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Abstract— Objective: The tradeoff between calibration
effort and model performance still hinders the user
experience for steady-state visual evoked brain-computer
interfaces (SSVEP-BCI). To address this issue and improve
model generalizability, this work investigated the adapta-
tion from the cross-dataset model to avoid the training
process, while maintaining high prediction ability. Methods:
When a new subject enrolls, a group of user-independent
(UI) models is recommended as the representative from a
multi-source data pool. The representative model is then
augmented with online adaptation and transfer learning
techniques based on user-dependent (UD) data. The
proposed method is validated on both offline (N=55) and
online (N=12) experiments. Results: Compared with the
UD adaptation, the recommended representative model
relieved approximately 160 trials of calibration efforts for
a new user. In the online experiment, the time window
decreased from 2 s to 0.56±0.2 s, while maintaining high
prediction accuracy of 0.89-0.96. Finally, the proposed
method achieved the average information transfer rate (ITR)
of 243.49 bits/min, which is the highest ITR ever reported
in a complete calibration-free setting. The results of the
offline result were consistent with the online experiment.
Conclusion: Representatives can be recommended even
in a cross-subject/device/session situation. With the help
of represented UI data, the proposed method can achieve
sustained high performance without a training process.
Significance: This work provides an adaptive approach to
the transferable model for SSVEP-BCIs, enabling a more
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generalized, plug-and-play and high-performance BCI free
of calibrations.

Index Terms— User dependent BCI, user independent
BCI, cold start problem, adaptive BCI.

I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) is a human-
machine interface (HMI) type that enables human-

computer interaction by decoding intentions behind neural
signals. BCI based on EEG signals has dominated the field
owing to its non-invasive nature and ease of use. The paradigm
of EEG-based BCIs utilizes steady-state evoked potentials
(SSVEP) and has gained increasing attention mainly for its
high-speed performance. The SSVEP paradigm achieves target
discrimination by eliciting a response evoked by luminous
modulated flickers [1]. Currently, the SSVEP-based BCI can
achieve an information transfer rate of 325 bits/min, which is
mainly attributed to the efficient system design and decoding
algorithms like CCA and TRCA [2], [3].

However, the rising performance of decoding algorithms
requires balancing other parameters. Training algorithms
usually require high amounts of training data to render an
accurate, personalized model. During the training process,
the subjects are expected to follow the system instructions
to collect personal neural responses under the simulation
of different class flickers, hindering the free use of the
BCI system. Hence, these algorithms can be referred as
user-dependent (UD) [4]. The other type of method that
does not require training is called user-independent (UI).
The UI algorithms thus, rely on strong priors, such as the
standard sine/cosine functions or cross-subject data. These
types of methods show a significant reduction in the BCI
performance because the variabilities across subjects and other
experimental conditions are significant. Therefore, they cannot
be represented by a set of standard templates.

Consequently, the conflict between calibration effort and
system performance remains one of the most critical problems
in BCI research. The EEG variability has determined that
the classification model is and expected to when any
experimental condition (i.e., subjects, devices and sessions)
changes. Continuous efforts have been devoted to alleviating
the calibration effort while maintaining a decent decoding
accuracy. Two lines of approaches have proven to be effective.
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The first is called transfer learning techniques and aims to
minimize the distribution gap between well-labeled cross-
domain data. Several studies have confirmed that the cross-
condition SSVEP data can be informative [5], [6], [7]
and that the calibration effort is alleviated with domain
adaptation techniques [8], [9]. The second approach is called
adaptive learning, and can rectify the classification model
with incremental online data [5], [10]. Nevertheless, both
approaches have shortcomings. Transfer learning techniques
can only function when labeled data are collected, which
means they can alleviate the calibration burden but are not
free of it. Adaptive strategies can be calibration-free but still
require an initiation model. The consequential adaptive process
can be heavily affected by inaccurate and incomplete data
labeling, when adapting from random parameters. The so-
called weak labeling may yield unsatisfying results [11]. Thus,
both approaches may not provide a fully calibration-free BCI
experience with sustained high performance.

Similarly, the recommendation system, seeking to predict
the ‘preference’ a user would give to an item, can be
regarded as another HMI system [12]. The recommendation
system faces the mutual calibration problem. The same
problem has been termed as the Cold Start problem, which
challenges a system to provide personalized recommendations
without sufficient user-dependent information [13], [14].
Multiple strategies to mitigate this issue have been proposed
over the years. One of the most important solutions to
the Cold Start problem is to exploit inter-user knowledge.
Nevertheless, unlike inter-user knowledge problems in other
SSVEP research, this Cold Start problem solution strategy
tends to mitigate calibration efforts based only on similar
users. The inter-user similarity relationship helps maintain a
valid recommendation performance [15], [16].

Inspired by the solutions to the Cold Start problem, this
study proposed the Representative-based Cold Start (RCS)
method. The core of the RCS involves the employment
of transfer learning techniques and adaptation based on
representatives. The representatives are an ensemble of UI
users, whose data distribution would efficiently approximate
the new users. Additionally, the representatives are selected
from the pre-existing large-scale dataset with the distinct
subject, device and session variability. The representative is
suggested to own stronger transferability and thus higher
potential performance. The representative model is adapted
when online UD data is available to build a fully calibration-
free BCI.

II. METHOD

A. Algorithms Used to Fit UD/UI Models
The SSVEP discrimination algorithms can be generalized

into the template matching methods after spatially filtered
data [17]. Their purpose is to compute a set of optimal spatial
filters W to maximize the respective optimization goal. Then
the correlation coefficients between test data and the pre-
defined template are calculated as:

ρ( f )
= corr

(
WZ

TZ( f ), WX
T X( f )

)
(1)

TABLE I
LIST OF NOTATIONS

Fig. 1. Schematic flowchart of the RCS method:The proposed
method is devised into the recommendation and adaptation stages.
In recommendation stage, the ideal transferable UI representative is
recommended to substitute as adaptation initiation. The representative
model is further rectified by online UD adaptation in the adaptation
stage.

The classification is made based on the maximum index of
the correlation coefficient,

q = argmax ρ (2)

where ρ = {ρ1, · · · , ρN f }. Various template matching
algorithms differ in mainly two factors: templates and spatial
filters. The template Z( f ) can be extracted from various
sources and is the key to discriminating UD and UI models.
The UD model is dependent on calibration data Z( f )

= X( f )
.

The model is considered to be a UD model, if personal
specific knowledge X( f )

is needed, regardless of the form
of the applied algorithm. To substitute for calibration data,
the models can introduce a wide range of sources to replace
X( f )

. The most frequent category can be referential signal
Z( f )

= Y( f ):

Y i =


sin

(
2π fi tT )

cos
(
2π fi tT )
...

sin
(
2π Nh fi tT )

cos
(
2π Nh fi tT )



T

, t =
[
1/ fs, · · · , Np/ fs

]T (3)
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where fs is the sampling rate. Another frequently used
source is the cross-condition(inter-subject/session/device)
data: Z( f )

= χ ( f ). The cross-condition data can be actual
EEG data, and thus may be a more efficient UD knowledge
than Y( f ).

The spatial filters are the projection matrix calculated based
on the temporal template Z , which can potentially boost the
signal-to-noise ratio in regards to the original signal space.
This study deployed three spatial filtering algorithms, namely
FBCCA, TRCA and TRCA w/R.

1) FBCCA: As a classical calibration-free algorithm [2],
CCA takes standard templates Y as matching templates and
seeks a pair of spatial filters to maximize the weighted
correlation of WY

T Y( f ) and WX
T X. he weight vectors are

calculated by solving the optimization problem:

WY , W X = max
WY ,W X

E
[
WT

Y Y XTW X
]√

E
[
WT

Y YY TWY
]

E
[
WT

X X XTW X
] (4)

Based on the basic CCA method, FBCCA filters X into
Nband and perform CCA in each band. The correlation
within each band is the combined correlation according to:
ρ̃i =

∑Nband
n=1

(
n−1.25

+ 0.25
)
· ρk,i , where i = 1, · · · , N f .

2) Task-Related Component Analysis(TRCA): TRCA [3]
sets a different optimization goal, compared to FBCCA. With
the help of real multi-block SSVEP data, TRCA seeks a
series of spatial filters to maximize task-related component
consistency over trials. Thus, the optimization goal can be
translated as the maximization of inter-trial covariance after
applying the spatial filters as:

wT Sw =

Nt∑
h1,h2=1

Nch∑
h1 ̸=h2

w j1w j2 Cov
(

x (h1)
j1 (t), x (h2)

j2 (t)
)

(5)

where the h index representing the h1-th, h2-th trial. The
optimization problem is solved under the constraint of:

wT Qw =

Nch∑
j1, j2=1

w j1w j2 Cov
(
x j1(t), x j2(t)

)
(6)

Finally, the spatial filter can be solved from:

ŵ = arg max
w

wT Sw

wT Qw
(7)

The linear coefficient ŵ is obtained by eigendecomposition
of matrix Q−1S, where ŵ is the eigenvector that corresponds
to the biggest highest eigenvalue. Moreover, the simple TRCA
can be upgraded to an ensemble version. The multi-class
spatial filters are ensembled to utilize cross-class information
and boost discriminability. After applying the same filterbank
technique as in FBCCA, the ensembled spatial filter is:

W (n)
=

[
w

(n)
1 , w

(n)
2 , · · · , w

(m)
Nc

]
(8)

where i = 1, · · · , N f . The final predicted label is made by
Eq1 where Z = X , and WX = WZ = W .

Based on the basic ensemble-TRCA, the sine/cosine
reference knowledge of FBCCA is hereby used to boost
performance. Previous studies have demonstrated that the

knowledge of standard sine/cosine templates could also
contribute to discriminability. Hence, the final classification
is made by summation of the correlation coefficients of both
the FBCCA and TRCA methods as:

ρ = w1ρ1 + w2ρ2 (9)

where ρ1 and ρ2 denotes the correlation coefficients of
FBCCA and TRCA, respectively. The weight parameters w1 =

w2 = 1 are not optimized, but optimization is also possible for
performance enhancement. The combined algorithm is denoted
as TRCA w/R.

B. Model Confidence Estimation Based on Hypothesis
Testing

The model confidence evaluation techniques are crucial to
the proposed method. Confidence reflects the prediction ability
of the model and thus has already been used in various
SSVEP-based BCI studies, primarily in dynamic window
strategy [18], [19].

Similarly to previous studies, the confidence evaluation
method was constructed around correlation coefficients ρ.

Since all template matching methods are classified by
determining the biggest correlation coefficient ρq as the
predicted target, the predictive confidence of ρq was
investigated in specific in the hypothesis testing framework.

The original hypothesis by Yang et al., [20] was simplified
into two classes: H{q}, which means take the qth target as
result, while H{0} is the hypothesis to reject the assumed qth
as targets [18].

H{0}
: X = S{i}

+ W, i ̸= q, i = 1, · · · , N f

H{q}
: X = S{q}

+ W, i = q (10)

where Si represents the evoked response of ith target, and
W denotes background noise. Furthermore, the conditional
distribution is assumed to be a normal distribution:

p
(
ρ | H{ j}

)
∼ N

(
µ{ j}, σ

2
{ j}

)
To determine which to accept, a likelihood ratio test can

be performed over the two hypotheses: accept H0 if 3 > c
else reject, where 3 stands for the likelihood ratio over two
hypotheses:

3(ρ) =
L (ρ | H0)

L
(
ρ | Hq

) (11)

which is equivalent to testing t-statistic over ρ

T (ρ) =
ρ̄ − µ0

s/
√

n
> c∗ (12)

where c∗
=

√
(c − 1)(n − 1). This becomes a classical

Student’s t-test scenario. If H0 is accepted under c, the Type I
Error of H0 will be:

P (3 < c | H0) = α (13)

The Type I Error α is the conditional probability that the
current data is insufficient to render ρq as a result but still
makes a mistake and claimsHq . Since α reflects the prediction
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ability of the model over current data, γ = 1 − α can directly
be treated as the model confidence.

From another perspective, the model confidence evaluation
method is equivalent to performing a one-tail t-Test between
ρq and ρ̃q , where ρ̃q represents the remaining ρ excluding ρq .
If the model is confident enough, ρq should be significantly
higher than ρ̃q . This technique is easy to implement by any
statatistical toolbox. In this study, the python statsmodels
package was used to render α = t test_ind

(
ρq , ρ̃q , ‘larger ‘

)
.

1) Recommend Representatives: The foundation of the
proposed method is to recommend representatives without
class labels. Based on the model evaluation method mentioned
above, the theory, which was initially used in the dynamic
stopping strategy to assess transferability/similarity, can be
applied. If representatives exist, they can be recommended
according to α ranking without the requirement of labeled
data.

Specifically, during recommendation trials, α rankings are
updated until the top k UI models are consistent for m trials.
The initiation model will be trained by an ensemble of top k
UI data. If the ideal representative data is not decided until a
batch of 20 trials is finished, the top k candidates of the latest
trial are treated as final representatives.

2) Dynamic Window Over Batches: A distinguished supe-
riority of UD models over UI ones is that UD models can
maintain high prediction ability even under a short time
window of EEG data. Therefore, the Time Window (TW) can
be reduced to an ideal length as the adaptation progresses,
resulting in a greater Information Transfer Rate (ITR).
To apply the confidence evaluation in dynamic stoppings,
a unified threshold of α0 = 0.025 was set, under which the
model is confident enough to yield predicted results once
α < α0. A condition for TRCA (or TRCA w/R) is that it
should fit under templates with the same data length, so TW
was shrunk for each block instead of adjusting each trial.
This adjustment is a prominent distinction from other dynamic
strategies. Finally, the evaluation was made from 2 s to 0.4s
for every 0.2 s step, until α < α0 for each batch.

C. Representative-Based Cold Start (RCS) Method
The full procedure of the RCS scheme can be divided

into two stages, as seen in Fig1. The model is adapted for
X ∈ RN f ×NT ×NC ×NS when NT increases

1) Recommendation: The objective in this stage is to
recommend transferable representatives for ith subject
as quickly as possible. The recommendation is made
by sorting and ranking accumulated α based on
refrecommend. In this stage(NT <= 20), the predictions
are made via the FBCCA model. When representative
data χ i ∈ Rk×NT ×NC ×NS (k = 5) is determined, a TRCA
w/R model is fit by χ i .

2) Adaptation: The purpose of this stage is to modify
the representative model with incremental UD data. The
adaptation is conducted in a class-wise manner.

a) Fusion: Since all domain transfer techniques are
required for accurate estimation on the class-wise
template, the weak-labeled UD data X( f ) are

TABLE II
COMPARISON OF CALIBRATION-FREE METHODS

simply concatenated to χ
( f )
i as χ

( f )
i

⊕
X( f )

i . when
NT < 2. This stage is devised to boost performance
when UD data is insufficient.

b) Domain Adaptation: When X( f ) exceed two
trials, a transfer learning technique termed Least
Square Transformation (LST) [9] is performed to
minimize the distribution gap between χ

( f )
i and

X( f ).

P ( f )
= argmin p Tr

[
(X( f )

− pχ ( f ))(X( f )

− pχ ( f ))T
]

(14)

The optimization problem is solved by:

P ( f )
= X( f )

χ ( f )T
(
χ ( f )χ ( f )T

)−1
(15)

Finally, the representative data is transformed
according to:χ ′( f )

i = P ( f )χ
( f )
i . After adaptation,

a new TRCA w/R model is the concatenation of
two sources: χ ′

i
⊕

X i .
The trials are segmented into batches(NT = 20) for
dynamic stopping when implementing the RCS method.
The TW is shrunk monotonically for each batch based
on Section II-B.2

Two other calibration-free methods were used for compari-
son. The first is the FBCCA model, to be used as a UI baseline.
The other is Self-Adaptation (SA), which is another adaptive
method, as a UD baseline. The SA method differs from RCS
only in the representatives: only user-specific knowledge is
included to fit a TRCA w/R model. Most importantly, the UD
data is labeled by RCS for the SA method. This procedure is
performed to avoid catastrophic performance decline caused
by weak labeling. The comparison of the three approaches is
illustrated in Table II

D. Offline and Online Experiment
1) Data Pool: The data pool contained 55 participants,

35 from dataset I (the public benchmark dataset in [21]) and
the 20 from dataset II. Both datasets were acquired under
the classical 40-target SSVEP BCI speller experiment (see
[1], [21]). During the experiment, the subject was directed to
shift their gaze to a random cued target before stimulation
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started. The stimulation duration lasted 5 s, and once the
cue was shown, the screen was black for 0.5 s. The
visual stimulation was presented on a stimulator under
a 60 Hz refresh rate. The flicker layout remained the same
5 × 8 matrix, containing 40 characters. These targets follow
a JFPM coding rule, which comprises a series of flicker
frequencies ranging from 8 Hz to 15.8 Hz with an interval of
0.2 Hz. Aside from that, the initial phase ranged from 0 to 2 π

with a step of 0.5 π . Each share of data contained six
blocks and each block consisted of 40 trials covering all the
stimulation targets. Only the data in the occipital lobe (i.e.,
O1, Oz, O2, PO7, PO3, POz, PO4, PO8, Pz) were included
in further analysis.

The same visual paradigm was used in all experiments,
while the other parameters were varied. First, participants in
datasets I and II did not overlap. Second, the acquisition device
for dataset-I was the Synamps2 EEG system (Neuroscan,
Inc.), whereas a Brain AMP DC system (Brain Product)
was used in dataset II. The paradigm in dataset I was
presented on a 23.6-inch LCD monitor (Acer GD245 HQ),
while for dataset-II, the paradigm was presented on a 19-inch
(42 cm × 24 cm) projection screen using a ProPixx projector.

Thus, the entire data pool is considered as variable as
possible. Unlike the typical transfer learning studies where
only one aspect of the experiment is varied, multiple
conditions were varied simultaneously in this experiment.

2) Offline Experiment: The offline experiment was con-
ducted on every subject in the data pool. Each subject
was considered a new user for the system, meaning that
the representatives were recommended among the remaining
54 subjects. For one of the six cross-validations, five blocks of
SSVEP (200 trials in total) were treated like online incremental
data with unknown labels to simulate the free-spelling process.

3) Online Experiment: Twelve healthy subjects (six males
and six females) were recruited for the online experiment. All
subjects were required to sign the consent form approved by
the Research Ethics Committee of Tsinghua University.

The EEG data were acquired using a 9-channel montage
(O1, Oz, O2, PO7, PO3, POz, PO4, PO8, Pz) by a
Synamps2 EEG system (Neuroscan, Inc.) with a sampling
rate of 1000 Hz. The electrode impedance was reduced under
20 k�. All data were notch filtered at 50 Hz to exclude
power-line noises, then down-sampled to 250 Hz before
decoding. No extra operation was performed. Also, unlike
the prior studies, the stimulation programs were coded by
PsychoPy [22] in Python instead of Psychotoolbox [23].

The stimulus configuration and experimental design
remained consistent with the data pool. The 200-trial free-
spelling process consisted of five blocks. Each block was
segmented in two batches (NT = 20). The subjects were asked
to rest between batches until they felt ready to proceed. Prior
to the free-spelling process, a block of test data was collected
for evaluation.

4) Method Evaluation: The principle for method evaluation
was to measure model performance of the RCS, SA and
FBCCA models under the same experimental conditions,
including data length, calibration and test data. The following
procedures were followed during the experiment:

1) Scramble label: The labels were scrambled to fully
simulate a free spelling process, meaning data from the
same class may appear in successive order, and a “block”
may not cover all targets. Scrambled order is the only
way for a model to reflect real-life performance.

2) Complete test data: During each batch, the three
alternatives in Table II were evaluated on ITR and
accuracy on a separated test data, covering all the
classes. The ITR(in bits per minute, bpm) was computed
according to:

I T R = 60 ·
(
log2 M + P log2 P

+ (1 − P) log2
1 − P
M − 1

)
/T (16)

where M denotes the number of classes, P denotes
the accuracy, and T (in s) denotes the selection time,
including gaze time (TW) and gaze shift time(0.5 s).
This procedure was performed to avoid popularity bias,
meaning that the model can be biased over targets
that appear frequently, but has no discrimination ability
against the infrequent ones.

3) Same TW: In both online and offline experiments,
the evaluation was conducted during batch intervals
(20 trials). After each batch, the TW was shrunk
according to the proposed RCS method based on
Section II-B.2. The accuracies and ITRs were calculated
for every batch on the separated test data under the
same TW. In the offline experiment, the test data was
shuffled by 6-fold cross-validation, while in the online
experiment, the test data was collected before free-
spelling starts.

III. RESULT

A. Offline Experiment
1) Representative Model Performance: The cross-model

performance within the data pool was calculated to investigate
the feasibility of selecting cross-dataset models as represen-
tatives. Each cell in Figure 2A illustrates the TRCA model
accuracy (TW=2 s) for UD/UI test data. Row i of the matrix
represents the model performances on the test data of subject
i . The diagonal reflects the performance of the UD model
for each subject, which has a substantial advantage over UI
models. Nonetheless, the results confirmed the existence of
high-performance representatives for the majority of subjects
in the data pool, some of which matched the prediction ability
of the UD model. Thus, the results in Figure 2A confirmed that
cross-dataset SSVEP data shares similar distributions within
groups. It is plausible to modify representative models for a
swift transition towards UD models.

After confirming the existence of the representatives,
it remains to be clarified they can be recommended without
access to class labels. Figure 2B depicts the distributions of the
coefficients (summation over filterbanks) for all subjects under
two hypotheses. The shaded area shows the Type I Error for
the likelihood ratio test, representing the concurrent prediction
confidence level. The relationship between prediction accuracy
and α was then explored. The results in Figure 2C show
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Fig. 2. Cross-dataset performance: A. Cross model prediction in the
data pool. Cell (i, j) denotes the prediction accuracy of the TRCA model
(TW=1s) trained on the ith subject tested on jth subject. B. Coefficient
ρ under two hypotheses for all subjects. The shaded orange area
represents the Type I Error α. C. Cross model accuracy is correlated
with Type I Error.

a clear connection between Type I Error (average over test
set) and prediction accuracy for all subjects, which indicates
that recommending high-performance models according to
α is possible. Since indicator α is calculated based on
likelihood testing, no posterior class label is required during
the recommendation.

Moreover, the superiority of recommended UI models to
other adaptive initiation options remains to be explored.
One can naturally start the adaptation process on a
unified model trained on the entire data pool or with the
standard template(FBCCA). In Figure 3D, these alternatives
are compared. The recommended model was trained on the
top k (k=5) transferable UD data, whereas the unified model
was trained on the entire data set (excluding UD data, k=54).
Both models were fit with the TRCA algorithm. The average
accuracies are 0.79±0.18, 0.55±0.26, 0.59±0.27 for the
representative model, unified model and FBCCA, respectively
(TW=1 s). The one-way ANOVA results showed a statistically
significant distinction between these three models under
TW<1 s. The post-hoc paired t-test also revealed that the
representative model performance is significantly higher than
the two other models (p < 0.001 with Bonferroni correction).
The results show that small groups of representative data
outperform the unified UI data with large data sizes when
building a UI model under the state-of-the-art algorithm.
Namely, it’s wise to learn from ‘the better few’.

Last, the number of trials (m) required to produce
UI data with acceptable performance was considered. The
upper panel in Fig 3C illustrates the recommended model
accuracy as the number of recommendation trials increases
(TW = 2 s). After about five trials of unlabeled UD data,
stable recommendations are obtained, indicating that the
proposed method can be rapidly initiated when free-spelling
begins. For another aspect, we investigate the impact of the
number of representatives (k) on the recommended model
performance. As Fig 3C showed, around 5 UI subject need
to be ensembled to maintain representativeness. Either too
large or too small of the representatives can cause a decrease
in model performance. Although the initiation TW=2 s was
chosen in this study to achieve a stable transition from the UI
to UD model, initiation TW can be adjusted according to the
recommendation efficiency.

The findings suggest that the transferability relationship lies
in the data pool. The representatives can be recommended
rapidly based on α.

2) Cold Start Methods Comparison: The adaptation boost
is initially reflected in the reduction of the optimal window.
The link between TW and α was investigated by calculating
the mean α on the test data for each adaptation batch.
As Fig 3B shown, under TRCA w/R (blue line), α can
drop drastically as TW increases. This tendency indicates
that α can be an eligible indicator for the dynamic window
strategy. The shading from green to blue signifies the adaption
process over batches. When a fixed threshold α0 is set, the
optimal TW can be reduced with the increasing proportion of
UD data. The choice of the threshold α0 will consequently
affect the optimal window. An inappropriate threshold either
overestimates or underestimates the optimal time window.
Moreover, Fig 3B also highlights the essential contribution
of both standard templates and actual EEG data. The orange
and green lines indicate the α trend for EEG data alone and
standard templates over adaption. The Type I Error measured
using the EEG template is substantially lower than using
the standard template, especially at short TW, supporting
the requirement of actual EEG data to build an effective
classification model. However, the best trend was obtained by
integrating EEG and standard templates (blue line). Under the
combined knowledge of both templates, a shorter TW may be
applied at a specified threshold for classification. In the offline
experiment, the TW was reduced from 2 s to 0.82±0.42 s on
average (α=0.025).

The accuracy and ITR of three strategies are compared
in Figure 3A. The shaded background is mapped to the
TW in each batch. Without the knowledge of UD data,
FBCCA accuracy declines significantly from 0.86±0.2 to
0.33±0.17 during this process. Next, the main objective is
to assess whether the representative model can contribute
substantially to the adaptive process. The results in Figure 3A
support the contribution of the representative model: the
prediction accuracy on test data remained high, even
when the TW was reduced. On the contrary, without
the contribution of the representative model, the accuracy
of the SA model decreased when calibration data was
insufficient. With the accumulation of weak-labeled UD data,



SHI et al.: REPRESENTATIVE-BASED COLD START FOR ADAPTIVE SSVEP-BCI 1527

Fig. 3. Offline experiment results: A.Prediction accuracy and ITR on test data during the adaptation process. The background color represents the
TW in each batch. Bars on top denote significance level (p < 0.001) by paired t-test between RCS and SA. B.α-TW relations. Three lines represent
the average α tendency over adaptation batches, and background colors from blue to green signify the experiment process with the increase of
online trials. C. Up:Num. of trials with the representative model accuracy(TW=2 s in this study); Below: Num of representatives on the impact of UI
model performance D.Model performances of multiple methods before and after adaptation. The significance level is calculated by one-way ANOVA
(TW). E.ITR comparison at TW=1s, tested by post-hoc t-Tsest.

the prediction accuracy steadily increased after the 60th
trial. The accuracies at 60th trial (TW=1±0.45 s) were
0.86±0.13 and 0.41±0.18 for with/without representative
model, respectively. The two adaptive methods can achieve
approximate predictability ability under the 160th trial. This
is consistent with former studies: at least four blocks of
UD data need to be collected to build an ideal classification
model. Consequently, although both models increased their
performance, the adaptation based on the representative model
outperformed SA throughout the experiment. The final ITRs
of adaptation were 206.08 bpm and 200.20 bpm for RCS and
SA. The t-test confirmed the significant difference between
the two adaptive methods (p < 0.001).

As adaptation and transfer learning have proved beneficial
to BCI performance boosting [5], [7], [10], that transfer is
further elucidated in this study and the representative-based
model can reduce the trial calibration effort by 8̃0% (160/200).
Therefore, it is possible to design calibration-free SSVEP BCI
with sustained high performance.

3) Convergence of Weak Models: After 200 adaptation
trials, the ability of the adapted model to converge to the
conventional supervised model needs to be assessed. Similarly
to the previous sections, the final weak labeled models were
examined with the standard UD model on the separated
test data (TW=0.2 to 1 s). The TRCA w/R algorithm was

used to build these models. The main distinction between
these models is that the adapted ones are trained on weak
labels, whereas the supervised ones are considered perfectly
labeled. As Figure 3D and E shown, the supervised model
outscored the weakly supervised models by a small margin
on average. The ANOVA test showed a significant difference
between the three alternatives under TW=0.8, 1 s (p <

0.05). The highest ITR was obtained under TW=0.6 s.
The peak ITRs were 206±79.3 bpm, 196.4±78.8 bpm,
and 193.4±83.5 bpm for standard supervised, RCS and SA
models, respectively. A post-hoc paired t-test was additionally
performed among the pairs of each group (TW=1 s).
The results showed that the standard UD model remained
significantly more advanced than the two weak labeled models
(p < 0.001 with Bonferroni correction). The ITR performance
of RCS is slightly lower in Section III-A.2, which can
be attribute to the conduction of LST incrementally or all
at once.

Although adaptation can significantly improve model
performance, the inaccurate and incomplete weak labels still
have a noticeable impact on the ultimate model prediction. The
adaptation can only approximately converge to the ideal one.
Moreover, the knowledge of representative data contributes
marginally to UD data, indicating that SSVEP data is still
highly personalized.
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TABLE III
METHOD COMPARASION BEFORE AND

AFTER COMPARASION (TW=1s)

B. Online Performance
Figure 4 demonstrates the online experiment results at

averaged and individual levels. Online experiments exhibited
a similar tendency to offline results. The optimal TW was
reduced from 2 s to 0.56 s on the averaged level. Thus, ITR
was increased from 117.87 bpm to 243.49 bpm for the RCS
method. Nevertheless, a significant difference over SA was
only detected for the first two blocks (p < 0.001). This means
that the representative model is statistically effective in the
first 80 trials instead of throughout the entire experiment as
in the offline experiment. Multiple reasons can lead to this,
including the lack of extensive group validation (N=12) and
the deficiency of cross-dataset recommendations.

On the individual level, 10 of the 12 subjects in total showed
clear superiority of the RCS strategy (subjects No. 1, 2, 3, 4, 5,
6, 7, 8, 10, 12). For subjects No. 9 and No. 11, the ITR for SA
surpassed the proposed scheme after UD data was sufficient,
meaning that representative data possess a large distribution
gap with the UD data. In this scenario, the representatives can
hinder model prediction.

The contribution of representative recommendation for
two separate datasets was also investigated. Figure 5B
visualizes the cross-model accuracy similar to Figure 3A,
which confirmed that the representative recommendation
is still valid for the online dataset. In Figure 5A, each
row represents the cross-model accuracy recommended by
RCS method. On the subject averaged level, dataset I
contributes approximately 60% (3 out of 5 (k=5)) of the
recommendation. Furthermore, the averaged recommendation
accuracy of dataset I was far superior than dataset II, 0.76 over
0.55. However, because representative recommendation can
be extremely individualized, it is inaccurate to claim that
dataset I is more attributive. The ultimate prediction ability
of the representative UI model is denoted as the black
triangular marker. Ensembled representative model accuracy
is determined by the best representatives, meaning that the UI
can tolerate few least ideal representatives.

IV. DISCUSSION

With year’s devolution on leveraging calibration and
performance, the expected ITR for a UI model([2], [10], [18],
[5]) is around 150 bpm, whereas the UD model( [7], [24],
[3]) can achieve ITR 200∼350 bpm. This study focused on
smooth transition from the UI to UD model, providing a final
ITR performance above 200 bpm (offline: 206.8 bpm, online:
243.49 bpm). To the best of the knowledge of the authors,

the ITR of 243.49 bpm is the highest ever reported in the
online, calibration-free configuration. Moreover, rather than
confining such scheme in deliberately controlled experimental
conditions, this work revealed that such transition is still
effective across multi-source public datasets.

A. Weak Labeling Effect in the Adaptation
However, being relieved from labeled calibrated data means

weak labeling inevitably, and the inaccurate and incomplete
labeling of UD data can lead to model deficiency [11].
Furthermore, extremely weak labeling can have a catastrophic
impact on the following adaptive process, especially when UD
data is insufficient. In this sense, the representatives not only
provided a good starting point but also compensated for the
weak labeling effect:

1) Inaccurate label: Inaccurately labeled UD data are
combined with accurately labeled UI data to balance
prediction ability between different classes.

2) Incomplete label: Complete set of UD data that covers
each target class can rectify bias prediction when UD
labeling is incomplete. Different target classes are not
expected to appear in equal frequency in a real-world
scenario, which means the model can be fed with an
abundance of data on one target but has not seen an
infrequent target for a long time.

The weak labeling impact in the offline experiment
throughout the adaptation was then qualified in Figure 6A.
Besides RCS and weak labeled SA, the self-adaptation process
was simulated as if the labels were all correct (Note that this
method also requires calibration because standard labels are
needed). Within the two SA alternatives, the weak labeling
impact was significant after the 100th trial. With sufficient
calibration, the standard labeled SA surpassed RCS for
20 bpm (same result in Figure 3E). An incomplete label effect
is also evident at the beginning of the adaptation when SA
developed a popularity bias with a few classes of calibration
data.

Thus, other initiation options are theoretically more
susceptible to weak labeling effect, for instance, if adaptation
starts from random parameters, like in [10], the performance
would likely decline in the first few trials, same with the SA
methods in this study. Thus, rectifying a robust UI model
covering all the classes (like the representative model in this
study) is necessary to avoid catastrophic performance loss.

B. UI Model as Pre-Trained Model
The results so far show that representative data saves

calibration/adaptation efforts. In this sense, the proposed work
can be seen as a similar framework to the well-known
pre-trained model strategy. Pre-trained models are typically
Deep Neural Network (DNN) models trained on a large-scale
dataset, used for the solution of similar problems. The biggest
contribution of the pre-trained model is to avoid building a
target-specific model from the beginning. Additionally, the
pre-trained model can be further fine-tuned with target-specific
data. Although the presented model was not a DNN-based
model, the representative model in the proposed method acts
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Fig. 4. Online experiment result: A.Prediction accuracy and ITR for three comparisons. B.ITR performance for all subjects.

TABLE IV
ONLINE EXPERIMENT PERFORMANCE

in the same role as the pre-trained model. However, the pre-
trained model framework is only suitable for two principals:

1) Large scale dataset: Years of effort from the entire BCI
community have yielded large data sizes [25], especially
for SSVEP-based BCIs [26], [27].

2) High similarity: In contrast to other paradigms like P300
and MI, the SSVEP paradigm has long been believed to
be generalizable across populations, despite the fact that
experimental settings are highly inconsistent.

The two principles are intertwined in this study. Because
of the high variability in cross-condition datasets, every data
share cannot be applied to fit a UD model (i.e., the unified

model). Instead, it is necessary to select a few data to
boost similarity/transferability in the large-scale data pool.
However, the proposed method does not guarantee that the
representatives can be found. Figure 6 depicts the scenario
where the ITR can decrease when pool size shrinks. This
decline is likely attributed to decreased representative model
performance caused by reduced pool size. On the other hand,
it can be predicted that the transferability will increase with
sufficiently large datasets.

Finally, when the pre-trained model is fitted on UI data
with stronger transferability, fewer adjustments are needed
to achieve rapid convergence to the ideal UD model. It is
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Fig. 5. Representative recommendation for the online experiment:
A.Representative model accuracy for Dataset I, II.Each row denotes
model accuracy of k = 5 recommendation for the two datasets(TRCA).
The black triangle markers represent the final representative model
accuracy. B.Cross model performance for the online experiment
data(N=12, TW=2s).

Fig. 6. The effect of weak labeling to model performance: A.Standard
label SA over weak labeled SA. B.The proposed RCS method influenced
by data pool size. Lines represents the RCS performance over the
adaptation, bar plot denotes the respective representative model
(TW=1s) performance for different pool sizes.

still possible that a large-scale unified DNN algorithm can be
trained to render a more effective pre-trained model [28], or the
linear combination of the representatives can be used to further
boost performance [7]. However, the authors still want to
underline that it is feasible build an eligible pre-trained model
with state-of-the-art algorithms, if inter-data transferability is
respected.

C. Mechanism Behind Representatives
Figure 2A shows that the two datasets exhibited an apparent

inter-dataset gap. The questions that need to be answered are,
why are some data more transferable than others and why does
cross-dataset still show a significant performance gap. This
complicated question can be answered from a spatial filter
perspective. In Figure 7, it is proposed that phase difference
may also be a significant component in determining model
transferability.

This inter-dataset phase delay was explored by evaluating
the TRCA model trained on dataset I but tested on dataset II.
The model was trained with a constant visual latency (140 ms)
but with varying test latency from 132-164 ms. Each dot
in Figure 7A represents the highest UI model accuracy
(TW = 2) and the line in-between calculated the subject-
averaged UI model accuracy. The peak group performance
appeared at visual latency of 148 ms for the test data. These
performance trends indicate a systematic performance lag
(8 ms) between the two datasets.

The performance lag is presumably caused by temporal
phase lags. Consequently, the cross-correlation between class-
wise temporal templates of datasets I and II was computed.
The averaged and class-wise cross-correlation is depicted in
Figure 7B and C. The average cross-correlation also showed

Fig. 7. Systematic phase lag causes performance delay: A. Inter-
dataset prediction accuracy with the changes of visual latency. Each dot
denotes the prediction accuracy of the TRCA model trained on dataset-I
and tested on dataset-II. The x-axis represents the visual latency of the
test data. The line in between is the average performance tendency of
varying latency. B. Cross-correlation averaged over 40 targets between
dataset-I and dataset-II.

an 8 ms phase lag, in line with the performance trend.
Therefore, it is postulated that the performance delay results
from the systematic temporal phase delay between the two
datasets. The systematic phase delay is possibly due to
various device configurations (graphic cards, screens, etc.).
The existing domain adaptation method primarily focuses on
the spatial filter domain, while only a part is about temporal
template alignment. Temporal alignment may be the key to
mapping the differences between untransferable data. Further
studies need to conucted to map the transferability from
temporal characteristics.

D. Inspiration to the BCI Field
Improving model generalizability has been a universal

challenge for all BCI studies. A growing amount of non-
invasive BCI data is made public. The abundance of data
can contribute to the development of a more generalized
BCIs system, but the enormous underlying variability remains
a formidable obstacle. Many works have been devoted
to methodologies like transfer learning techniques. While
previous works aim to solve problems like ‘How to transfer?’,
the present study adopts a data perspective to solve the
problem as ‘Where to transfer?’. The solution suggests that
only the transferable should be transferred. Those with more
substantial underlying similarities were more capable of
achieving satisfactory results.

When assessing transferability, previous research commonly
employed a class-based distance measuring perspective [29].
Nevertheless, this method still requires labeled data and does
not directly evaluate model performance. The assumption
hardly stands in multi-class BCI cases like 40-target SSVEP in
this study, because SSVEP typically shares distinct frequency
preference characteristics, which means similar data in low-
frequency stimulation does not necessarily lead to high
similarity in other bands. Therefore, the likelihood testing
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techniques presented here are a useful similarity measurement
and can be applied in further BCI research.

V. CONCLUSION

This study proposed a Representative-based Cold start
method that can deploy a calibration-free brain-computer
interface (BCI) with sustained high performance. The
representative model is trained on recommended transferable
user independent data, enabling rapid and smooth convergence
to the optimal user-dependent model. The proposed method
can be a critical in building a generalized and calibration-free
SSVEP BCI in real-life applications.
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