance
associated with these fields, the figures in the following show
(for some representative examples) the median importance val-
ues for each element of the 4 × 32 matrix used as input for
this modality.

First, when considering T 1 also the interpretation of
PSQ-modality is hard to understand, likely due to the mix
of traffic belonging to the related classes.

Moving to T2 and T3, often, the role of a field is not clearly
stated (with sequences having both elements assuming posi-
tive and negative importance). However, the two techniques
agree for most classes in identifying positive importance
for the PL field or the role (positive or negative) of specific
fields. IG often highlights as important a (limited) number of
packets that assume more extreme values in absolute terms
when compared with Deep SHAP.

When referring to the explanations obtained for DISTILLER-
EMBEDDINGS with Deep SHAP, the PL field always assumes
higher importance values for all the classes of both T 2
and T 3 tasks. Although the other fields assume lower impor-
tance values than PL, they are worthy of consideration as they
assume positive values.

Figure 5 reports interesting evidences for FTPS. Looking at
Figs. 5(a) and 5(b), it is evident that moving from DISTILLER-
ORIGINAL to DISTILLER-EMBEDDINGS, the importance is
much more concentrated on the PL field, which becomes the
most important field playing a fundamental role in the clas-
sification of the biflows of this application. Indeed, while the
various fields assume comparable values in Fig. 5(a), the PL
field assumes much higher median values for the DISTILLER-
EMBEDDINGS model (cf Fig. 5(b)). This result is justifiable
if we consider that the modification made to DISTILLER-
ORIGINAL for the PSQ-modality consists in introducing an
embedding level just for this field. This confirms that the
change made to the architecture has increased the expressive
power of the PL.

Although less clear, the same phenomenon stems out from
the analysis with IG (Figs. 5(c) and 5(d)). In fact, the impor-
tance of the DIR, IAT and TCP_WS fields is reduced in
the transition from DISTILLER-ORIGINAL to DISTILLER-
EMBEDDINGS and the very first elements of PL sequence
assume higher median values.

In general terms, the initial elements of the sequences
show higher values than the others (even if there are cases
where the trend is not always strictly decreasing).

From Fig. 5(b) we can notice that after the introduction of
embedding layers, the first packets have much higher impor-
tance than the following ones since the explanation provided
by Deep SHAP clearly shows a decreasing trend for the PL
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Fig. 5. Importance for fields and packets for FTPS app. Comparison of Deep SHAP and IG explanations for DISTILLER-ORIGINAL and DISTILLER-
EMBEDDINGS.

field. We can find this trend also for PL of the first packets in
Fig. 5(d). Furthermore, in IG explanations we have different
packets with a zero median value. This phenomenon can be
explained both by the fact that packets have decreasing impor-
tance and by the IG characteristic of assigning a value of zero
importance to packets with a padding value.

Notably, inspecting Fig. 5 both interpretability techniques
suggest that for the two architectures (above all for
DISTILLER-ORIGINAL) the DIR field assumes negative
importance values, potentially confusing the classifier. In con-
trast, the IAT field has positive values, although the median
values are not very high. Generally speaking, there can be no
total agreement for the other fields different from PL.

In conclusion, although the two techniques are based on
two different assumptions, they mostly agree in suggesting
the most important groups of bytes or packets for predictions,
albeit with some differences. Deep SHAP provides more stable
and limited (less extreme) values that are easier to visual-
ize and understand (and are in line with expectations, e.g.,
about the impact of the adoption of embedding). In fact, IG
explanations often result in a noisier and less clear importance
representation. While IG has the advantage of clearly report-
ing input regions that are not influential to prediction (e.g.,
padding) which are assigned a zero importance value by con-
struction, results show that Deep SHAP also clearly identifies
these regions (assigning minimal importance values). For these
reasons, we will refer to the Deep SHAP technique for the
considerations in the following sections.

C. Capitalizing on XAI to Choose Input Dimensionality

The analysis of the importance of each modality suggests
that the initial bytes and packets of each biflow are the most
important, despite some differences among traffic types and
applications. Starting from the observations above, we can
exploit this valuable information to improve the model by
selecting a subset of the original inputs, disregarding the
less influential ones. This analysis allows for optimizing the
architecture in a targeted way, avoiding the more onerous
sensitivity analysis that, considering the multimodal nature
of DISTILLER-EMBEDDINGS, requires the training of a DL
model for each combination of PAY and PSQ inputs.

Note that concerning the PSQ-modality, our aim is to reduce
the number of packets rather than the number of fields consid-
ered: while the PL field plays a crucial role in classification,
the importance of the other fields depends upon the specific
classes. Hence, considering them could still be beneficial for
predictions. Moreover, reducing the number of packets (instead
of their fields) is beneficial to reduce both the network training
time and the time needed to gather the relevant input to the
DL architecture (i.e., allowing earlier TC).

In order to identify where the inputs are to be trimmed,
we propose the XAI-driven optimization procedure that
follows. Since the importance of the considered inputs for
both modalities shows a decreasing trend, we identify as
more promising those inputs before the point of maximum
curvature of the median importance curve obtained for each
modality. In more detail, a single importance curve for
PSQ-modality is obtained by summing the median impor-
tance of the fields considered for each packet. We inter-
polate these curves (to mitigate their discontinuous trend)
and find the point of maximum curvature with the kneedle
algorithm [59].

Figure 6 reports the outcome of applying the above XAI-
driven optimization procedure for the three tasks to both
modalities. Specifically, the procedure highlights that the
initial ≈ 200 bytes and the first ≈ 10 packets are the most
influential for PAY-modality and PSQ-modality, respectively.
To exploit this outcome, we can conservatively define a con-
figuration that considers the first 256 bytes and the first 12
packets of each biflow as input for DISTILLER-EMBEDDINGS

to obtain input dimensions commonly exploited in recent
literature [29], [30], [38].

In order to evaluate these results, we compare them with
the indications provided via the mutual information, which is a
classic alternative method. Specifically, we measure the mutual
dependence between independent variables (the inputs of the
two modalities) w.r.t. the dependent variable (the actual label)
and assign a score accordingly. This method is used to obtain a
curve analogous to that obtained with the XAI-driven analysis,
thus to compute the point of maximal curvature accordingly.
The optimization based on mutual information (whose results
are omitted for brevity) turns out to be even more conser-
vative because recommends utilizing at least 300 bytes and
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Fig. 6. Median Importance of DISTILLER-EMBEDDINGS inputs for each TC task according to Deep SHAP. Figures (a–c) refer to PAY-modality, Figures (d–f)
to PSQ-modality. The colored line represents the interpolating polynomial (5th and 3rd degree, respectively) starting from the point of maximum median
importance. The dashed line shows the location of interpolating polynomial knee (point of maximum curvature).

Fig. 7. Sensitivity analysis results for DISTILLER-EMBEDDINGS: Figures (a-c) depict the F-measure for the three tasks versus (no. of bytes, no. packets).
The square with the solid line highlights the point identified with the XAI-driven method, whereas the one with the dotted line represents the configuration
found with the analysis based on mutual information. Similar results are observed with the accuracy (not shown, for brevity)

24 packets for all tasks, leading to a bigger architecture with
longer training times.

Both methods are validated against the resource-consuming
sensitivity analysis which explores all the combinations of val-
ues within the range of interest (i.e., a grid search). For this
analysis, we selected for the PAY-modality some values among
the most used in state-of-the-art classifiers (e.g., 128, 256,
576). In addition, from 64 to 320 bytes, we increase by 64
bytes the considered dimension both to take into account the
dimensions selected with mutual information and, above all, to
understand if the performance reflects the importance profile
obtained through Deep SHAP. For the PSQ-modality, we start
with 4 packets and increase the size by 4 until 32 (the initial
number of packets).

The heatmaps in Fig. 7 detail the performance (in terms of
F-measure) of the DISTILLER-EMBEDDINGS classifier with
the different combinations for the input size. For task T1, the
point identified by the XAI-driven procedure corresponds with
the best performance. For task T2, however, the configuration
suggested by the two methods provides similar performance,
comparable with the ones obtained with more bytes and packets.
For taskT3, the dimensions identified with our proposal provide
higher performance than those identified with the other method.
Actually, the highest performance corresponds with 576 bytes
and 24 packets, but, considering that the gain in performance
is not so high and the mean RTPE (Run Time Per-Epoch) is
much higher (≈ 37 seconds), the most convenient configuration
remains the one suggested by our proposed methods.

Indeed, reducing the inputs leads to a significant reduc-
tion in terms of mean RTPE: DISTILLER-EMBEDDINGS has a

mean RTPE of ≈ 50 seconds whereas the configuration sug-
gested by the proposed XAI-driven approach requires ≈ 21
seconds, i.e., a 58% decrease. Notably, considering fewer bytes
and packets also provides slight improvements for all three
tasks. In detail, concerning F-measure, we have improvements
of 0.39, 0.46, and 1.26 for the three TC tasks, respectively.

At the end of this analysis, we obtain an instance of
DISTILLER, which performs better and is more suitable
for early classification since it requires fewer packets to
provide the classification outcome. For this reason, we refer
to this new configuration as DISTILLER-EARLIER.

D. Calibration Analysis

In this section, we investigate the reliability of the TC
models. Specifically, we focus on assessing and enhanc-
ing the calibration of DISTILLER-EARLIER, as defined in
Section III-C. The assessment is performed based on the cal-
ibration analysis (reliability diagrams and ECE). On the other
hand, the calibration enhancement is pursued by investigat-
ing the benefits provided by the adoption of label smoothing
during the training phase of our classifier.

For the latter technique, we let the value of α (cf. Eq. (9))
vary in {0.0125, 0.025, 0.05, 0.075, 0.1}. In the configuration
with α = 0, the usual cross-entropy is employed (viz. without
label smoothing). Figure 8 shows the calibration performance
obtained when using label smoothing in terms of ECE.
Although a unimodal trend can be spotted for each task,
the illustration highlights that it is not possible to select a
unique value for the parameter α such as to provide the best
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Fig. 8. Calibration sensitivity analysis of DISTILLER-EARLIER in terms of
ECE. At the right of the dashed line, the best configuration is shown (i.e.,
with α = 0.025 for the task T1 and α = 0.05 for tasks T2 and T3). The
value of α providing the best calibration for each single task is highlighted
via a �.

TABLE IV
F-MEASURE EVALUATION OF DISTILLER-EARLIER VERSUS THE (LABEL)

SMOOTHING PARAMETER α. THE LAST ROW QUANTIFIES THE

F-MEASURE [%] DIFFERENCE BETWEEN DISTILLER-EARLIER

(α = 0) AND ITS BEST-CALIBRATED VERSION:
DISTILLER-CALIBRATED

calibration for all the three TC tasks. Hence, in order to define
a calibrated version of the architecture (namely, DISTILLER-
CALIBRATED) we set α to 0.025 for the binary task T1,
whereas this parameter is chosen equal to 0.05 for the other
two tasks (T2 and T3). The calibration figures obtained with
this combination of values are shown at the right of the dashed
line with a gray background.

By comparing the reliability diagrams of DISTILLER-
EARLIER and DISTILLER-CALIBRATED (not directly shown
for brevity) to understand the differences in terms of calibra-
tion, we can spot that DISTILLER-EARLIER is over-confident
in its predictions, especially for the (harder) tasks T2 and T3.
This phenomenon appears in a way lighter fashion when focus-
ing on DISTILLER-CALIBRATED which takes advantage of
label smoothing.

Conversely, in Tab. IV we focus on the classification
performance and report the assessment of the impact on F-
measure when employing label smoothing (with varying α).
The last row shows the difference between DISTILLER-
EARLIER (where label smoothing is not employed) and
DISTILLER-CALIBRATED. Notably, both versions of the clas-
sifier achieve comparable results. Hence, leveraging label
smoothing during the training can improve the calibra-
tion of the investigated multimodal multitask architecture,
without significant losses in performance (we even have
small improvements in some cases).

Finally, by focusing on DISTILLER-CALIBRATED, in Fig. 9
we report a task-conditional calibration analysis as described
in Section III-C. To this end, in Fig. 9(a) we depict the

task-conditional ECE of each task w.r.t. the four possible com-
binations of classification outcomes—namely, correct (�) or
wrong (×) prediction—on the other two tasks. For complete-
ness, the weighted average of the task-conditional ECEs for
each case (the first bar of each group) is also reported. By
looking at the results, for each task we can observe worse
calibration outcomes (i.e., a higher conditional ECE) for the
combinations involving at least one wrong decision on another
task, and especially when considering the instances misclassi-
fied for both the other two tasks (corresponding to a “?” and
two “×”). Indeed, for tasks T2 and T3, we have a similar
trend, with the worst calibration observed in correspondence
of the instances erroneously classified by all the other tasks.
Still, when there is only one task misclassification, T2 and T3

seem to be highly affected each other. Conversely, for task T1

we have a slightly different situation with calibration approxi-
mately the same when we consider instances misclassified on
both tasks T2 and T3 (? × ×) or only on task T2 (? × �).

To further deepen such an analysis, we inspect the task-
conditional reliability diagrams for task T2, referring to
(T1,T3) = (�,�), (T1,T3) = (×,�) and (T1,T3) =
(�,×) in Fig. 9(b), 9(c), and 9(d) respectively. We omit the
case (T1,T3) = (×,×) as this is less frequent (this gen-
erally applies to all the tasks considered) but also the case
where it is more expected to have a calibration degradation.
Overall, we can observe that we have an under-confident clas-
sifier when focusing on the instances correctly classified for
both the other two tasks (Fig. 9(b)). Conversely, a particu-
larly over-confident model is observed when the instances are
misclassified only on task T3 (Fig. 9(c)). Finally, the shift to
overconfidence is less apparent when misclassifications are on
task T1 (Fig. 9(d)). This again confirms the higher coupling
effect between T2 − T3, rather than T1 − T2.

E. Model Compression

This analysis aims at evaluating whether we can obtain a
lighter version of the architecture optimized so far using model
compression techniques (namely, knowledge distillation, prun-
ing, and quantization) with no significant loss in classification
performance and calibration. We highlight that this aspect is
particularly important for deployment in resource-constrained
environments. To fairly quantify the benefits achieved with the
techniques investigated, we refer to the memory occupation of
the model.17

To apply knowledge distillation, we consider DISTILLER-
CALIBRATED as the teacher model, and we define a
lightweight version of it as the student model, by halving
the number of filters in convolutional layers, the number of
units of dense and GRU layers, and the output dimension of
embedding layers.

We evaluate different combinations for T and λ parameters
(cf. Section III-D). The configuration which returns the best

17To appreciate the differences, we consider the size of the compressed
file (gzip) used to save each model. We cannot use the number of parame-
ters for comparison because it remains unchanged after compression (pruning
sets parameters to zero, while quantization uses different representations for
parameters).
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Fig. 9. Calibration analysis of DISTILLER-CALIBRATED in terms of task-conditional ECE (as affected by other two tasks) for all three TC tasks (a).
Task-conditional Reliability Diagrams for DISTILLER-CALIBRATED, referring to task T2, are reported in (b-d). In detail, figure (b) depicts the diagram when
instances are correctly classified on both tasks T1 and T3. Conversely, in figure (c) (resp. (d)) the diagram refers to instances correctly classified by T3
(resp. T1) but misclassified by T1 (resp. T3).

results is with T = 1 and λ = 0 (notably, in this configura-
tion the student model can rely only on the logits provided
by the teacher model and we use them as they are without
scaling them up). However, knowledge distillation does not
achieve satisfactory performance figures in the case investi-
gated: the performance of the student is not comparable to
that of the DISTILLER-CALIBRATED (especially for task T3,
where a 3.73% loss is experienced). Likely, the cause of this
result can be found in the fact that (i) either distillation usu-
ally assumed to be initialized with a model trained on a larger
balanced dataset [60] or (ii) the student model suffers from
the halving of parameters and has irretrievably lost the ability
to distinguish certain classes (especially those with few sam-
ples). In light of this last consideration, in future work, we
plan to more accurately design the student model.

Concerning pruning, a number of parameters have to be
tuned, including: (i) the number of epochs to perform the
additional training phase required to identify the weights to
be pruned, (ii) the value of the final sparsity; (iii) whether
initializing the model to prune with random weights or with
the weights of the model optimized so far (DISTILLER-
CALIBRATED)—with the latter approach being recommended
in the official documentation of the tfmot module. Hence
we performed an exhaustive experimental campaign18 (whose
results are not shown, for brevity) aimed at identifying the
setup leading to a pruned model whose performance is as
much as possible similar to the one of the not pruned
model. Results show that 20 epochs (6 epochs for each pre-
training phase and 8 for the fine-tuning one) are enough to
prune our already-trained model while keeping high classi-
fication performance, while with final sparsity values higher
than 0.6 classification performance starts decreasing. In such

18Number of epochs and final sparsity took values in {10, 20, 50, 100}
and {0.6, 0.7, 0.8, 0.9}, respectively.

a configuration, the pruned model is ≈ 50% lighter than
DISTILLER-CALIBRATED, and exhibits performance compa-
rable with the starting model in terms of both F-measure and
expected calibration error.

Finally, we have also evaluated quantization in two
configurations, transforming the architecture weights from
float32 to float16 and int8 representations, respec-
tively. Notably, this compression technique has the remarkable
advantage of being a post-training technique, i.e., does not
require any additional training phase. Quantization leads up to
a more than 70% occupation reduction (achieved when using
int8 representation). In our experimental campaigns, we have
also explored the compression figures achievable when com-
bining quantization and pruning (i.e., applying quantization
to an already-pruned model). In this case, the reduction is even
more significant (more than 85%).

Table V details the results of the experiments, reporting the
memory occupancy (averaged over the 10 folds) achieved via
each compression technique evaluated, together with classifi-
cation performance in terms of F-measure as well as the related
calibration figures.

Quantization produces compressed models with higher
reductions in size. In addition, as far as F-measure is
concerned, the performance of quantized models (whether
we prune or not the model) is very close to the orig-
inal. Although these observations might suggest quantiza-
tion as the best choice, when also considering calibration
the results in the Tab. V highlight that using quantization
(either with or without pruning) produces highly decali-
brated models. In more detail, reliability diagrams (not shown,
for brevity) witness that applying quantization results in
strongly under-calibrated classifiers for all three tasks, with
the confidence being lower than the accuracy for every bin
(similar observations can be made when considering int8
representation).



1286 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE V
OVERALL COMPARISON OF COMPRESSED MODELS. SIZE REFERS TO THE MEMORY NEEDED TO STORE EACH MODEL.

RESULTS ARE REPORTED IN TERMS OF CLASSIFICATION (F-MEASURE) AND CALIBRATION (ECE) PERFORMANCE,
AND ARE IN THE FORMAT avg. (± std.) OBTAINED OVER 10-FOLDS

Fig. 10. Comparison of Expected Calibration Error (ECE) against the size
of compressed models (only int8 quantization is shown).

Figure 10 compares the ECE against the size for some of
the compressed models discussed above. The inspection is
limited to DISTILLER-CALIBRATED and those models with an
F-measure drop ≤ 1.5%. Moreover, only the int8 quantiza-
tion is considered since it achieves a higher compression (with
similar calibration performance). Specifically, the three models
compared with DISTILLER-CALIBRATED are those obtained
after the application of (i) pruning, (ii) quantization, or (iii)
both techniques. It is evident that quantization allows a drastic
size reduction but, unfortunately, it also results in a substan-
tial increase in the ECE. As a result, both the architectures
where quantization is applied have similar representations and
are positioned in the top-left part of the graph where the size
is reduced, but the ECE becomes unacceptable. On the other
hand, with pruning we obtain a model whose size is about
≈ 50% less than the original model, keeping the calibration
performance almost unchanged. Indeed, its representation is
positioned in the same horizontal band identified by the cal-
ibration error of DISTILLER-CALIBRATED but in the central
part of the graph w.r.t. the model size axis.

Hence, in our sequential process, we select pruning as
the best compression technique, thus defining DISTILLER-
EVOLVED as the result of applying pruning to DISTILLER-
CALIBRATED and resulting in the model optimized along the
three objectives.

F. DISTILLER-EVOLVED Interpretability Analysis

In this section, we focus on the interpretability of
DISTILLER-EVOLVED via Deep SHAP.

Focusing on PAY-modality, we can say that the most crucial
region is not always the same for the various classes, confirm-
ing the importance of considering a value for Nb no less than
256 bytes. Indeed, when looking at task T2, the most signifi-
cant bytes are those in the range (50–150). On the other hand,
for P2P (Fig. 11(a)), the first 100 bytes are those with the
highest importance (same applies to DISTILLER-ORIGINAL,
as shown in Section V-B2), while for Email (Fig. 11(b)),
the significant bytes are those up to position 200. For task
T3, the bytes around position 100 are almost always the most
important, with the exception of isolated cases with few sam-
ples. In some cases, such as Facebook and Vimeo, the
region of highest importance extends to bytes around posi-
tion 175; for other classes (e.g., Email and SCP), one has to
go even further to consider all bytes with the highest median
importance.

Regarding PSQ-modality, the PL field remains the most
important field, while the others highlight lower values (posi-
tive in most of the cases). It may happen that they also assume
negative values, but in isolated cases and often for single
values of the sequence. Accordingly, they may help in classifi-
cation even if they contribute less to the output. Figures 11(c)
and 11(d) report the median importance for PSQ-modality for
two exemplary classes (FTPS and Chat).

Notably, Fig. 11(e) shows the median importance for either
modality and highlights how the PSQ-modality becomes the
most important for all three tasks after all the improvements.

G. Architecture Comparison

This section provides an overview of the performance
for all the architectures we have defined in our process of
sequential enhancement leading from DISTILLER-ORIGINAL

to DISTILLER-EVOLVED (cf. Tab. II). The radar plot in
Fig. 12 compares the five realizations based on DISTILLER

framework along the three dimensions of interest, reporting
the related memory occupation as well as the calibration
performance and the classification performance. Notably, the
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Fig. 11. Interpretability of DISTILLER-EVOLVED based on Deep SHAP.

latter is reported as its complement to 1 (1–F-measure) in order
to obtain a plot where smaller areas are associated with major
improvements.

First, we have obtained DISTILLER-EMBEDDINGS, which
capitalizes embedding layers and adaptive learning rate and
achieves better classification performance than DISTILLER-
ORIGINAL, but resulting in huge memory occupation. Then,
we have performed XAI-driven input optimization, thus defin-
ing DISTILLER-EARLIER, which reports better performance
(for all the dimensions of interest), in spite of being
able to provide classification verdicts after only 256 bytes
and 12 packets. To enhance the reliability of DISTILLER-
EARLIER, we have leveraged label smoothing and obtained
DISTILLER-CALIBRATED, which severely limits its calibra-
tion error trading this improvement for limited loss in clas-
sification performance. Finally, we focus on enhancing also
memory occupation by taking advantage of pruning. The
resulting DISTILLER-EVOLVED outperforms DISTILLER-
ORIGINAL in all the aspects of interest while paying
limited classification degradation (≈ 1% F-measure) w.r.t.
the other variants, but remarkably improving calibra-
tion and memory occupation as it achieves the best
performance figures for both.

Fig. 12. Comparison of the different DISTILLER versions obtained in
the sequential optimization process. Axes report Size, Calibration (ECET1,
ECET2, and ECET3), and Classification Performance (1 − FMT1,
1−FMT2, and 1−FMT3). Note that classification performance is reported
as the complement of F-measure to 1 so as to obtain smaller areas for better
models.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we exploited XAI as a Swiss Army Knife
aiming for (i) interpreting, (ii) improving, and (iii) making fea-
sible implementations of multimodal DL approaches that solve
multiple (visibility) TC tasks via multitask learning, focusing
on encrypted traffic. Pursuing these goals, we design, imple-
ment, and evaluate an evolved multimodal multitask DL traffic
classifier, attained in multiple refinement steps driven by XAI,
finally producing the DISTILLER-EVOLVED model, passing
through a number of stages, each associated with different
realizations of the DISTILLER framework.

Our evaluation was performed on the public ISCX VPN-
NONVPN dataset of human-generated traffic labeled according
to three different TC tasks, namely encapsulation (VPN-
encapsulated or not), traffic type (6 classes), and application
recognition (15 classes). We first showed that in all considered
tasks our initial proposal (i.e., DISTILLER-EMBEDDINGS)
outperforms several multitask DL-based traffic classifiers cho-
sen as baselines from the most relevant literature [12], [13],
[14], [37], [40], [44], including the previous state-of-the-
art version (i.e., DISTILLER-ORIGINAL) sketched from the
same general multimodal multitask framework [11]. Moreover,
we exploited two interpretability methods (i.e., Deep SHAP
and Integrated Gradients) to provide a global explanation
of the underlying rationale for each considered modality,
fed with transport-layer payload or fields extracted from
packet-sequences, respectively. We quantified the contribu-
tion of each modality in solving each task and underlined
how the payload still keeps high importance—despite the sig-
nificant amount of encrypted traffic—as well as the fields
extracted from the very first packets. Overall, DISTILLER-
EMBEDDINGS resulted in more balanced importance between
the two input modalities w.r.t. DISTILLER-ORIGINAL. Also,
generalized evidence depends on the combination of input
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type, task to be solved, and employed DL architecture. Driven
by interpretability outcomes, we designed a better perform-
ing and “earlier” version of our traffic classifier, namely
DISTILLER-EARLIER.

Such an optimized proposal was then investigated in terms
of reliability, namely how much we can trust its prediction
confidence, via calibration. Leveraging label smoothing we
designed the DISTILLER-CALIBRATED classifier that halves
the calibration error on all the three tasks w.r.t. DISTILLER-
EARLIER, obtaining a significant gain in reliability, without a
significant loss in performance.

Finally, we investigated three techniques to reduce the model
size aiming at improving its feasibility: knowledge distillation,
pruning, and quantization. Pruning turned out to be the best com-
pression technique and led us to the definition of DISTILLER-
EVOLVED which outperforms the DISTILLER-ORIGINAL start-
ing point in terms of all aspects of interest: performance,
interpretability, reliability, and memory occupation.

Future prospects of research will include (a) employing
other datasets to assess the generalizability of the proposed
approach by taking into account different network conditions,
applications, and operating systems; (b) taking advantage of
XAI approaches toward the capitalization of unlabeled data
via semi-supervised multitask learning; (c) the use of reli-
ability and interpretability techniques for the analysis and
improved design of hierarchically-arranged DL-based traffic
classifiers; (d) a robustness assessment of multitask DL-based
traffic classifiers to (possibly-multimodal) adversarial attacks;
(e) investigating the effect of high classifier reliability on open-
set TC (f) the design of (natively) self-explainable [32] and
lightweight DL traffic classifiers.
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