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Constant-Spacing Connected Platoons With
Robustness to Communication Delays

Yudong Lin , Anuj Tiwari , Brian Fabien , and Santosh Devasia , Fellow, IEEE

Abstract— This paper proposes an approach to make
constant-spacing vehicle platoons robust to large delays and loss
of communication. It is well known that centralized communi-
cation of the desired trajectory is important to simultaneously
guarantee both string stability and constant-spacing in platoons.
However, the performance of the resulting connected vehicle
system (CVS) is vulnerable to large communication delays and
communication loss. The main contribution of this work is a
new delayed-self-reinforcement-based (DSR-based) approach that
approximates the centralized communication based control by a
decentralized predecessor follower (PF) control. The resulting
blending of centralized communication with the decentralized
DSR approach results in predecessor-leader follower (PLF) con-
trol with (i) robustness of the convergence to consensus under
large communication delays and (ii) substantially-smaller spacing
errors under loss of communication. Comparative simulations
show that, for the same level of robustness to internal-stability
and string-stability, the variation in settling time to consensus
for PLF with DSR under large communication delays is 95%
less than PLF without DSR and the steady-state error with DSR
under loss of communication is 80% less than PLF without DSR.

Index Terms— Vehicle platoon, consensus, string stability,
delays, communication loss.

I. INTRODUCTION

LONGITUDINAL cruise control with constant spacing
policy (CSP) enables platoons with small inter-vehicle

distances, resulting in improved fuel efficiency, and increased
traffic throughput [1], [2], [3]. However, it is well-known that
constant spacing cannot be maintained together with string
stability when using decentralized predecessor-follower (PF)
methods, which rely only on local sensing information about
the preceding vehicle [4], [5]. Predecessor-leader-follower
(PLF), with centralized communication from the leader vehicle
to the followers, resolves the problem and enables constant
spacing with string stability [6], [7]. However, the performance
of the resulting connected vehicle system (CVS) is vulnerable
to communication issues [8], e.g. (i) large communication
delays can lead to slower oscillatory convergence to consensus
and and (ii) communication loss can lead to large spacing
errors. Large communication delay and communication loss
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can be caused by environmental jamming or during transmis-
sion over long distances. For example, in locations with high
rate of jamming, the system needs to reduce the packet deliv-
ery rate in order to reject unwanted messages [9]. Furthermore,
large transmission and receiving distances in the hundreds of
meters, which is anticipated for truck platooning on highways,
can greatly increase the path loss and communication delay of
vehicle to vehicle communication [10]. Therefore, there is a
need to develop PLF protocols with robust performance in the
presence of such communication problems.

Previous works have addressed the issue of small com-
munication delays or short periods of communication loss
on the performance of the connected vehicle system (CVS).
For example, an upper bound of communication delay to
maintain string stability depends on the vehicle dynamics
and can be found numerically [11] or analytically depending
on the selected headway time [12]. Furthermore, sufficient
conditions on the communication delay can be derived ana-
lytically to guarantee the internal stability [13] and string
stability [7]. However, for large communication delays, even
with string stability and internal stability, the performance
in terms of settling time (for converging to consensus) can
be large. Similarly, short term communication loss can be
addressed using estimation techniques to infer the lost cen-
tralized command [14], [15], [16]. However, such methods
are not applicable for large delays in communication or when
communication is lost for long periods of time. In particular,
when the communication is lost for extended periods of time,
the PLF structure degrades to the PF structure with only the
decentralized protocol, which cannot maintain both constant
spacing and string stability as discussed before. Thus, current
CSP has challenges when dealing with large communica-
tion delays or loss in communication for extended periods
of time.

The current work develops a PLF protocol that (i) enlarges
the acceptable upper bound of communication delays for main-
taining string stability and constant spacing, and (ii) reduces
the constant spacing error when CVS degrades to PF protocol
due to communication loss. The main idea is to use the delayed
self reinforcement (DSR) approach [17] for the decentralized
part of the PLF. The DSR approach seeks to implement the
ideal, non-delayed centralized command which results in ideal
platooning from the current and delayed local sensing informa-
tion, and to improved cohesion. Since the DSR approximates
the ideal centralized command, it leads to low spacing errors
in the platoon with large communication delays and even
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Fig. 1. Stable pole-zero cancellations using controllers C f f,i , C f b,i in
Eqs. (3), (4) reduces the vehicle dynamics L̃i to a single-integrator system L
depicted inside the red dashed box. xi is the deviation from the ideal spacing
(i − 1)ds with respect to the lead vehicle, as in Eq. (10).

when the communication is lost. The main contributions of
the current work are the following.

(i) Development of a new blended PLF with both (a) decen-
tralized DSR and (b) centralized communication as opposed
to purely decentralized case studied in prior work [17].

(ii) Finding conditions for the blended DSR-based, constant-
spacing PLF to guarantee internal stability and string stability
with delayed centralized command and loss of communication.
Moreover, the steady state spacing error under communication
loss is also quantified.

(iii) Illustration of the DSR parameter selection and impact
under different communication conditions using a simulation
example.

II. PROBLEM FORMULATION

A. Individual Vehicle Dynamics

Each vehicle’s input-to-output dynamics can be made homo-
geneous using input-output feedback linearization even if
the original dynamics is heterogeneous and nonlinear, e.g.,
as in [18] and [19] to obtain in the Laplace domain

L̃i (s) = x̃i (s)

ũi (s)
= 1

smi
, (1)

where x̃i ∈ R and ũi ∈ R are the output position and input of
i th vehicle in the system, and mi is the relative degree. Stable
pole-zero cancellation is achieved by selecting the control law

ũi (s) = C f f,i (s)ui (s) − C f b,i (s)x̃i (s) (2)

as in Fig. 1 with feedback controllers C f f,i , C f b,i

C f f,i (s) = smi −1 + k1smi −2 + · · · + kmi−1, (3)

C f b,i (s) = k1smi −1 + k2smi −2 + . . . kmi−1s, (4)

resulting in a first-order closed-loop dynamics Li (s)

Li (s) = x̃i (s)

ui (s)
= L̃i (s)C f f,i (s)

1 + L̃i (s)C f b,i (s)

= (smi −1 + k1smi −2 + k2smi −3 + . . . kmi−1)

s(smi −1 + k1smi −2 + k2smi −3 + . . . kmi−1)

= 1

s
= L(s). (5)

The controller gains k1, . . . , kmi −1 are designed to avoid
unstable pole-zero cancellations by ensuring that the cancelled
polynomial pi(s) = smi −1 + k1smi −2 + · · · + kmi−1 has

roots in the open left-half of the complex-plane. For example,
if each individual vehicle dynamics is a second-integrator
model L̃i (s) = s−2 as in [19] and [7], then the controllers

C f f,i (s) = s + k1, C f b,i (s) = k1s, (6)

with k1 > 0, would achieve the reduction to the
single-integrator system in Eq. (5).

B. Ideal Centralized CSP

To maintain constant spacing in a platoon, an ideal scenario
is for each vehicle i in the set of positive integers N , i.e.,
i ∈ N to receive information about its desired position x̃d,i

from a virtual source as

x̃d,i(t) = x0(t) − (i − 1)ds, (7)

where x0 is the desired position of the lead vehicle i = 1 and
ds is the desired spacing between adjacent vehicles. Then, each
vehicle in the platoon applies the control law

ui (t) = −α(x̃i (t) − x̃d,i(t)), (8)

and α > 0 defines the time constant 1/α. The resulting
dynamics can be written as, from Eqs. (5) and (8),

ẋi(t) = −αxi (t) + αx0(t) = uc,i (t), (9)

where the position xi is defined as the deviation from the ideal
spacing with respect to the lead vehicle, i.e.,

xi(t) = x̃i (t) − (−(i − 1)ds) = x̃i (t) + (i − 1)ds . (10)

It is assumed that all vehicles have the desired spacing
initially, i.e., xi (0) = x0(0) for all i ∈ N . With the ideal
centralized input uc,i in Eq. (9), all vehicle responses are the
same, i.e., xi(t) = x j (t), and therefore, the constant-spacing
policy (CSP) can be maintained for a given desired position
trajectory x0. In matrix form, the ideal centralized control in
Eq. (9) can be written as

Ẋ(t) = −αIX (t) + α1x0(t) = uc(t), (11)

where X = [x1, x2, . . . , xn]T , I is the n × n identity matrix,
and 1 is an n × 1 vector of ones.

C. Decentralized CSP With Delayed Self Reinforcement

The ideal centralized approach in Eq. (11) can be approx-
imated to be decentralized (e.g., where only the lead vehicle
has access to the desired trajectory x0) using the delayed self
reinforcement (DSR) approach in [17], as described below.
Multiplying Eq. (11) with βK , where β is the DSR gain
and K is the pinned graph Laplacian of the CVS network
without the virtual source, with nonzero off-diagonal elements
Ki, j = −1 only if vehicle i receives information (through
sensing or communication) about vehicle j where i �= j , and
the diagonal elements are Ki,i = Bi − ∑

j Ki, j with nonzero
Bi = 1 only if vehicle i receives information about the desired
position x0 from the virtual source i = 0, the ideal centralized
dynamics can be rewritten as

βK Ẋ(t) = −αβK X (t) + αβK 1x0(t). (12)
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If the CVS connectivity contains information paths from the
virtual source node i = 0 (providing the desired position
information) to each vehicle in the platoon, then the pinned
Laplacian K of the graph without the source node i = 0 is
invertible, i.e., det (K ) �= 0 from the Matrix-Tree Theorem
in [20]. Moreover, the vehicles will achieve consensus even-
tually, i.e., K −1 B = 1, where B is the source connectivity
vector (i.e. row element is nonzero Bi = 1 only if vehicle i is
connected to the source and is zero otherwise). Finally, adding
Ẋ(t) on both sides of Eq. (12) and rearranging, results in

Ẋ(t) = (I − βK )Ẋ(t) − αβK X (t) + αβ Bx0(t). (13)

The DSR approach [17] uses delayed versions of already
available information to implement the derivative on the right
hand side of Eq. (13) as

Ẋ(t) = (I − βK )
X (t) − X (t − τd)

τd
− αβK X (t) + αβ Bx0(t),

= udsr (t). (14)

The above DSR approach can be implemented in a decentral-
ized manner, e.g., with source information available only to
the leader vehicle, and it approximates the performance of the
centralized approach when the desired trajectories vary slowly
compared to the time delay τd > 0 in Eq. (14). Conditions for
stability in terms of the DSR gain β and delay τd have been
established in [17].

Remark 1 (DSR implementation): An advantage of the
DSR approach is that it does not require additional sensing
or communication. Rather, current and delayed versions of
the sensed signals K X and the vehicles position xi , already
available to the vehicle controller, are sufficient for implemen-
tation.

Remark 2 (DSR for higher-order vehicle dynamics): The
DSR approach to decentralize the ideal cohesive dynamics as
in Eq. (14) can be applied even if the homogeneous dynamics
L in Eq. (5) of the vehicle is higher order [17].

D. Problem Statement

In this article, we consider the blending of the centralized
and decentralized DSR approach to achieve good performance
even when communication about the desired trajectory x0 is
not always available for all the vehicles. With the blended
approach, from Eqs. (11) and (14),

ẋi (t) = γ udsr,i(t − τl) + (1 − γ )uc,i (t − τc), ∀i ≥ 2

ẋ1(t) = γ udsr,1(t − τl) + (1 − γ )uc,1(t − τl), (15)

where 0 ≤ γ ≤ 1 is the blending gain, τc > 0 is the
communication delay, τl > 0 is the local sensing delay, and,
udsr,i and uc,i are the i th elements of the DSR and centralized
control inputs respectively. Since the leader has the source
information x0, the local sensing delay τl is applied instead of
the communication delay τc in Eq. (15). The blended approach
Eq. (15) is referred to as PLF with DSR in the following.

Remark 3 (Small communication delay to the leader):
Typically, the leader can compute and generate the source
trajectory locally before broadcasting to the followers [21].

Therefore, the communication delay of the leader to the
source trajectory is assumed to be small, and is considered to
be the same as the local sensing delay τl .

Remark 4 (Homogeneous time delays): The time delays
τc, τl , τd can be varying for each vehicle. However, they are
assumed to be the same for all vehicles to promote cohesive
responses. If the actual delays are different, each vehicle
can add intentional buffer delays (as needed) to maintain
homogeneity in the delays for all vehicles as in Ref. [7].
The following three research questions are addressed next.
(1) Internal stability of CVS: What are the conditions on
the blended protocol in Eq. (15) to ensure internal stability
of the CVS, i.e., for the real parts of the poles of the
individual-vehicle transfer functions

Ti (s) = xi(s)

x0(s)
(16)

to be negative?
(2) String stability: What are the conditions on the blended
protocol in Eq. (15) to guarantee string stability of the CVS?
The CVS is said to be string stable if the spacing errors do
not amplify along the vehicle platoon downstream, i.e. the
magnitudes of the error propagation transfer functions Gi (s)
of the followers (i ≥ 2) satisfy∣∣∣∣Gi ( jω) = δi+1(s)

δi (s)

∣∣∣∣ < 1, ∀ω > 0, (17)

where the spacing error δi defined as

δi (s) = xi−1(s) − xi (s). (18)

(3) Steady-state error: Does the steady-state error converge to
zero under the blended protocol in Eq. (15)? Given a step
change in the desired velocity, i.e. v0(s) = V/s, the CVS
has no steady state error if the spacing error δi in Eq. (18)
converges to zero for all vehicles, i.e.,

lim
t→∞ δi (t) = lim

s→0
sδi (s) = 0 ∀i ∈ N . (19)

III. ANALYSIS OF BLENDED DSR FOR PLF NETWORKS

Internal stability, string stability and steady-state errors for
the CVS are established in this section.

A. Internal Stability of CVS

Conditions for internal stability of the CVS are developed
by (i) finding the transfer functions Ti in Eq. (16) of the vehicle
responses xi to the desired lead vehicle position x0, and then
(ii) finding requirements to ensure that the poles of the transfer
functions Ti are on the open left half of the complex plane.

1) Dynamics of the Vehicles: Each vehicle uses both the
relative positioning error (with respect to the predecessor) and
the source positioning error in control, as illustrated in Fig. 2
with the predecessor leader follower network, where the asso-
ciated pinned graph Laplacian K ∈ Rn×n in Eq. (14) and the
source connectivity vector B ∈ R

n are given by [22]

K =

⎡
⎢⎢⎢⎣

1 . . . 0
−1 1
...

. . .
. . .

0 . . . −1 1

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (20)
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Fig. 2. Predecessor-Leader-Follower (PLF) vehicle platoon with n vehicles.
Each follower vehicle i ≥ 2 gets (i) centralized information about its desired
position x̃d,i = x0(t) − (i − 1)ds in Eq. (7) where x0 is the desired position
of the lead vehicle and (ii) decentralized local sensing information of its own
position xi in Eq. (10) and the relative positioning error δi = xi−1 − xi in
Eq. (18) with respect to its predecessor vehicle.

The leader (i = 1) vehicle’s state equation with the DSR
approach (Eq. (14)), for the pinned graph Laplacian K and
source connectivity vector B as defined in Eq. (20), is found
to be,

ẋ1(t) = (1 − β)
x1(t) − x1(t − τd)

τd
− αβ (x1(t) − x0(t))

= udsr,1(t), (21)

and the state equation for the followers i > 1 is obtained as,

ẋi (t) = (1 − β)
xi(t) − xi(t − τd)

τd
+ β

xi−1(t) − xi−1(t − τd)

τd
− αβ(xi(t) − xi−1(t)) = udsr,i(t). (22)

The dynamics of the i th vehicle ẋi (t) can be found by
substituting the DSR command from Eqs. (21), (22) and the
centralized command from Eq. (11) into the blended protocol
in Eq. (15) to obtain, in the Laplace domain,

for i = 1,
x1(s)

x0(s)
= Gc0(s)

s−(1−β)Gm(s)+Gc0(s)
= Gc0(s)

D0(s)
= T1(s), (23)

where T1(s) is the position-transfer function for the lead
vehicle, and for the follower vehicles, i ≥ 2,

xi (s) = Gc(s)x0 + G f (s)xi−1

s − Gm(s) + G f (s) + Gc(s)

= Gc(s)x0 + G f (s)xi−1

D(s)
, (24)

with

Gm(s) = γ e−sτl
1 − e−sτd

τd
, (25)

G f (s) = βγ e−sτl (α + 1 − e−sτd

τd
), (26)

Gc0(s) = α(1 − γ (1 − β))e−sτl , (27)

Gc(s) = α(1 − γ )e−sτc , (28)

D0(s) = s − (1 − β)Gm(s) + Gc0, (29)

D(s) = s − Gm(s) + G f (s) + Gc(s). (30)

Lemma 1: The position transfer functions Ti (s) in (16) for
the follower vehicles i ≥ 2 are given by

Ti (s) =
⎡
⎣Gc(s)

D(s)

i−2∑
j=0

(
G f (s)

D(s)

) j
⎤
⎦ +

(
G f (s)

D(s)

)i−1

T1(s),

(31)

where T1(s) is the lead-vehicle transfer function in Eq. (23).
Proof: Eq. (31) can be shown by induction

1) Base case (i = 2): The position transfer function T2(s)
can be computed from Eqs. (23) and (24) as

T2(s) = Gc(s)

D(s)
+ G f (s)

D(s)
T1(s), (32)

which is equal to Eq. (31) with i = 2.
2) Induction step: Assume Eq. (31) is true when i = k ≥ 2.

Then, from Eq. (24)

Tk+1(s) = Gc(s) + G f (s)Tk(s)

D(s)
, (33)

and using Eq. (31) for Tk(s) results in

Tk+1(s) = Gc(s)

D(s)
+ G f (s)

D(s)

⎛
⎝Gc(s)

D(s)

k−2∑
j=0

(
G f (s)

D(s)

) j
⎞
⎠

+
(

G f (s)

D(s)

)k

T1(s)

= Gc(s)

D(s)

k−1∑
j=0

(
G f (s)

D(s)

) j

+
(

G f (s)

D(s)

)k

T1(s),

(34)

which is equivalent to Eq. (31) with i = k + 1.

�
2) Internal Stability Conditions: The following lemma

shows that the CVS can be made internally stable if the delays
in the vehicle control are small compared to the CVS time
constant.

Lemma 2: The internal stability of the CVS protocol is
independent of the DSR delay τd if the DSR gain β is selected
as

β = 1. (35)

Moreover, with this DSR-gain selection, the CVS with the
blended protocol in Eq. (15) can always be stabilized if the
local sensing delay τl and the communication delay τc are
small compared to the CVS time constant 1/α,

max{τl , τc} < π
2

( 1
α

)
. (36)

Proof: The poles s ∈ C of the transfer functions
T1 in Eq. (23) and Ti (s) in Eq. (31) correspond to the
roots of D0(s) = 0 and D(s) = 0. Then, substituting from
Eqs. (25)-(28) into Eqs. (29) and (30) and using the condition
β = 1 results in

D0(s) = s + αe−sτl = 0, (37)

D(s) = s + α(γ e−sτl + (1 − γ )e−sτc) = 0. (38)

The CVS is stable with poles (i.e., roots of Eqs. (37), (38))
at s = −α when the local sensing delay τl and the com-
munication delay τc are zero and α > 0. Therefore, from
continuity of roots with parameter variations, the CVS will
remain stable provided there is no imaginary axis crossing,
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i.e., there is no frequency ω such that Eq. (37) or Eq. (38) is
satisfied at s = jω with j = √−1, i.e.,

D0( jω) = jω + αe− jωτl

= jω + α[cos (τlω) − j sin (τlω)] = 0, (39)

D( jω) = jω + α(γ e− jωτl + (1 − γ )e− jωτc)

= α(γ cos(τlω) + (1 − γ ) cos(τcω))

+ j (ω − αγ sin(τlω) − α(1 − γ ) sin(τcω))

= 0. (40)

which are known as D-curves in the D-subdivision method
[23]. First, conditions are found for Do( jω) = 0 to not have
imaginary axis roots. Equating, the real and imaginary parts
of Do( jω) to zero results in, from Eq. (39)

α cos (τlω) = 0, (41)

ω − α sin (τlω) = 0. (42)

Eq. (41) is satisfied if

τlω = π

2
+ nπ, (43)

for n ∈ {0, 1, 2, 3, . . .}, which when substituted in Eq. (42)
identifies the (positive) imaginary-axis crossing frequency as
ω∗ = α, and the corresponding local sensing delays leading
to imaginary-axis-crossing at ω∗ = α, from Eq. (43), is

τ ∗
l = π

2α
+ nπ. (44)

Therefore, the imaginary axis crossing can be avoided if the
the local sensing delay τl is smaller than the smallest τ ∗

l value
in Eq. (44) τ ∗

l = π/(2α), which leads to Eq. (36) of the current
lemma.

Second, conditions are found for D( jω) = 0 to not have
imaginary axis roots through the following three steps.

(i) There are no imaginary axis roots when |ω| > α.
Equating the real and imaginary parts of D( jω) to zero results
in, from Eq. (40)

α(γ cos(τlω) + (1 − γ ) cos(τcω)) = 0, (45)

α(γ sin(τlω) + (1 − γ ) sin(τcω)) = ω. (46)

Any solution ω satisfying Eq. (46) is bounded by α in
magnitude, for γ ∈ [0, 1], as shown below,

ω = α(γ sin(τlω) + (1 − γ ) sin(τcω)) ∈ [−α, α], (47)

since,

−1 = γ (−1) + (1 − γ )(−1)

≤ γ sin(τlω) + (1 − γ ) sin(τcω)

≤ γ + (1 − γ ) = 1. (48)

Therefore, there can be no roots outside [−α, α].
(ii) If there is an imaginary-axis crossing with ω ∈ [0, α],

then −ω would also be a solution since

α(γ cos(−τlω) + (1 − γ ) cos(−τcω))

= α(γ cos(τlω) + (1 − γ ) cos(τcω)) = 0, (49)

α(γ sin(−ωτl) + (1 − γ ) sin(−ωτc))

= −α(γ sin(ωτl) + (1 − γ ) sin(ωτc)) = −ω. (50)

(iii) There are no imaginary axis roots with ω ∈ [0, α].
Assume that there exists ω ∈ [0, α] such that Eq.(45) is
satisfied. Then,

α(γ cos(τlω) + (1 − γ ) cos(τcω)) = 0. (51)

However, both cosine terms are positive, i.e., cos(τlω) > 0 and
cos(τcω) > 0 since τlω ∈ [0, π

2 ) and τcω ∈ [0, π
2 ) when ω ∈

[0, α] from the condition in Eq. (36) of the lemma. Therefore,
the positively weighted sum of the cosines cannot be zero, and
therefore,

α(γ cos(τlω) + (1 − γ ) cos(τcω)) > 0, (52)

which contradicts the assumption that there exists ω ∈ [0, α]
that satisfies Eq. (45). Therefore, there is no imaginary axis
crossing of the poles under the condition in Eq.(36) of the
lemma, resulting in internal stability of the CVS. �

Internal stability is guaranteed when both the local sensing
delay τl and the communication delay τc are bounded as in
Eq. (36) of Lemma 2. For larger communication delays, the
internal stability of CVS can still be guaranteed by using a
sufficiently-large blending gain γ , as shown in the next lemma.

Lemma 3: The CVS with the blended protocol in Eq. (15)
is internally stable, for any communication delay τc, if the
local sensing delay τl and the blending gain γ satisfy

τl <
π

2α
, (53)

1

1 + cos(τlα)
< γ ≤ 1 (54)

with the DSR gain β = 1 as in Remark 6.
Proof: Internal stability of the lead vehicle is established

from Eq. (44) in the proof of Lemma 2, since the condition
τl < π/(2α) guarantees that there is no frequency ω ∈ R such
that D0( jω) = 0 (Eq. (39)) is satisfied. For the followers,
internal stability can be examined by judging whether there
exists ω ∈ R such that Eq. (45) and (46) are satisfied. With the
blending gain γ selection as in Eq. (54), there is no ω ∈ [0, α]
that satisfies Eq. (45) since

α(γ cos(τlω) + (1 − γ ) cos(τcω))

≥ α(γ cos(τlω) − (1 − γ ))

≥ α((cos(τlα) + 1)γ − 1) > α(1 − 1) = 0. (55)

The second inequality in Eq.(55) follows since cos(τlω)
monotonically decreases on ω ∈ [0, α], and τlω ≤ τlα < π/2,
from Eq. (53). Besides, using arguments in Steps 1 and 2 in
the proof of Lemma 2, there can be no imaginary axis crossing
when the frequency is large, ω > α or negative, ω ≤ 0. Thus,
there is no imaginary axis crossing under the conditions of the
lemma, resulting in internal stability of the CVS. �

Remark 5 (Blending gain selection): The CVS is internally
stable for any selection of the blending gain γ ∈ [0, 1] if
the communication delay τc and local-sensing delays τl are
small with respect to the time constant 1/α, i.e., smaller
than π/(2α), according to Lemma 2. In the presence of large
communication delay τc with respect to the time constant 1/α,
i.e., τc ≥ π/(2α), sufficient use of the DSR input udsr (with
a sufficiently-large blending gain as in Eq. (54)) also ensures
internal stability.



LIN et al.: CONSTANT-SPACING CONNECTED PLATOONS WITH ROBUSTNESS TO COMMUNICATION DELAYS 3375

Remark 6 (Internal stability assumption): The CVS is
assumed to be internally stable in the rest of the article
by satisfying the stability conditions of either Lemma 2 or
Lemma 3 – including, β = 1.

B. String Stability of CVS

This section begins by finding the error propagation transfer
functions Gi (s), using which the conditions for string stability
are established.

1) Error Dynamics of CVS: To assess string stability, the
error propagation transfer functions Gi ,∀i ∈ N are obtained
using the definition of the spacing error in Eq. (18) and the
position transfer functions Ti in Eq. (16), as for i = 1,

G1(s) = x1(s) − x2(s)

x0(s) − x1(s)
= T1(s) − T2(s)

1 − T1(s)
, (56)

and for i ≥ 2,

Gi (s) = xi (s) − xi+1(s)

xi−1(s) − xi (s)
= Ti (s) − Ti+1(s)

Ti−1(s) − Ti (s)
. (57)

The following existence lemma shows that the CVS can be
made string stable if the delays in the vehicle control are small.

Lemma 4: The CVS, with the blended protocol in Eq. (15)
satisfying the internal stability conditions as in Remark 6,
meets the string stability condition in Eq. (17) on the
error-propagation transfer function Gi (s) provided the time
delays in local sensing τl , communication τc and DSR τd are
sufficiently small compared to the time constant 1/α of the
CVS, and the blending gain is less than one

γ < 1. (58)

Proof: The approach is to find the error transfer function
Gi in Eq. (57) and then find conditions to bound it to be less
than one in three main steps. First, for all the follower vehicles
(i ≥ 2), the difference in the position transfer functions Ti can
be found from Eq. (31) as

Ti−1 − Ti = Gc(s)

D(s)

⎛
⎝ i−3∑

j=0

(
G f (s)

D(s)

) j

−
i−2∑
j=0

(
G f (s)

D(s)

) j
⎞
⎠

+ T1(s)

((
G f (s)

D(s)

)i−2

−
(

G f (s)

D(s)

)i−1
)

=
(

G f (s)

D(s)

)i−2 (
Gc(s)

D(s)
+ T1(s)

(
1 − G f (s)

D(s)

))
,

(59)

and since only the first term relates to the order of the vehicle
i , the error transfer function in Eq. (57) becomes, for i ≥ 2,

Gi (s) = Ti (s) − Ti+1(s)

Ti−1(s) − Ti (s)
= G f (s)

D(s)
. (60)

Second, the error transfer function Gi can be found by
replacing G f and D from Eq. (29) and Eqs. (25)-(28) with
β = 1, as

Gi (s) = e−sτl γ (ατd + 1 − e−sτd )

τd(s + α(γ e−sτl + (1 − γ )e−sτc))
= G(s), (61)

which is independent of the vehicle number i . Third, from
Eqs. (17) and (61), the string stability condition is

|G( jω)| =
∣∣∣∣ e− jωτl γ (ατd + 1 − e− jωτd )

τd( jω + α(γ e− jωτl + (1 − γ )e− jωτc ))

∣∣∣∣ < 1,

for all ω > 0, which is equivalent to (by squaring both sides
and multiplying the denominator)

f (ω, γ, τc) =
∣∣∣τd( jω + α(γ e− jωτl + (1 − γ )e− jωτc))

∣∣∣2

−
∣∣∣e− jωτl γ (ατd + 1 − e− jωτd )

∣∣∣2

= α2(1 − γ )2τ 2
d +2α2τ 2

d γ (1 − γ ) cos((τc−τl)ω)

+τ 2
d ω2−2τ 2

d αω(γ sin(τlω)+(1 − γ ) sin(τcω))

−2γ 2(ατd + 1)(1 − cos(τdω)) > 0. (62)

Since cos(z) ≤ 1 integrating both sides from 0 to z yields
sin(z) ≤ z when z ≥ 0 and integration again yields 1 −
cos(z) ≤ z2/2 when z > 0. Therefore,

1 − cos(τdω) ≤ 1

2
(τdω)2, (63)

cos((τc − τl)ω) ≥ 1 − (τc − τl)
2ω2

2
, (64)

sin(τlω) ≤ τlω, sin(τdω) ≤ τdω, sin(τcω) ≤ τcω,

(65)

since the frequency ω are positive. Substituting these inequal-
ities into Eq. (62) yields

f (ω, γ, τc) ≥ ω2τ 2
d

[
1−α2γ (1 − γ )(τc−τl)

2 − γ 2(ατd +1)

− 2α(γ τl + (1 − γ )τc)
] + α2τ 2

d (1 − γ )2

> 0, ∀ω > 0, (66)

which is satisfied if the coefficient of the ω2 term is positive,
i.e.,

p(γ ) = 1 − α2γ (1 − γ )(τc − τl)
2 − 2α(γ τl + (1 − γ )τc)

− γ 2(ατd + 1) > 0. (67)

By collecting all the time-delay terms to one side of the
equation, the above inequality can be rewritten as

γ (1 − γ )

(
τc

1/α
− τl

1/α

)2

+ 2

(
γ

τl

1/α
+ (1 − γ )

τc

1/α

)

+ γ 2
(

τd

1/α

)
<

(
1 − γ 2

)
. (68)

Note that this inequality cannot be satisfied with the blending
gain γ = 1, since the right hand side becomes zero, and the
time delays and the time constant 1/α are non-negative, which
leads to the condition in Eq. (58) of the lemma. However, with
γ < 1, the inequality in Eq. (68) is always satisfied provided
all the delays are sufficiently small since the left hand side
tends to zero. �
Lemma 4 ensures string stability if the delays are small. String
stability can be numerically assessed for a given set of delay
values by directly evaluating the condition on f (ω) in Eq. (62)
over a finite frequency interval, as shown next.

Lemma 5: The CVS, with the blended protocol in Eq. (15)
satisfying the internal stability conditions as in Remark 6,
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meets the string stability condition in Eq. (17) on the
error-propagation transfer function Gi (s) provided the min-
imum value of f (ω) over the bounded interval [0, ω∗] in
Eq. (62) is positive, i.e.,

min
ω∈(0,ω∗] f (ω, γ, τc) > 0, (69)

where

ω∗ = α

(
1 + 2

√
1

3
+ ατd + 1

α2τ 2
d

)
. (70)

Proof: The string stability condition f (ω) > 0 in Eq. (62)
is always satisfied if ω is large, as the condition can be
rewritten as (since sine and cosine are bounded functions)

f (ω, γ, τc) > α2(1 − γ )2τ 2
d − 2α2τ 2

d γ (1 − γ ) + τ 2
d ω2

− 2τ 2
d αω − 4γ 2(ατd + 1) > 0, (71)

which is equivalent to

(ω − α)2 > α2(4γ − 3γ 2) + 4
γ 2

τ 2
d

(ατd + 1),

or ω > α

(
1 + 2

√
(γ − 3

4
γ 2) + γ 2(ατd + 1)

τ 2
d α2

)
,

(72)

and is always satisfied if ω > ω∗ in Eq. (70) since
max0≤γ≤1(γ − 3γ 2/4) = 1/3 and γ ≤ 1. �

Remark 7 (String stability assumption): The CVS is
assumed to be string stable in the rest of the article
by satisfying the stability condition in Lemma 5, esp.,
γ < 1 from Lemma 4.

C. Steady-State Error of CVS

The proposed approach maintains constant steady-state
spacing between vehicles.

Lemma 6: Constant steady-state spacing between vehicles
for a desired trajectory with constant velocity is maintained
with the blended protocol in Eq. (15) satisfying the internal
stability conditions in Remark 6. Specifically, with desired
trajectory x0(t) = V t and

x0(s) = v0(s)/s = V/s2 (73)

the relative spacing error δi is zero, limt→∞ δi (t) = 0, for all
follower vehicles, i.e., i ≥ 2.

Proof: The steady-state spacing error δi = xi−1 − xi for
each follower vehicle (i ≥ 2) can be found from Eq.(17) as,

δi (s) = Gi−1δi−1(s) =
⎛
⎝i−1∏

j=1

G j (s)

⎞
⎠ δ1(s)

= Gi−2(s)G1(s)δ1(s) (using Eq. (61))

= Gi−2(s)G1(s)G0(s)v0(s),

= Gi−2(s)G1(s)G0(s)
V

s
, (74)

where

G0(s) = δ1(s)

v0(s)
= x0(s) − x1(s)

sx0(s)
= 1 − T1(s)

s

= 1

s + αe−sτ
(using Eqs. (23), (27), (37)). (75)

Similarly, the transfer function G1(s) can be found from
Eq. (56). The denominator of G1 in Eq. (56) can be obtained
from the expression of T1 in Eq.(23), and Gc0 in Eq. (27) and
D0(s) in Eq. (29), with β = 1,

1 − T1(s) = 1 − Gc0(s)

D0(s)
= 1 − αe−sτl

s + αe−sτl

= s

s + αe−sτl
= s

D0(s)
. (76)

The numerator of G1 in Eq. (56) can be found from Eq. (32),
resulting in, using Eq.(23), and Eqs.(25)-(30), with β = 1,

T1(s) − T2(s)

=
(

1 − G f (s)

D(s)

)
Gc0(s)

D0(s)
− Gc(s)

D(s)

= (D(s) − G f (s))Gc0(s) − Gc(s)D0(s)

D(s)D0(s)

= αse−sτl ((1 − (1 − γ )e−s(τc−τl )) − γ e−sτl 1−e−sτd

sτd
)

(s + αe−sτl )(s + α(γ e−τl + (1 − γ )e−sτc))
.

(77)

Substituting Eqs. (76) and (77) into Eq. (56) yields

G1(s) = αe−sτl (1 − (1 − γ )e−s(τc−τl ) − γ e−sτl 1−e−sτd

sτd
)

(s + α(γ e−sτl + (1 − γ )e−sτc))
.

(78)

The limit as s tends to zero for the error transfer functions in
Eqs.(61) and (75) are given by

lim
s→0

G(s) = lim
s→0

e−sτl γ (ατd + 1 − e−sτd )

τd (s + α(γ e−sτl + (1 − γ )e−sτc))
= γ, (79)

lim
s→0

G0(s) = lim
s→0

1

s + αe−sτl
= 1

α
. (80)

and from Eq. (78)

lim
s→0

G1(s) = lim
s→0

αγ (s − e−sτl 1−e−sτd

τd
)

sα

= lim
s→0

αγ (s − 1−e−sτd

τd
)

sα
. (81)

Note that the Taylor expansion of e−sτd

e−sτd = 1 − τds + 1

2
(τds)2 + . . . , (82)

and therefore, from Eq. (81),

lim
s→0

G1(s) = lim
s→0

αγ ( 1
2τds2 − 1

6τ 2
d s3 + . . . )

sα

= lim
s→0

αγ ( 1
2τds − 1

6τ 2
d s2 + . . . )

α
= 0. (83)

Finally, substituting Eqs. (79), (80) and (83) into Eq. (74), the
steady state spacing error of all follower vehicles i ≥ 2 is

lim
t→∞ δi (t) = lim

s→0
sδi (s)

= lim
s→0

s[G1(s)]
(

Gi−2(s)G0(s)
) V

s

= lim
s→0

[G1(s)]
(

Gi−2(s)G0(s)
)

V = 0, (84)
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Fig. 3. The block diagram of PLF with DSR for the follower vehicles
i ≥ 2 in Eq. (22), with communication delay τc, local sensing delay τl ,
and DSR delay τd . The vehicle control uc,i using centralized information
is depicted in blue and control udsr,i using decentralized sensing is in red.
The DSR augmentation of the traditional feedback is shown in yellow shaded
blocks, and the blending of centralized and decentralized control is shown in
green shaded blocks. When centralized communication is lost uc,i is set to
zero. For PLF without DSR, the yellow blocks are set to zero and the green
blocks are set to 1.

since the limit as s tends to zero of G1(s) is zero and the
limits of G(s) = Gi (s) and G0(s) are bounded, resulting in
the maintaining of constant spacing by all the followers. �

D. Loss of Centralized Communication (use of DSR alone)

This subsection considers the impact when DSR alone is
used due to the loss of centralized communication of the
desired trajectory to the followers. Specifically, this section
considers the case when the blended protocol in Eq. (15) is
reduced to the purely predecessor-follower DSR case (and
referred to as PF with DSR), for the followers, i.e.,

ẋi (t) = γ udsr(t − τl), i ≥ 2

ẋ1(t) = γ udsr,1(t − τl) + (1 − γ )uc,1(t − τl)

= −α(x1(t − τl) − x0(t − τl)). (85)

This PF with DSR can be represented by the block diagram
in Fig. 3 without the blue centralized control, i.e., uc,i (t) = 0.

It is well known that, without centralized control, constant
spacing cannot be maintained while remaining string stable.
In the following, it is shown that even under full commu-
nication loss, the DSR-based approach to constant spacing
platooning (i) remains internally stable (Lemma 7), and (ii) is
string stable (Lemma 8). The cost of this string stability is
an increase in steady state spacing error similar to standard
PLF (where the steady state spacing error is proportional to
the time constant 1/α [24]), and quantified in Lemma 9. The
steady state error is also shown to decrease with larger values
of blending gain γ .

1) Internal Stability With DSR Alone:
Lemma 7: Internal stability is maintained if centralized

communication to the followers is lost as in Eq. (85) when the
local sensing delay τl satisfies the internal stability condition
with the centralized communication in Lemmas 2 and 3, i.e.,
τl < π

2α , as in Eq. (53).
Proof: With loss of the centralized communication and the

control as in Eq. (85), the relationship between the spacing of

adjacent vehicles can be obtained from Eqs. (21), (22) with
β = 1 as, for i ≥ 2

xi (s) = γ e−sτl

τd

(
(1 − e−sτd ) + ατd

s + αγ e−sτl

)
xi−1(s). (86)

From Eq. (85), the dynamics of the leader is not impacted.
Therefore, the characteristic function D0(s) for the leader is
the same as in Eq. (37), which requires τl < π/(2α) for the
internal stability of the leader. From Eq. (86), the characteristic
function D(s) of the dynamics of the followers are given by

D(s) = s + αγ e−sτl . (87)

The result follows using arguments similar to the proof of
Lemma 2 to ensure that there are no imaginary axis crossing
of the poles. �

2) String Stability With DSR Alone:
Lemma 8: String stability is maintained if centralized com-

munication to the followers is lost as in Eq. (85) when
satisfying the string stability condition γ < 1 in Eq. (58)
and satisfying the internal stability conditions as in Remark 6,
provided the blending gain γ > 0 is sufficiently small, i.e.,

0 < γ < γ ∗ =
−ατl +

√
α2τ 2

l + ατd + 1

ατd + 1
, (88)

where the upper bound γ ∗ is less than one, γ ∗ < 1.
Proof: Following arguments similar to the proof of

Lemma 4, string stability can be ensured if Gi ( jω) < 1 for
all ω > 0, or if the function f (ω, γ ) with 1 − γ terms (corre-
sponding to centralized communication) removed satisfies the
f (ω) > 0 condition for string stability in Eq. (62), i.e.,

f (ω, γ ) = τ 2
d ω2 − 2τ 2

d αωγ sin(τlω)

− 2γ 2(ατd + 1)(1 − cos(τdω))

≥ τ 2
d ω2 − 2τ 2

d αω2γ τl − γ 2(ατd + 1)τ 2
d ω2

(from Eqs. (63), (65))

= τ 2
d ω2

(
1 − 2αγ τl − γ 2(ατd + 1)

)
> 0. (89)

The above condition is always satisfied if the blending gain γ
is sufficiently small. A bound on the blending gain γ can be
found by noting that Eq. (89) is satisfied if the coefficient of
ω2 is positive

−γ 2(ατd + 1) − 2ατlγ + 1 > 0, (90)

where the maximum gain γ ∗ ∈ [0, 1] is found by

γ ∗ = arg max
γ∈[0,1]{−γ 2(ατd + 1) − 2ατlγ + 1 = 0}

=
−ατl +

√
α2τ 2

l + ατd + 1

ατd + 1

<
−ατl +

√
α2τ 2

l + (ατd + 1)2 + 2ατl (ατd + 1)

ατd + 1

= −ατl + (ατl + ατd + 1)

ατd + 1
= 1, (91)

which proves the assertion in the lemma that the blending
gain γ needs to be less than one for string stability when
communication is lost. �
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3) Steady-State Error With DSR Alone:
Lemma 9: When the communication to the followers is lost,

the relative spacing error of the i th vehicle at the steady state
for the desired trajectory in Eq. (73), is given as

lim
s→0

sδi (s) = V

α

(
1

γ
− 1

)
. (92)

Proof: The position transfer functions T1(s), T2(s) can be
found from Eqs. (23), (86), with β = 1 as

T1(s) = αe−sτl

s + αe−sτl
, (93)

T2 = γ e−sτl

τd

(
(1 − e−sτd ) + ατd

s + αγ e−sτl

)
T1(s). (94)

resulting in the error transfer function from Eq. (56)

G1(s) = T1(s) − T2(s)

1 − T1(s)

= αe−sτl (τds − γ e−sτl (1 − e−sτd ))

τd s(s + αγ e−sτl )
. (95)

Additionally, the error propagation is, from Eq. (86), for i ≥ 2,

Gi (s) = xi (s) − xi+1(s)

xi−1(s) − xi(s)

= γ
e−sτl ((1 − e−sτd ) + ατd )

τd(s + αγ e−sτl )
= G(s). (96)

Therefore, substituting from Eqs. (80), (95) and (96) into
Eq. (74), the relative spacing error of the i th vehicle at the
steady state is given as

lim
t→∞ δi (t) = lim

s→0
sδi (s) = lim

s→0
[G1(s)] (G(s))i−2 [G0(s)] V

=
[

1 − γ

γ

]
(1)i−2

[
1

α

]
V = V

α

(
1

γ
− 1

)
.

�
Remark 8 (Limitations of pure decentralized control):

String stability and constant spacing cannot be guaranteed
simultaneously when communication is lost based on
Lemmas 8 and 9. The relative spacing error converges to
zero only when the blending gain γ = 1 from Eq. (92).
However, string stability requires a smaller blending gain
γ < γ ∗ < 1 in Eq. (88).

E. PLF Without DSR

This section derives the standard first-order protocol for
constant spacing platoon without DSR, develops conditions for
internal stability and string stability and quantifies the steady-
state error. This standard protocol for first-order constant
spacing tracking, referred to as PLF without DSR, is given
as

ẋi (t) = ustd,i(t − τl) + uc,i (t − τc), ∀i ≥ 2

ẋ1(t) = ustd,1(t − τl), (97)

where ustd,i(t) = α(xi−1(t) − xi (t)). Similarly, when the
second term in Eq. (97) for i ≥ 2 is dropped due to
communication loss, the method is referred to as PF without
DSR in the followings. The PLF without DSR corresponds to

the block diagram in Fig. 3 with the yellow blocks removed,
β = 1, and gains of both the green blocks (γ and 1 − γ )
set to 1. Since the position transfer function of the standard
protocol in Eq. (97) has the same general form as Eq. (24),
arguments similar to the DSR case can be used to establish
internal stability if the delays are small, and the ability to
maintain constant spacing. To enable comparison with DSR,
the condition to check for string stability is established below.
In particular, using methods similar to the DSR case, the error
transfer function of the PLF without DSR in Eq. (97) can be
written as

Gi (s) = αe−sτl

s + α(e−sτl + e−sτc)
= G(s). (98)

Combining with Eq. (17), the string stability requires

|G( jω)| =
∣∣∣∣ αe− jωτl

jω + α(e− jωτl + e− jωτc)

∣∣∣∣ < 1, ∀ω > 0, (99)

which is equivalent to requiring, for ω > 0,

f (ω, τc) = | jω + α(e− jωτl + e− jωτc)|2 − |αe− jωτl |2
= | jω + α(e− jωτl + e− jωτc)|2 − α2 > 0. (100)

Lemma 10: The CVS, with the standard protocol in
Eq. (97) meets the string stability condition in Eq.(17) on
the error- propagation transfer function Gi (s) provided the
minimum value of f (ω) in Eq. (100) is positive over the
bounded interval [0, ω∗], i.e. with ω∗ = 4α,

min
ω∈[0,ω∗] f (ω, τc) > 0. (101)

Proof: The string stability condition f (ω) > 0 in
Eq. (100) is always satisfied for large ω, since

f (ω, τc) = 2α2 + 2α2 cos((τc − τl)ω) + ω2

− 2αω(sin(τlω) + sin(τcω))

≥ 2α2 − 2α2 + ω2 − 4αω

= ω2 − 4αω > 0, (102)

which is equivalent to ω > 4α = ω∗. �

IV. RESULTS AND DISCUSSION

In this section, simulations with typical CVS parameters
from literature, are used to illustrate the impact of control
parameter selections such as blending gain γ as well as DSR
gain β, and to estimate the benefits of using the proposed DSR
method.

A. System Description

1) CVS Parameter Selection: The performance of PLF with
DSR (Eq. (15)) is evaluated through simulations using the
MATLAB/Simulink environment. The simulations include the
CVS with one leader and four followers. In the following, the
different methods are evaluated for a step change in the target
velocity, with the platoon accelerating from static to the target
velocity of V = 20 m/s. Except for the communication delay
τc and the blending gain γ , the rest of the parameters are
selected as typical CVS values, as discussed below.
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(i) Control gain α: Depending on the types of the vehicles,
the target settling time for accelerating from V = 0 to V =
20 m/s varies from 5 − 10 s for typical automobile cruise
control systems on passenger cars [25], to 10−30 s for heavy
duty trucks [26]. In this paper the controller gain α is selected
as α = 0.4 to match the settling time of 10 s.

(ii) Local sensing delay τl and DSR delay τd : The local
sensing delay depends on the update rate of the distance
sensors and the processors. Typically the local sensor delay
τl varies between 0.1 to 0.3 s [27], [28]. In the simulations,
the DSR delay τd is set to be the same as the local sensing
delay, τd = τl = 0.1 s. It is selected the same as the update
rate of the Bosch Mid Range Radar (MRR) sensor, which
is widely used in vehicles with Advanced Driver Assistance
Systems (ADAS) systems [29]. The controller also outputs the
discrete control signal with the sampling time as τd = 0.1 s.

2) Vehicle Model: The individual vehicle dynamics is
selected as a double integrator model as in recent work,
e.g., [7] L̃i (s) = 1

s2 , and according to Eqs. (3), (4), the
feedback controllers C f f,i (s) and C f b,i (s) are selected as

C f f,i (s) = s + 10α, C f b,i (s) = 10α s, (103)

with k1 = 10α = 4 for the feedforward controller C f f,i (s)
to have a higher bandwidth (by a decade) compared to the
velocity dynamics. Note that the choice of k1 = 4 also
ensures that the canceled pole s = −4 is stable [30]. For real-
time simulations, the controller does not have direct access
to the derivative of the relative spacing through local sensing.
Therefore, a low-pass filter with cutoff frequency ω f = 40α =
16 rad/s is added to prevent the amplification of the high
frequency noise during computations of the derivative [31],
which results in a modified feedforward controller C f f,i (s) =

ω f
(s+ω f )

(s + 10α).

3) Metrics: To evaluate the convergence speed to steady-
state, the settling time Ts of the CVS is defined as the mini-
mum time required for the states of all the vehicles to settle
and remain within 2% of the final steady-state values. Besides,
in order to evaluate the ability to maintain constant-spacing
during the transient process, the maximum deviation δm of
the CVS is defined by

δm = max
t≥0

‖X (t) − x0(t)1n‖∞, (104)

where the vector 1n = [1, . . . , 1] ∈ Rn . The step response is
selected as the source signal for computing the settling time
and comparing the spacing error response.

B. Impact of Varying the Blending Gain γ

The impact of increasing the blending gain γ , i.e., more
reliance on local sensing than the centralized command,
on internal and string stability as well as performance are
investigated to guide the selection of the blending gain γ .

1) Internal Stability: Selecting larger values for the blend-
ing gain γ reduces the reliance on the centralized com-
mand, and therefore, increases the acceptable communication
delay τc for internal stability. For example, the acceptable
communication delay for internal stability is given as τc <
π/(2α) ≈ 3.92 s according to Lemma. 2. However, increasing

Fig. 4. For comparative evaluations, the blending gain γ for PLF with
DSR is selected (vertical cyan dashed line) to achieve the same acceptable
communication delay τ∗

c as PLF without DSR (horizontal black dashed line)
for string stability found from Eq. (106), Lemma 10. The vertical purple
dashed line marks the maximum acceptable blending gain γ ∗ from Eq. (107),
Lemma 8. The string-stable region (the red shaded area) is computed from
Eq. (105), Lemma 5. The internally-stable region (the blue shaded area) is
found numerically by checking for finite settling time of the step response
using MATLAB and can be estimated by Lemmas 2 and 3.

the blending gain γ such that γ > 1
1+cos(τlα) ≈ 0.50, ensures

internal stability regardless of the communication delay τc,
according to Lemma 3, and indicated in Fig. 4.

2) String Stability: Selecting larger values for the blended
gain γ , i.e., smaller amount of centralized command reduces
the acceptable communication delay τc for string stability,
as shown in Fig. 4. This is expected since sufficient centralized
command is needed to make constant-spacing PLF string
stable, and pure decentralized DSR (γ = 1) cannot maintain
string stability, according to Remark 8.

Given a target acceptable communication delay τ ∗
c for string

stability, the candidate set of all the available blending gain
Sγ can be solved numerically via the following expression,
according to Lemma 5,

Sγ = {γ ∈ [0, 1] | min
ω∈(0,ω∗] f (ω, γ, τ ∗

c ) > 0},

ω∗ = α
(

1 + 2
√

650.3
)

= 20.80 rad/s, (105)

with f (ω, γ, τc) defined in Eq. (62). The range of the candi-
date set Sγ reduces as the communication delay τc increases,
as indicated in the red shaded area in Fig. 4.

3) Selection of Blending Gain: The blending gain γ is
selected so that the acceptable communication delay τ ∗

c for
string stability is the same for PLF, with and without DSR.
For PLF without DSR, the acceptable communication delay τ ∗

c
for string stability can be solved numerically via the following
expression, according to Lemma 10,

τ ∗
c = sup

τc>0
min

ω∈(0,ω∗] f (ω, τc) > 0, ω∗ = 4α = 1.6 rad/s,

(106)

with f (ω, τc) in Eq. (100). From Eq. (106), the acceptable
communication delay for string stability is solved as τ ∗

c =
2.68 s. To achieve the same acceptable communication delay
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for PLF with DSR, the candidate set Sγ can be solved as
0 ≤ γ ≤ 0.83 numerically by substituting τ ∗

c = 2.68 s into
Eq. (105). The largest value of γ = 0.83 is selected for
PLF with DSR since this selection reduces the steady-state
error when the communication is lost, according to Lemma 9.
Lastly, choosing γ = 0.83 guarantees string stability when the
communication is lost, according to Lemma 8,

γ = 0.83 < γ ∗ =
−ατl +

√
α2τ 2

l + ατd + 1

ατd + 1
= 0.94,

(107)

where the upper bound γ ∗ = 0.94 is computed from Eq. (88).

C. Robustness to Communication Delay

Simulations are used to demonstrate that the use of DSR
improves CVS performance, with robustness to large commu-
nication delays. Moreover, it is shown that the spacing error
is reduced substantially by use of DSR when communication
is lost.

1) Typical Communication Delay Case: The proposed PLF
with DSR enables both string stability and constant spacing,
similar to the PLF without DSR in the presence of typical
communication delays. In particular, with a communication
delay of τc = 0.5 s [7], [12], the maximum deviation δm for
the PLF with DSR during the transition is 2.37 m, compared
to the maximum deviation δm = 2.77 m for the PLF without
DSR. The maximum spacing errors during transients in both
cases are less than 10 m, which is typically acceptable for CSP
CVS systems in literature, e.g., [13]. The settling time Ts for
both methods are 9.4s, which achieves the target settling time
of 10s. Therefore, both, PLF with DSR and PLF without DSR
have acceptable performance under typical communication
delays.

2) Large Communication Delay Case: The PLF with DSR
has more robust performance to large communication delays,
i.e., maintains constant steady-state spacing with similar con-
vergence rate and the maximum transient deviation as the
typical-communication delay case. In contrast, the PLF with-
out DSR results in substantial increase in the settling time Ts

and the maximum deviation δm as the communication delay τc

increases. The settling time Ts for the PLF with DSR approach
changes from 9.4 s (τc = 0.1 s) to 10.7 s (τc = 2.5 s), as seen
in Fig. 6(a). In contrast, for the PLF without DSR, the settling
time Ts changes from 9.4 s (τc = 0.1 s) to 35.5 s (τc = 2.5 s),
as seen in Fig. 6(b). Therefore, the variation of the settling
time with DSR (1.3 s) is about 95% less than the variation
of the settling time without DSR (26.1 s). Furthermore, the
maximum transient deviation δm of the PLF with DSR is
4.69 m, which is 74.05% less than the maximum transient
deviation δm = 18.11 m of the PLF without DSR, as seen
in Fig. 6(a), (b). Therefore, the tracking performance of the
proposed PLF with DSR approach is more robust to large
centralized delay compared with the PLF without DSR.

3) Communication Loss Case: When communication is
lost, the proposed PF with DSR has better tracking perfor-
mance compared to PF without DSR. The maximum deviation
δm with DSR approach is 10.22 m, which is an increase

Fig. 5. Comparison of maximum deviation δm (left plots) and settling time
Ts (right plots) for PLF with DSR (black lines) and PLF without DSR (blue
lines) as communication delay increases till string instability (vertical cyan
lines). Horizontal dashed lines represent communication loss case. Left: With
communication loss, PLF with DSR has less steady state spacing error δm
(horizontal black line) than PLF without DSR (horizontal blue line). Right:
Settling time Ts variation with communication delay is substantially smaller
with DSR compared to the case without DSR.

Fig. 6. DSR (left plots) leads to more cohesive tracking performance and
smaller spacing errors δi when compared to the case without DSR (right plots)
under large communication delays τc = 2.5 s (top plots) or communication
loss (bottom plots).

of about 0.5 s headway time, as seen in Fig. 6(c). This
numerically obtained value of 10.22 m is also close to the
predicted steady-state error from Eq. (92) in Lemma 9 given
by

lim
s→0

sδi (s) = V

α
(

1

γ
− 1) = 20

0.4

(
1

0.83
− 1

)
= 10.24.

In contrast, with communication loss, the maximum deviation
δm is 50 m without DSR, which is about 2.5 s headway time,
as seen in Fig. 6(d). The speed-dependent spacing error with
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Fig. 7. Impact of the DSR gain β on the maximum deviation δm (left plots)
and settling time Ts (right plots) under small communication delay (black
lines), large communication delay (blue lines) and communication loss (red
lines). Dashed line indicates when the CVS is string unstable. Increasing the
DSR gain β can improve the performance, but can also make the system
string unstable.

DSR (10.22m) is about 80% less than the speed-dependent
spacing error without DSR (50 m). Thus, the PF with DSR
is able to maintain small inter-vehicle spacing in the platoon
even without communication.

D. Impact of Varying DSR Gain β

The impact of varying the DSR gain β on the CVS
performance is shown in Fig. 7 for different communication
delay conditions. Overall, the performance of the proposed
DSR approach can be improved further by increasing the
DSR gain, i.e., when β > 1. However, the CVS can also
become string unstable with larger DSR gain β, as seen in
Fig. 7. In particular, when the communication delay is small
(τc = 0.1 s), the maximum deviation δm can be further
reduced to 0.80 m (with β = 1.2) from δm = 0.91 m when
β = 1. However, the settling time Ts increases as DSR gain
β increases beyond one. When the communication delay is
large (τc = 2.5 s), the maximum deviation δm can be further
reduced to 3.51 m (β = 1.2) from δm = 4.15 m (β = 1)
and the settling time Ts can be further reduced as well to
10.67 s (β = 1.2) from with Ts = 10.87 s (β = 1). The
results are similar when communication is lost. The maximum
deviation δm can be further reduced to 8.53 m (β = 1.2) from
δm = 10.24 m (β = 1). The settling time Ts can be further
reduced to 14.37 s, compared with Ts = 15.21 s (β = 1).
In all cases, the maximum deviation δm improves (by upto
20%) with increasing DSR gain β, but the improvement is
limited by the advent of string instability as shown in Fig. 7.

V. CONCLUSION

This work addressed the constant-spacing platooning prob-
lem in the presence of large communication delays and
loss of communication. Centralized control from the lead
vehicle was blended with a new delayed-self-reinforcement
(DSR) approach that mimics the ideal centralized control in
a decentralized manner. As a result, the DSR-based approach
improved performance in the presence of large communication

delays as well as communication loss. The article developed
conditions for maintaining internal stability, string stability and
constant spacing without steady-state error for the proposed
blended DSR approach. Simulation results showed that the
tracking performance of predecessor-leader following was
more robust to large communication delays and loss with
the proposed DSR approach when compared to the case
without DSR.
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