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on Trusted IoT Devices
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Abstract—Most machine learning proposals in the Internet of
Things (IoT) are designed and evaluated on preprocessed data
sets, where data acquisition and cleaning steps are often consid-
ered a black box. In addition, IoT environments have numerous
challenges related to acquiring data from sensors, where sensitive
data can be threatened by malicious users who seek to interfere
with the communication channel or storage. Additionally, sensor
data can also be affected by noise. Therefore, differentiating the
type of threat/anomaly requires additional energy and computa-
tional resources. We propose to carry out data cleaning/anomaly
techniques on the IoT device itself, not in the cloud servers but
closer to the data source. Therefore, the IoT device sends trusted
data to the Cloud. Among the benefits of this is the considerable
reduction in the cost of implementation due to less movement
of data between IoT devices and the Cloud. Consequently, we
define three anomaly detection steps using smoothing filters,
unsupervised learning, and deep learning techniques (i.e., hybrid
model) to detect different variations of anomalies and threats
while focusing on a small computational/memory footprint. The
deployment of the hybrid model on AVR, Tensilica, and ARM
microcontrollers showed that the last ones are an adequate target
to implement the model because they best satisfy the necessary
hardware requirements. The proposed model consumes 50 kB of
Flash and 12 kB of RAM and processes data locally, achieving
a bandwidth reduction of 60%. Finally, the hybrid model was
tested in external data sets.

Index Terms—Data tampering, hybrid model, Internet of
Things (IoT), outlier detection.

I. INTRODUCTION

NOWADAYS, many research fields use machine learning
(ML) techniques due to their capability to identify and

describe patterns [1]. Often, the data sets from the Internet of
Things (IoT) applications are time-series data since the source
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of the data set is sensors and similar devices “interacting”
with the real world, sending their collected data to high-
performance servers located in the cloud [2], [3]. These servers
are the ones used to run ML algorithms because such algo-
rithms are computationally complex—naturally, much effort
in ML proposals goes into optimizing the computations in
the cloud and making such servers run more efficiently.
Nevertheless, many proposals that apply ML ideas on top of
IoT/sensor data assume that the data set has been “cleaned”
and is typically treated as a black box [4].

In the IoT space, the ability of electronic devices to work
close to the end users or interact directly with the environ-
ment could generate incorrect sensor readings because they are
used in indoor and outdoor environments, often with low/no
maintenance [5], [6]. Additionally, extreme weather condi-
tions can impair performance and cause component wear [7].
Therefore, IoT-based solutions can also help to detect hard-
ware damage due to environmental conditions. For example,
IoT systems can use the borescope inspection technique in
monitoring and maintaining the health of aero-engine blades
and, with the help of deep learning techniques, can produce an
intelligent diagnosis. This being a topic of upmost importance,
because it involves the safety of human beings [8], [9], [10].
As a result, IoT devices periodically send collected data to
the cloud for further processing. By some estimates, 80% of
the battery consumption of IoT devices is related to wire-
less communication with the edge/cloud [11]. Moreover, in
some scenarios, IoT devices send data to the cloud without
bandwidth restriction/limitation carrying on bottlenecks and
unnecessary storage on the server when data is not processed
for a specific target [12].

Since IoT devices gather data from different scenarios,
data protection is commonly needed to acquire, manage,
send, and process them [13]. Therefore, sensitive data could
be threatened or compromise their integrity, and final users
or companies can lose control when they are stored in
cloud servers, causing unpredictable outputs from the ML
model [14]. Consequently, the main security/privacy concern
is managing the high quantity of generated data to pro-
tect storage and communication. Therefore, detecting anoma-
lies/threats must be done before sending data to the cloud [15].
Thus, cloud computing could consider that the IoT device is
trusted since the sensor data is secure to manage/process [16].
Consequently, anomaly detection techniques allow recogniz-
ing if data is statistically different from the rest, and such
differences can be divided into intrinsic error (genuinely
fault sensor), sensor event (an actual event that increases or
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Fig. 1. Solid black arrows, traditional data movement; dotted arrows, lightweight ML models exported to the IoT device from different locations; and square
dotted arrows, hybrid model allocated in memory. In addition, the sensor side comprises the devices along with microcontrollers. Furthermore, the edge side
consists of gateways with capabilities to deploy data preprocessing models, payload errors, empty cells, and manning the wireless communication architecture.
Finally, the cloud side is a powerful server with the ability to train heavy ML models.

decreases its value dramatically), and intermittent sensor error
(data tampering) [17].

The most representative anomaly detection techniques fall
into four categories: 1) statistical; 2) unsupervised; 3) super-
vised; and 4) deep learning. However, single models have yet
to prove exceptional performance [4], [18], [19]. Moreover,
several works focused on deploying a single anomaly detection
model show that such setups do not prevent the possibil-
ity of sending erroneous data to the cloud [5]. Therefore, in
recent years, hybrid models are getting more attention and
demonstrate prominent advantages when a set of anomaly
detection techniques are merged into one single solution [11].
Nevertheless, a hybrid system with several anomaly detection
algorithms is typically deployed outside the IoT device due to
computational constraints, limited storage capacity, and battery
power limitations [20].

This article aims to reduce the cost of processing/detecting
anomalies in the cloud and ensure data integrity by processing
data locally. Following novelty decentralized computational
architectures [19], this work achieves this goal by design-
ing and deploying a hybrid ML model that detects anomalous
data and threats by a threat model on IoT devices. However,
there are open challenges, such as the IoT device might rec-
ognize either data is compromised by sensor fault or is a
security threat that someone is tampered with the sensor to
inject errors. Besides determining the optimum steps to deploy
a hybrid anomaly detection model on the device. Related
to the literature, the most representative anomaly detection
techniques are as follows: noise reduction [3], [21], outlier
detection [22], [23], [24], and tamper/threat detection [17],
[25]. Based on [18] and [26], we conducted an extensive liter-
ature review focused on determining the underlying algorithms
and how these could be ported to emerging microcontrollers
with better computational capacity. Therefore, we explore a
range of possible algorithms to determine how well they work
on small IoT devices.

To prove our proposal on how to develop the hybrid model
locally, Fig. 1 shows in solid black arrows how traditionally
data is sent to the Edge where it is stored. Then, from the
cloud side, computer scientists query data to develop ML
models [27]. Next, the inference goes back to the Edge to

update the firmware to send it back to the IoT device. In con-
trast, with the computational power of new microcontrollers,
the dotted arrows show how some ML algorithms that typi-
cally work outside the device can be quantized to be processed
locally in the IoT memory (shown in square-dotted arrows
in Fig. 1). As a result, our proposal aims to reduce the data
movement, latency, and risk of compromising data sending
them through communication networks. The contributions of
this work can be summarized as follows.

1) We propose a three-step hybrid anomaly detection model
targeting to run on an IoT device considering the most
relevant anomaly detection approaches (noise reduction,
outlier detection, and tamper/threat detection) and eval-
uate them in terms of accuracy and metrics like memory
consumption and bandwidth on the IoT device.

2) Our results demonstrate that smoothing filters, specif-
ically the Gaussian algorithm, are the most effective
for improving samples for the first noise reduction step.
Then, unsupervised learning methods are suitable solu-
tions for the second outlier detection step. Especially,
the one-class support vector machine (OSVM) algorithm
reduces scatter significantly when obtaining cleaned
samples. Finally, for the third tamper detection step, we
design a threat model to define assumptions where the
IoT device must classify either a tamper/threat situation
or regular sensor reading. As a result, a model based
on deep neural networks can detect data tampered ade-
quately whether the algorithm is trained with the tamper
possibilities.

3) After determining the most suitable technique for each
step, the hybrid anomaly detection model is tested in
real environments with three microcontroller families,
demonstrating that ARM microcontrollers are an ade-
quate target to deploy this hybrid model satisfying the
necessary hardware requirements and reducing the band-
width need between IoT devices and the Edge/Cloud.

The remainder of this article is structured as follows.
Section II shows related works. Then, Section III presents
the hybrid anomaly detection model proposed. Next, results
are discussed in Section IV. Finally, Section V presents the
conclusions of this article and future work.
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II. RELATED WORKS

There are several works with different approaches to detect-
ing anomalies. Consequently, works, such as Ghosh et al. [28],
Gaddam et al. [29], Choi et al. [1], and Cook et al. [30],
presented earlier state-of-the-art studies showing the most rel-
evant techniques used for detecting anomalies. These works
offer statistical-based approaches, which assume some proba-
bilistic data distribution categorized into either parametric or
nonparametric methods.

A. Traditional Models

Anomaly detection in IoT environments got attention since
Zhang et al. [31] presented the first intuition about it and
how data with errors can impair the actuation of control
systems. This work opens opportunities to other researchers
like Shen and Wang [32], which presents the importance of the
data validation stage before processing them. Later, Chacko
and Bharati [33] presented the risks of bringing incorrect
information to the cloud and how lightweight ML algorithms
can be compiled in IoT environments. Besides, Yu et al. [5]
presents a principal component analysis-based data outlier
detection and sensor data. This work defines an architecture
for sensor aggregation in the cloud. Then, Nesa et al. [22]
considers different techniques to reach outlier detection. As a
result, this work presented metrics to compare those algorithms
with classification and statistical approaches to determine the
performance of each technique. Wang et al. [34] used sev-
eral algorithms, such as isolation forest (ISO) and local outlier
factor (LOCAL), and their mathematical approach to present
their isolation nearest neighbor ensemble (iNNE) technique.
Conversely, Sood et al. [17] presented the first initiative to
define a high-level tamper detection combining some algo-
rithms with different approaches: statistical, supervised, and
unsupervised techniques. Therefore, the model complexity
increases at the same time as its robustness.

B. Hybrid Models

Recently, anomaly detection has been studied based on
new trends when the flow of information processed by
the IoT data has grown exponentially. For these trends,
Zhu et al. [11] proposed a novel framework named grid-
based approximate average outlier detection (GAAOD) to
support KNN-based outlier detection over IoT streaming data.
Furthermore, Zhang et al. [4] proposed a three-level hybrid
model based on: median filter (MF), empirical mode decom-
position (EMD), classification and regression tree (CART),
autoregression (AR), and exponential weighted moving aver-
age (EWMA) methods (called MF-EMD-CARTAR-EWMA)
to detect outliers in sensor data. The hybrid model was eval-
uated using a real hydrometeorological observation network
data set. Then, Wu et al. [3] defined a long short-term
memory (LSTM)-Gauss-Bayes method, which is a synergy
of the LSTM neural network (LSTM-NN) and the Gaussian
Bayes model for outlier detection in the IoT devices. Next,
regarding the new tendency to use decentralized computational
systems, Garmaroodi et al. [19] presented an intelligent IoT

system applied in pharmaceutical systems to detect anoma-
lies in water purifying pumps. In addition, Liu et al. [37],
and Wang et al. [38] demonstrated an application of fed-
erated learning in anomaly detection in industrial environ-
ments using hybrid models. Furthermore, Liu et al. [26]
and Wang et al. [38] deployed a decentralized solution
where edge devices collaborate to train anomaly detec-
tion models. Besides, Garmaroodi et al. [19] presented two
anomaly detection approaches running on the device. Finally,
Zhang et al. [36] proposed a data edge verification mecha-
nism based on blockchain to ensure that data is not tampered
with. As illustrated by these works, a new trend exists to
deploy a decentralized computational architecture where IoT
devices are part of the ML pipeline running the inference of the
model.

Summarizing the most relevant works and their approach,
Table I shows the applied algorithm, the used algorithm, and
the location where the ML algorithm was developed. Also,
Table I shows relevant information about the algorithm selec-
tion for the following sections presented in this research.
However, there are open challenges even when previous works
presented several solutions to face anomaly detection in sensor
data and IoT devices. For example, bringing these solutions
into the IoT device due to the new computational capabili-
ties of the microcontrollers. Moreover, several works present
anomaly detection hybrid models using different ML methods.
Nevertheless, tamper detection techniques are not deployed as
part of hybrid models, even with the increasing concerns about
data confidentiality.

III. HYBRID ANOMALY DETECTION MODEL

ML applications in IoT environments start with the data
collection by sensors, the next step is data anomaly detection.
However, even though usually just the model inference step
is deployed on the IoT device [39], only some techniques can
be exported to IoT devices due to their expensive hardware
requirements. In addition, these anomaly detection techniques
are applied in different ways to reach individual purposes,
such as noise reduction (improved samples), outlier detection
(cleaned samples), and tamper detection (processed samples).
Therefore, it is necessary to present a hybrid model merg-
ing the mentioned methods to detect erroneous, unpredictable,
and unexpected data [40]. However, this hybrid model must be
compiled with the minimum computational footprint [41]. As
a result, the IoT device stores in memory and runs in sequence
different ML models related to detecting all the anomaly pos-
sibilities. Fig. 2 shows the following steps of the proposed
hybrid model and the corresponding data flow, starting with
the original samples, which have noise (represented by varia-
tions), outliers (represented by red circles), and tampered data
(represented by red dots).

A. Threat Model

The hybrid anomaly detection model defines tamper detec-
tion as the final stage after sending data to the Edge/Cloud.
Therefore, the threat model proposed identifying the potential
vulnerability as follows.
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TABLE I
OVERVIEW OF HYBRID ANOMALY DETECTION MODELS TECHNIQUES: STATISTICAL (�),

SUPERVISED (�), UNSUPERVISED (�), AND DEEP LEARNING (�)

Fig. 2. Hybrid anomaly detection model (→); data flow (→); sending the decision made by the IoT device to the edge/cloud (→); errors �/�; outliers ◦;
and tampered data •.

1) Sensors could be damaged or worn by harsh conditions
and this can affect their calibration. Therefore, the noise
reduction by the smoothing filter removes the noise and
drift of the samples.

2) Since the IoT device is placed in this specific environ-
ment, the sensor could be relocated to confuse the data
acquisition stage. Therefore, the outlier detection stage
faces this security flaws in detecting data with different
distributions.

3) Whether a malicious user tries to insert erroneous data
into the IoT device, the tamper detection stage has
previous information on all tamper possibilities to detect
them of regular readings and send an alert.

B. Data Collection

We propose a controlled data acquisition environment where
data manipulation is doable and the hybrid model can be
tested. Therefore, we employ a well-known CO2, temper-
ature, and humidity sensor SCD-30, which is applied in
several indoor and outdoor system applications [42]. First, the

electronic system has one microcontroller, the SCD30 sensor,
and battery, which receives data in normal conditions in an
office where people work for around 7 h in groups of two
of three people (Label 1). Second, people try to tamper with
the sensor by blowing on it (Label 2). Third, people smoke
near the sensor to activate the fire alarm (Label 3). Finally, we
simulate a fire by putting fireballs in a basket near the sensor
(Label 4).

However, because the data needs a couple of hours to get
tiny variations and the security of the building can be affected
if malicious users try to tamper with the sensor, we create a
test box (scaled size of a standard office) to accelerate the data
acquisition process. Fig. 3 shows the design with a computer
fan to cool the box, an incandescent bulb to warm up the box,
and a small door that the user can tamper the sensor directly.
To avoid noisy samples for past tests, the test box can be
disassembled to restore the settings for new tests. The sample
rate for label 1 in offices was 10 min. Then, the trend was
calculated to define the same seasonality behavior in the text
box, which is to take samples every 5 s. As a result, the data
was stored into a matrix X ∈ R

m×n, where m is the number
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Fig. 3. Test-box designed for data acquisition process: 1) computer fan,
2) light bulb, and 3) electronic circuit.

TABLE II
EXTERNAL DATA SETS’ DESCRIPTION

of samples and n amounts the number of variables (that is
to say, the number of attributes representing each sample).
Meanwhile, L ∈ R

m×1 is a vector holding the sample labeling.
In this case, m = 1500 and n = 3.

C. External Data Sets

External sensors data sets were considered to prove this
hybrid model proposed. Therefore, the first data set (EDS1)
comprises eight MOX gas sensors and a temperature and
humidity sensor to collect data from home activity with two
stimuli: 1) wine and 2) banana. Therefore, when the system
detects background activity, this is considered a threat situa-
tion since users attempt to tamper with sensors by using them
without stimuli and get erroneous readings. Then, the second
data set (EDS2) detects fire detection in Algeria. It uses ten
different sensors to classify fire and nonfire. However, there
are erroneous samples when people burn paper or there are
strong winds that affect the sensor calibration. As a result, this
issue is considered an anomaly behavior. Next, the third data
set (EDS3) uses five different QCM gas sensors to recognize
five different gas measurements (i.e., 1-octanol, 1-propanol,
2-butanol, 2-propanol, and 1-isobutanol). Thus, isobutanol is
a flammable liquid combined gas, reflecting machinery mal-
functions. Finally, to compare with a previous hybrid anomaly
detection model, the fourth data set (EDS4) is a real data set
gained from physical sensors (indoor and outdoor). Two sce-
narios for each type of sensor (indoor and outdoor) are applied:
single-hop and multihop cases. The single-hop case consists of
a sensor and head station, plus a router in the multihop case.
Also, this data set is used in [18]. Finally, Table II describes
the data sets.

D. Noise Reduction

A phenomenon can be described by static data, time series,
and images. Therefore, sensors measure the magnitude of
a quantity and convert it into an electric signal at a spe-
cific sample rate (original samples) [4]. Then, the signal is

discretized/digitalized to be understandable to the microcon-
troller. However, errors like voltage fluctuations, nonlinearity
response, and vibrations insert noise into the electric sig-
nal, confusing the ML algorithm in the feature extraction
stage [43]. For this reason, signal smoothing is a filter that
reduces these noise components when the phenomenon does
not have high sampling frequencies getting a cleaner sig-
nal [44]. Consequently, Moving Average, Mean, Gaussian
filter, and Savi–Golay are the most relevant smoothing algo-
rithms [45]. In this hybrid model, the output of this step is
called improved samples.

E. Outlier Detection

This stage is responsible for detecting data with a different
distribution than the rest. This process is carried out through
an unsupervised analysis [4]. As a result, a refined data subset
called cleaned samples is obtained. Outlier detection meth-
ods used for this stage related to the literature review are as
follows.

1) The standard deviation method (STD) quantifies the vari-
ation or spread of a numerical data set in which two
standard deviations represent 95% of the data. Therefore,
any data point outside of this boundary is removed [21].

2) The LOCAL measures the local deviation of the density
of a given sample concerning its neighbors. It is local
in that the anomaly score depends on how isolated the
object is from the surrounding neighborhood [23].

3) ISO is based on modeling the expected data in such
a way as to isolate anomalies that are both few and
different in the feature space [22].

4) Elliptic envelope (ELLI) detects outliers in a Gaussian
distributed data set. It provides the Contamination argu-
ment that defines the expected ratio of outliers observed
in practice [23].

5) OSVM captures the density of the majority class and
classifies examples on the extremes of the density
function as an outlier [24].

F. Tamper Detection

In some scenarios, the information acquired by the IoT
device can be compromised by malicious users trying to steal
or modify data [27]. Therefore, the threat model works to
identify and detects threats regarding defined assumptions and
scenarios to avoid security flaws [46]. Consequently, since the
IoT device aims to send less data to the Edge/Cloud, and
its memory stores one application (i.e., the IoT device does
not allow multitenancy), we consider sensors could be tam-
pered with. With this assumption, on the one hand, malicious
users can modify the incoming data when the ML model is
learning, and its rules could be inaccurate. On the other hand,
the IoT device may have the proper model, whereas users try
to insert erroneous inputs creating manipulated environments
(e.g., activate the fire alarm by putting a lighter near the smoke
sensor) [47].

Due to the above-mentioned statements, the tamper-
detection stage requires knowing all the manipulation possi-
bilities to mitigate them, which needs to deploy supervised
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learning [48]. Therefore, the IoT device was also trained when
a malicious user could modify the standard conditions of
sensors by blowing on them when collecting data (label 2).
Besides, a malicious user could attempt to trigger the fire alarm
by smoking at the sensor (label 3). As a result, when the IoT
device detects a potential threat, it will decide to eliminate the
sensor reading (label 2) or send an alert to the Edge/Cloud
(label 3). This procedure is the last step of the data flow called
processed samples. Finally, the algorithms used to reach this
goal are presented as follows.

1) k-nearest neighborhood associates a new instance with
the training base and assigns it to the closest group
according to its distance [4].

2) Naive Bayes describes the probability of an event hap-
pening based on previous knowledge of the event [25].

3) Support vector machine (SVM) has kernel functions that
put the data in hyperplanes to improve the decision
boundaries [21].

4) Decision tree is a heuristic model based on rules [18].
5) Neural network is a recursive training model [2].

IV. RESULTS

This section evaluates the choice of algorithms listed for
each step in Section III and determines a target microcon-
troller family to deploy the final version of the proposed hybrid
model.

A. Experimental Setup

ML models are trained on an external computer [core i7
with 32 GB of random access memory (RAM)] with the
previously described data sets. Therefore, regression analysis
is used to observe how smoothing algorithms soft the signal in
the noise reduction step, which improves samples (according
to the data flow presented in Fig. 2). Then, the ANOVA statis-
tical metric determines the improved variability of the samples
and how unsupervised models reduce the scatter, obtaining
cleaned data. Next, the classification performance determines
which classification method is adequate for detecting tamper-
ing in the cleaned data to send to the cloud just processed
data. Finally, selected algorithms are exported as a .h file
(i.e., header file referenced by a document written in C) to
determine the memory consumption. It is important to men-
tion that the original samples were divided ten times randomly
to avoid bias in selected algorithms.

B. Improved Samples

The data-gathering process is affected by noise injection
from the abovementioned sources. Therefore, time series anal-
ysis provides many techniques to understand a data set better.
Perhaps, the most useful of them are Level (i.e., the base value
if it were in a straight line), Trend (i.e., the linear increasing
or decreasing behavior), Seasonality (i.e., the repeating pat-
terns), and Noise (i.e., the variability of the observations). In
this way, Fig. 4 shows these components from the CO2 vari-
able as an example. Therefore, smoothing filters are required,
where noise samples cancel each other out.

Fig. 4. Main components of CO2 signal. y-axis: ppm values (0–10 000),
x-axis: number of samples.

TABLE III
SMOOTH FILTER STATISTICAL ANALYSIS

The above-mentioned smoothing filters are deployed to
reduce the data set noise and get improved samples. Hence,
regression analysis such as the root-mean-square error (RMSE)
determines how close the observed data points are to the
filter-smoothed values. In addition, the R2 metric presents the
fitness of the filter, and the signal-to-noise ratio (SNR) shows
improvement in the quality of the relevant signal. Therefore,
the metrics mentioned above were used to select a suitable
smoothing filter. As a result, even though the MF has a better
RMSE metric for each signal (i.e., minor value), its output is
very similar to the signal input and does not reduce noise ade-
quately. Conversely, for the CO2, temperature, and humidity,
the Moving average filter has both better SNR and R2 met-
ric. Therefore, this filter is selected for scoring higher in the
evaluated metrics. Fig. 5 shows graphically how the moving
average filter refines the CO2, and Table III summarizes the
values obtained from each metric where k stands for windows
size.

Once the average filter proves to be the suitable solution to
smooth signals, it is applied to the external data sets. Fig. 6
shows the result of one smoothed variable of each data set.

C. Clean Samples

The data set maintains outliers with different distributions.
Therefore, statistical methods can describe the variability of
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Fig. 5. Smoothing filter applied to CO2 signal. y-axis: analog-to-digital
conversion values (0–1023); x-axis: number of samples.

the entire data set, and ANOVA analysis can be used for this
purpose. This analysis splits the data set into systematic fac-
tors (i.e., data with normal distribution) and random factors
(i.e., outliers). Then, unsupervised ML methods can prune
these random factors and increase the decision edges distance
between labels. Indeed, these outliers detection methods can
reduce the data complexity, and the ML model can reach high
throughput.

The mentioned-above outlier detection approaches are
applied to the data set to get different improved/pruned sub-
sets (all methods prune data around 15%) and test them
with ANOVA analysis. Consequently, the standard devia-
tion and LOCAL algorithms keep the data set scattered,
which can cause confusing decision edges between labels.
On the other hand, the ISO algorithm concentrates the data
due to the central point (mean). Furthermore, ELLI and
OSVM have similar results in maintaining data character-
istics while reducing scatter. For this reason, we selected
the standard deviation, Isolation Forest, and OSVM crite-
ria, representing improvements in reducing data scatter to
determine in the next step which of them better eliminates
outliers improving the classification algorithm performance.
Finally, Fig. 7 shows the variability of each method obtained
by ANOVA analysis. Given that OSVM is the suitable solution
to remove outliers, this method was applied to the external data
sets.

D. Processed Samples

This stage aims to detect whether the sensor has been tam-
pered with. Therefore, it is necessary to detect labels 2 (people
blowing on the sensor) and 3 (people smoke near the sen-
sor to active fire alarm). Hence, classification algorithms were
trained with clean subsets (obtained in the previous section)
and the original samples to determine improvements in the
classification decision boundaries.

Table IV shows the classification performance of each
applied algorithm. As a result, the original samples
demonstrate outliers because ML models have issues classify-
ing incoming data correctly. In addition, despite the subset

TABLE IV
CLASSIFICATION PERFORMANCE FOR EACH

ANOMALY DETECTION TECHNIQUE

obtained by the Standard Deviation, reducing outliers has
similar classification results to the original samples data set.
In contrast, ML models have high classification performance
when they are trained with data sets obtained by ISO and
OSVM algorithms. Hence, OSVM is adequate to be imple-
mented in the IoT device due to its capacity to reduce outliers
significantly and lightweight memory footprint.

The next step was to test the classification algorithms with
the improved samples (i.e., Average filter) and cleaned samples
(i.e., One-SVM) of the external data sets. Therefore, Table V
shows the classification results of each data set. It demonstrates
that the SVM algorithm and Naive Bayes struggled to clas-
sify between labels. In addition, Decision Trees and Neural
networks maintained similar results. Furthermore, using this
hybrid approach by smoothing samples and detecting outliers,
the chance to find a tamper situation is very close to 100% on
each data set. Moreover, for other classification purposes, this
model increases by at least ten points of accuracy whether the
classifiers were trained with the original samples.

Once the ML models are trained, the decision tree algo-
rithm and neural network show higher classification results.
However, in real test scenarios, the decision tree algorithm has
strict rules which reduce the ability to recognize light changes
in incoming data. Therefore, the neural network model is an
adequate solution to detect whether the sensor has been tam-
pered with. Nevertheless, neural networks can achieve close
to 100% accuracy in all the evaluated scenarios. However, its
complexity (i.e., the number of layers and neurons) is con-
siderably reduced. For example, the optimal neural network
should have three hidden layers of 32, 16, and 8 neurons
with the original database, respectively. However, with the
database obtained by OSVM, only two hidden layers of 24 and
8 neurons are necessary, significantly improving memory con-
sumption with similar accuracy (Table VI). Conversely, when
the neural network is trained with pruned samples from the
external data set EDS1, which is considered by its complex-
ity and size, it improves the accuracy (from 95% to 98%).
Besides, the model complexity reduces by several neurons
in hidden layers (Table VII). The model architecture uses a
sequential model and dense layers, which means each layer
is deeply connected with its preceding layer. In addition,
rectifier linear unit (ReLU) is used for sparse activation of neu-
rons, efficient computation, and better gradient propagation.
Finally, a dense layer with softmax as an activation function
is added. Applying softmax makes the output vector in the
interval I = [0, 1] such that the components will add up to 1.
Therefore, they can be interpreted as probabilities.
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Fig. 6. Smoothed signals from the external data sets. (a) EDS1: temperature. (b) EDS2: fine fuel moisture code (FFMC). (c) EDS3: QCM3 sensor. (d) EDS4:
humidity.

Fig. 7. Variance data distribution by ANOVA analysis for the temperature variable. (a) Original samples. (b) One-SVM. (c) Isolation forest. (d) Standard
deviation.

TABLE V
CLASSIFICATION PERFORMANCE FOR EACH ANOMALY DETECTION TECHNIQUE.

ORG: ORIGINAL SAMPLES, IMPR: IMPROVED SAMPLES, AND CLEN: CLEANED SAMPLES

E. Memory Consumption

One essential part of a microcontroller is its memory,
which stores information temporarily or permanently. Hence,
memory blocks are described as arrays and divided into cells
that can store data and be accessed using a unique identifier,

representing its address or position relative to the memory
array. Consequently, memory blocks can be either volatile or
nonvolatile, and the control processing unit “CPU” accesses
them concerning the computer architecture; this can be either
Von Neumann or Harvard architecture [49]. In this scenario,
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TABLE VI
PROPOSED ARCHITECTURE OF THE NEURAL NETWORK

USING THE ORIGINAL SAMPLES

TABLE VII
PROPOSED ARCHITECTURE OF THE NEURAL NETWORK USING

THE EXTERNAL DATA SET EDS1

the proposed hybrid model is tested in AVR, Tensilica, and
ARM microcontrollers. While AVR and Tensilica family
microcontrollers are based on the Harvard architecture model,
ARM family microcontrollers can be based on either von
Neuman or Harvard architectures. These microcontroller fam-
ilies divide memory units into two. First is the Flash memory,
in which the firmware is stored to be executed. Second is the
RAM, where microcontrollers typically use SRAM memory,
which is a type of RAM that uses flip-flops to store one bit
of data.

The electronic system deployed uses an Arduino Nano from
the AVR family with 32 kB in Flash and 2 kB in RAM.
An Arduino Nano 33 IoT from ARM family with 256 kB
in Flash and 32 kB in RAM, and NodeMCU from Tensilica
family with 4 MB in Flash and 128 kB in RAM. Each level
of the hybrid model was compiled and tested to determine the
memory consumption.

Tables VIII and IX summarize the memory consumption
of each microcontroller. As relevant results, AVR microcon-
trollers do not have enough memory to compile this application
because the Flash needed is 35 kB, and SRAM is fully uti-
lized (2 kB). Besides, the outlier detection model uses half
of the RAM. ARM microcontrollers, specifically with micro-
controllers M0, M4, and recently M7, are designed to allow
ML models with higher computational resources than the AVR
family. Arduino Nano IoT uses its Flash around 11 kB in
the bootloader, 12 kB in the main program, 2 kB to allocate
the smoothing filter, 20 kB for the outlier detection model,
and 5 kB for the tamper detection. Furthermore, Flash and
SRAM utilization were 56 and 12 kB, respectively. Therefore,
Nano IoT has at least 200-kB free memory, and the 20-kB
RAM is available. On the other hand, since Tensilica micro-
controllers need external libraries to be programmed in the
Arduino environment, the bootloader needs 260 kB, which is
a high memory requirement. Hence, the Flash memory was
used at 310 kB for the hybrid model; it is around 13% of the
total Flash memory. Nevertheless, these boards struggle with
some WiFi libraries that are inefficiently compiled.

F. Bandwidth Consumption

To determine the impact of performing the anomaly detec-
tion on the IoT device instead of the cloud on bandwidth

TABLE VIII
FLASH CONSUMPTION ANALYSIS. OD: OWN DATA SET,

EDS1: EXTERNAL DATA SET

TABLE IX
RAM CONSUMPTION ANALYSIS. OD: OWN DATA SET,

EDS1: EXTERNAL DATA SET

consumption, we calculate the expected bandwidth consump-
tion for each case. First, sending streaming data to the cloud,
the payload uses 20 bytes, and the data packet (i.e., control
header) is 30 bytes sending data to the cloud each 30 ms by the
MQTT protocol, which means the bandwidth is around 1 kb/s.
Second, we define sending data to the cloud when the system
detects a tamper/threat situation since the outlier detection can
be processed locally by its outputs (fan) takes 15 ms. Hence,
the same data packet and protocol use just 300 bps (worst
scenario) since the frequency of sending messages decreases
significantly. Besides, we determine that outliers appear when
the IoT device wakes up from sleep modes, even when the
main program waits until the sensor responds that is cali-
brated. Therefore, this anomalous behavior is corrected locally.
In addition, data is not compromised because packages sent
to the cloud can be just alert messages reducing, even more,
the bandwidth needed.

V. CONCLUSION AND FUTURE WORKS

In this article, the proposed three-step anomaly detection
hybrid model, which integrates data preprocessing (reduc-
ing errors), and outlier detection tasks, achieves excellent
performance in the data tamper detection scenarios for data
collection from IoT devices. Besides, the hybrid model runs
on IoT devices to process data locally with a minimal memory
footprint. In the first step, to achieve noise reduction, smooth-
ing algorithms demonstrate a suitable solution for canceling
voltage fluctuations produced by sensors. In the second step,
we demonstrate that it is necessary to implement an outlier
detection step to increase the robustness of detecting abnor-
mal distribution in data. Therefore, OSVM prunes outliers and
reduces the scatter better. Finally, in the third step, the tam-
per detection step needs previous knowledge to train models
and detect anomalous sensor behavior. Thus, neural networks
can recognize those changes in sensor functionalities and
detect whether if the work environment is compromised. The
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anomaly detection hybrid model also proves the new func-
tionalities that emerging microcontrollers may have processing
ML models close to the user. This reduces latency with fewer
data movements between devices with adequate time response.
In addition, processing data locally reduce the opportunity for
malicious users to steal data. Furthermore, neural networks
can recognize 98% of tamper situations.

This research provides a new perspective on anomaly detec-
tion. The proposed hybrid model was evaluated in time-series
data from different sensor data sets. In future work, the
proposed method will be further expanded and optimized
for different sensor data with extensive power consumption
analysis.
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