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Surface Electromyography-Based Analysis of
the Lower Limb Muscle Network and Muscle

Synergies at Various Gait Speeds
Tie Liang , Huacong Miao, Hongrui Wang, Xiaoguang Liu , and Xiuling Liu

Abstract— Gait movement is an important activity in
daily human life. The coordination of gait movement
is directly affected by the cooperation and functional
connectivity between muscles. However, the mechanisms
of muscle operation at different gait speeds remain
unclear. Therefore, this study addressed the gait speed
effect on the changes in cooperative modules and
functional connectivity between muscles. To this end,
surface electromyography (sEMG) signals were collected
from eight key lower extremity muscles of twelve healthy
subjects walking on a treadmill at high, middle, and low
motion speeds. Nonnegative matrix factorization (NNMF)
was applied to the sEMG envelope and intermuscular
coherence matrix, yielding five muscle synergies. Muscle
functional networks were constructed by decomposing
the intermuscular coherence matrix, revealing different
layers of functional muscle networks across frequencies.
In addition, the coupling strength between cooperative
muscles grew with gait speed. Different coordination
patterns among muscles with changes in gait speed related
to the neuromuscular system regulation were identified.

Index Terms— Muscle network, sEMG, gait speed, mus-
cle synergies.

I. INTRODUCTION

AS ONE of the most fundamental activities in daily life,
gait movement has been studied based on different gait

speeds in several fields, such as kinetics, where peak kinematic
and kinetic parameters were predicted based on gait speed
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(velocity) [1]. For example, neuroscience uses it to predict
the decline in attention and psychomotor speed in older adults
based on gait speed [2]. In clinical medicine, gait speed is
used to predict mortality and major morbidity in patients after
cardiac surgery [3]. The field of kinesiology also studies the
effect of different gait speeds on human stability during gait.
With the development of noninvasive acquisition technology,
surface electromyography (sEMG) detection methods have
been widely used, and analyzing gait at different speeds based
on sEMG signals has become a new research hotspot.

Since sEMG signals can directly reflect muscle activation,
many previous studies have been conducted mainly by
quantifying the differences in sEMG signal characteristics
at different gait speeds. Thus, Schlink et al. investigated
the spatial entropy and center of gravity of sEMG signals
based on different gait velocities and found that sEMG
signal amplitudes were spatially inhomogeneous at higher gait
speeds [4]. Hof et al. reported that the mean sEMG changed
predictably with increasing gait speed [5]. The relationship
between isolated muscles and gait speed has also been studied.
McCain et al. demonstrated the relationship between the
electromyographic activity of the soleus muscle and walking
speed regulation [6]. Byrne et al. revealed the effect of
speed variation in walking on the sEMG of the anterior
tibialis muscle under healthy gait conditions [7]. However,
gait movement results from the interplay of many muscles
in the lower extremities, and a single muscle activation
pattern failed to reflect the intermuscular relationships
fully.

Gait movement is a very complex control task involving
multi-muscle coordination. Increases or decreases in speed can
affect muscle coordination patterns during gait progression [8].
Several studies have confirmed that the musculoskeletal and
nervous systems could build motor modules by coactivating
muscle groups, i.e., muscle synergy, simplifying the control of
multiple muscles by the nervous system [9]. On the other hand,
the common modulation of the sEMG envelope is thought
to be muscle-synergistic. It has been shown to reveal the
synchronous activation of synergistic muscle groups and thus
control the mechanism of human motor action generation
[10]. Recently, muscle synergy analyses have been used to
elaborate alterations in the neuromuscular system. Three to
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five groups of muscle synergies have been identified by
studying lower limb muscle synergies in gait movements [11].
Some researchers have applied muscle synergy analysis to
subjects with poststroke injuries. Thus, Pan et al. studied
changes in muscle synergy during arm extension in stroke
patients [12]. By comparing muscle synergy in stroke patients
and healthy individuals, Clark et al. showed that stroke patients
required fewer muscle synergy modules [13].

Functional muscle network analysis quantifies the functional
connectivity between motor-related muscles. It can identify
the frequency characteristics of specific muscles modulated by
common neural inputs, quantified by intermuscular coherence
decomposition to determine shared frequencies at which
particular muscles are comodulated by common neural inputs.
Recently, muscle network-based analysis methods have been
applied to study the movement of different populations.
Neurophysiological signals such as sEMG generally exhibit
oscillatory and synchronous characteristics, making them well
suited for frequency-domain analysis [14], [15]. Coherence
is a classical frequency-domain method for the coupling
analysis of paired neurophysiological signals, which measures
the linear relationship between two signals by normalized
cross-spectrum [16], [17], [18]. In recent years, coherence
method has been effectively applied to quantify the strength of
intermuscular connections in muscle networks. Kerkmen et al.
used the coherence approach to map functional muscle
networks to study interactions between the central nervous
system and the musculoskeletal system [19]. Houston et al.
observed significant changes in the alpha (8-13 Hz) band of
the upper limb muscle network in patients with chronic stroke
based on coherence analysis [20]. These studies indicated
that muscle network analysis based on coherence analysis is
expected to be an effective tool for exploring the mechanism
of multi-muscle interaction during voluntary movement.

In recent years, more and more researchers have applied the
graph theory approach to neuroscience. Xu et al. explored and
compared the functional connectivity between motor execution
and motor imagery using graph theory [21]. Piovanelli et al.
simplified the estimation of muscle activation pattern using
graph theory [22]. Xi et al. applied graph theory to establish
an effective cortical-muscle network and investigated the
regulatory mechanisms of the cortical-muscular system during
the development of muscle fatigue [23]. These studies
demonstrate that the differences in muscle coordination
patterns under different tasks can be effectively visualized
and characterized by the sEMG-based graph theory analysis
methods. Therefore, muscle network analysis based on graph
theory may become an effective method for analyzing gait
movements at different speeds.

This paper analyzes the synergy between lower limb
muscles at different gait speeds, constructs a functional muscle
network based on quantifying the intermuscular coherence,
and then explores the muscle network differences at different
motion speeds based on graph theory. Functional muscle
networks demonstrate connectivity between muscle groups
from different frequency ranges. Few studies have focused
on muscle synergy and functional muscle networks in lower
limb muscles under different gait speed conditions, which

limits understanding of the lower-limb neuromuscular control
mechanisms. To fill this gap, we analyze both muscle synergy
and functional muscle networks to verify the control mode
of the central nervous system and identify the intrinsic
association of intermuscular synergy and coupling. With a new
perspective of exploring the mechanisms of muscle synergy
at different gait speeds, this study is expected to provide
a comparative benchmark for studying gait in patients with
various neuromuscular dysfunctions or injuries.

II. MATERIALS AND METHODS

A. Subjects
Twelve healthy right-foot dominant male subjects were

recruited for this study (23.5 ± 1.1 years of age; weight: 71.4
± 7.9 kg; height: 173.7 ± 5.3 cm). All the subjects signed
written informed consent forms before the experiment. This
study was officially approved by the Ethics Review Committee
of the Affiliated Hospital of Hebei University (HDFY-LL-
2020-091).

B. Experimental Procedure
All subjects were asked to perform gait movements on

a treadmill at different speeds (low, medium, and high),
corresponding to the treadmill speeds of 4, 8, and 12 km/h,
respectively. The sEMG data for each set of experiments with
at least 30 steps were recorded, after which the subjects were
allowed to rest, avoiding the muscle fatigue effect.

C. Data Acquisition
The sEMG data of eight muscles, namely rectus femoris

(RF), vastus medialis (VM), vastus lateralis (VL), semi-
tendinosus (ST), biceps femoris (BF), tibialis anterior (TA),
gastrocnemius (GM), and soleus (SO) were acquired from the
right lower limbs of all subjects via a Noraxon wireless sEMG
acquisition system (Noraxon, USA), as shown in Fig. 1. These
data were sampled at 1500 Hz after online bandpass filtering
between 5 and 450 Hz.

D. Data Analysis
Muscle synergy identifies coactive muscle groups in motor

task performance by decomposing sEMG-sEMG amplitudes.
Functional muscle networks were determined by decomposing
sEMG-sEMG coherence to identify shared frequencies at
which specific muscles were co-modulated by common neural
inputs.

To analyze the muscle synergy, the sEMG signal was
high-pass filtered (with a cutoff frequency of 20 Hz)
and subsequently rectified using the Hilbert transform. The
rectified sEMG signal identified the sEMG envelope by low-
pass filtering (with a cutoff frequency of 10 Hz). Nonnegative
matrix decomposition using the sEMG envelope was applied
to extract muscle synergies [9], [24]. The sEMG envelope
was decomposed into two nonnegative matrices, one of which
reflected the synergistic effect and the other reflected the
corresponding activation pattern [25]. The variance-accounted-
for (VAF) was used to determine the number of synergistic
muscle modules.
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Fig. 1. Experimental setting. (A) sEMG was collected by the subject
on the treadmill. (B) The position of the muscles collected by sEMG.
Colored dots denote sEMG placements at leg muscles: RF (red),
VM (yellow), VL (blue), ST (pink), BF (cyan), TA (purple), GM (black)
and SO (green).

The amplitude squared coherence estimates are a function of
frequency with values between 0 and 1. These values indicate
the degree of correspondence at each frequency. The amplitude
squared coherence is a function of the power spectral density,
applying a Hanning window of 500 ms length with a 50%
window overlap and calculating the intermuscular coherence
at a spectral resolution of 2 Hz over the frequency range of
0-50 Hz, using the following equation:

Cxy( f ) =

∣∣Pxy( f )
∣∣2

Pxx ( f ) Pyy( f )
(1)

where Cxy is the coherence between the sEMG signals x and
y, f is the frequency, Pxx and Pyy are the self-spectra of
signals x and y, respectively, while Pxy is the mutual spectrum
of signals x and y.

The coherence matrix A was constructed by intermuscular
coherence. The nonnegative matrix decomposition of alter-
nating least squares was applied to the coherence matrix
to decompose it into several different frequency component
matrices (W ) and their corresponding coupling intensity
matrices (H) as follows:

A f ∗m ≈ W f ∗n ∗ Hn∗m + E f ∗m (2)

where f is the frequency, n is the number of frequency
components, and m is the number of muscle pairs. Since
parameter n was unknown before the analysis, the VAF
was used to determine the number of synergistic muscle
modules. Considering the threshold of 90% of VAF [26], it was
calculated via the error matrix E and the Frobenius norms of
the coherence matrix A as:

V AF = 1 −
|E |

2
f ro

|A|
2
f ro

(3)

To visualize the functional muscle networks, a threshold
value of 30% of the maximum edge weight of a single
adjacency matrix is selected, the network topology is drawn
using a uniform threshold value for each group, and the edges

in the network topology are defined as low connection strength
(0-33%), medium connection strength (34-66%), and high
connection strength (67-100%) according to the relationship
between the individual edge weights and the maximum edge
weights. The thickness of the connection lines in the functional
muscle network topology diagram describes the connection
strength between muscles; if the coupling strength between
muscles is stronger, the connection lines are thicker, and if the
coupling strength between muscles is weaker, the connection
lines are thinner.

Three network metrics were calculated to evaluate the
topological characteristics of individual functional muscle net-
works: global efficiency, clustering coefficients, and mediator
centrality [27]. The average shortest path length between all
pairs of network nodes is the network’s characteristic path
length [28]. The global efficiency is inversely proportional
to the feature path length. A higher global efficiency value
indicates a complete network function. The following formula
was used to calculate the global efficiency:

E =
1
n

∑
i∈N

Ei =
1
n

∑
i∈N

∑
j∈N , j ̸=i d−1

i j

n − 1
(4)

where Ei is the efficiency of node i , N is the set of all nodes in
the network, di j is the shortest path length (distance), between
nodes i and j, and n is the number of nodes. The clustering
coefficient describes the degree to which the nodes in a graph
cluster together into clusters. Specifically, it is the degree to
which the neighbors of a point are connected. The average
clustering coefficient measures how well a network is clustered
as a whole [29]. The clustering coefficient can be derived as
follows:

C =
1
n

∑
i∈N

Ci =
1
n

∑
i∈N

2ti
ki (ki − 1)

(5)

where Ci is the clustering coefficient of node i (Ci = 0 for
ki < 2), ti is the number of triangles around node i , ki
is the degree of node i . Betweenness centrality is defined
as the number of times a given node is passed by the
shortest path in the network, reflecting the role and influence
of the corresponding node or edge in the whole network,
corresponding to the hub point or intermediary point. The
formula for calculating the medial centrality is as follows:

bi =
1

(n − 1)(n − 2)

∑
h, j ∈ N

h ̸= j, h ̸= i, j ̸= i

ρhj (i)
ρhj

(6)

where bi is the betweenness centrality of node i , where
ρhj is the number of shortest paths between h and j , and
ρhj (i) is the number of shortest paths between h and j
that pass through node i . where the clustering coefficients
and betweenness centrality are averaged across nodes to
obtain a global metric of the network. All three network
metrics were calculated based on the weighted adjacency
matrix.

Differences between network metrics at each layer of
the coherent network were analyzed using the univariate
analysis of variance (ANOVA), with experimental conditions
at different speeds as factors and network metrics as dependent
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Fig. 2. Muscle synergies extracted from sEMG envelopes. Five
components were required to explain 90% of the variance.

variables. The significance level was set at 0.05 (α = 0.05).
The Brain Connectivity Toolbox was used to calculate all the
above network metrics [29].

III. RESULTS

A. Muscle Synergy
Five muscle synergies were identified from the original

sEMG envelope under gait motion. The five muscle synergies
accumulated to 90% of the Frobenius norm of the original
sEMG envelope, as shown in Fig. 2.

More detailed results presented in Fig. 3 indicate five
synergistic modes. In those observed in the low-speed group
(Fig.3A), synergistic modes 1 and 4 consisted mainly of
TA and VM, respectively, rather than a combination of
muscles. Synergistic mode 2 consisted mainly of TA, GM,
and SO. Synergistic mode 3 consisted primarily of ST and
BF. Synergistic mode 5 consisted mainly of RF and VL.
The results in the medium-speed group depicted in Fig.3B
were similar to those in the low-speed group, with smaller
variations in individual synergistic patterns. The muscle
synergy restructuring was observed in the high-speed group
(Fig.3C). A different muscle synergy pattern from the low-
and medium-speed groups appeared, with the disappearance
of synergy pattern 4 (with VM as the primary contributor)
and synergy pattern 5 (with RF and VL as the main
contributors), being replaced by two new muscle synergy
patterns with RF+VM and VL as the main contributors,
respectively.

B. Functional Muscle Networks
Ninety percent of the global VAF was used to determine

the number of functional muscle networks. The coherence
spectrum was decomposed into two patterns that reflected
different frequency bands (0-25 Hz and 25-50 Hz), i.e.,
different functional muscle connections exhibited in two
different frequency ranges, as shown in Fig. 4 (identified by
NNMF from low to high frequencies).

Figures 5, 6, and 7 show the functional muscle networks for
the low-, medium-, and high-speed groups, respectively. The
left column shows two undirected weighted adjacency matrices
(8 × 8). The topographies of the functional muscle networks
in the right column correspond to the respective spectral

coherence patterns and adjacency matrices. The thickness of
the connecting lines of the network topographies correspond
to the sizes of the related elements in the adjacency matrices.

At the three different gait speed levels, despite the same
numbers of functional muscle networks in each group, there
were variations within the networks caused by differences
in speed. During the low-frequency component interval, the
undirected adjacency matrix between the medium- and high-
speed groups had significantly larger weights than the low-
speed group. In the low-speed condition, the connectivity of
RF and VL muscles is low, the connectivity of VM and SO
muscles is low, the connectivity of VL and SO muscles is
low, which increases in the medium-speed mode, and the
connectivity of VM and VL muscles is low in the medium-
speed mode, which increases in the high-speed mode. In the
high-frequency component interval, the coupling strength
between muscles changed with increasing speed. The coupling
degree between GM and SO muscles varied significantly
between the low-, medium-, and high-speed groups, it shows
an increase in the coupling strength between GM and SO
muscles as the gait speed increases. The RF and VL muscles
showed lower connectivity in the low-speed condition, which
increased in the medium-speed mode. The coupling strength of
the ST and BF muscles was closer under the low- and medium-
speed conditions, and the coupling became stronger under the
high-speed conditions. The edge weights of the functional
muscle network topographies were plotted according to the
strength of connectivity as low strength (thin dashed line),
medium strength (thin solid line), and high strength (thick
solid line), proportional to the maximum edge weight of each
group.

C. Complex Network Analysis
To quantify the internal connections of the functional

muscle networks, three network metrics were calculated:
global efficiency, clustering coefficient, and betweenness
centrality (Fig. 8). The global efficiency and clustering
coefficients of the network differed significantly under various
speed conditions reaching F(2,15)=6.607, p = 0.009 versus
F(2,15)=7.883, p = 0.005. The post hoc tests revealed
that the global efficiencies in low- and high-speed conditions
differed in the low-frequency band (0-25 Hz), reaching p =

0.048. In the high-frequency band (25-50 Hz), they exhibited
a significant difference between low- and medium-speed
conditions (p = 0.012), as well as between low- and high-
speed conditions (p = 0.004). The clustering coefficients
showed a significant difference (p = 0.037) between the
low- and high-speed conditions in the low-frequency band (0-
25 Hz). In the high-frequency band (25-50 Hz), there was
a significant difference (p = 0.004) between the low- and
medium-speed conditions, as well as a significant difference
(p = 0.004) between the low- and high-speed conditions. The
network’s global efficiency and clustering coefficients tended
to become larger and smaller as the speed increased. However,
this was not reflected in the betweenness centrality metric.
Meanwhile, higher frequency ranges featured lower global
efficiencies and clustering coefficients.
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Fig. 3. Muscle synergies extracted using nonnegative matrix factorization. (A) Synergetic effect of eight muscles in the low-speed group.
(B) Synergetic effect of eight muscles in the medium-speed group. (C) Synergistic effect of eight muscles in the high-speed group.

Fig. 4. Frequency components obtained by nonnegative matrix
factorization. (A) Low-frequency component (0-25 Hz). (B) High-
frequency component (25-50 Hz).

IV. DISCUSSION

Insofar as synergy is essential for human motor control in
simple daily gait tasks, this study combines the construction of
the functional muscle network with muscle synergy analysis
to grasp the changes in muscle connectivity at different
gait speeds in adult male participants. Their lower limb
sEMG signals were collected under three different gait speed
conditions to extract muscle synergies and construct functional
muscle networks. We extracted five muscle synergies in human
gait motion, consistent with previous studies [30]. As the speed
of gait movement increased, the corresponding restructuring of
muscle synergy was observed, especially between the medium-
and high-speed groups. The muscle synergy restructuring
reflected electromyographic activity modulation [31].

In the muscle synergy model 2 with GM and SO as the
main contributors, the contribution of GM increases with
increasing gait speed, while the contribution of SO decreases
with increasing gait speed. One possible reason for this

Fig. 5. The functional muscle networks of the low-speed group: (A) the
functional muscle networks of the low-frequency component (0-25 Hz)
are shown in the left column and the corresponding network topology
in the right column; (B) The left column shows the functional muscle
networks of the high-frequency component (25-50 Hz), and the right
column shows the corresponding network topology.

phenomenon is that in humans, there are both fast and slow
muscle fibers in the same muscle. However, the distribution
ratio of fast muscle fibers and slow muscle fibers in different
muscles is different. The GM has a higher component of
fast muscle fibers and plays a significant role in strenuous
movements such as high-speed running, jumping, etc., while
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Fig. 6. The functional muscle networks of the medium-speed group.
(A) The left column shows the functional muscle networks of the
low-frequency component (0-25 Hz), and the right column shows
the corresponding network topology. (B) The left column shows the
functional muscle networks of the high-frequency component (25-50
Hz), and the right column shows the corresponding network topology.

Fig. 7. The functional muscle networks of the high-speed group. (A) The
left column shows the functional muscle networks of the low-frequency
component (0-25 Hz), and the right column shows the corresponding
network topology. (B) The left column shows the functional muscle
networks of the high-frequency component (25-50 Hz), and the right
column shows the corresponding network topology.

the SO has a higher component of slow muscle fibers and
plays a significant role in movements such as walking and
jogging [32], [33].

Muscle functional connectivity showed different modu-
lations in subjects at various gait speeds, with increased
functional connectivity between ST and BF and GM and SO
in lower limb muscles with increasing speed. This implied

Fig. 8. Global efficiency, clustering coefficient, and betweenness
centrality of the coherence networks per frequency component
(comp1=0–25 Hz, comp2=25–50 Hz) and condition. Error bars
indicate standard errors of the mean, and asterisks indicate significant
differences between conditions (p < 0.05).

that functional connectivity between muscles during gait tasks
in humans was influenced by motion speed, i.e., the faster
the gait motion, the stronger the coupling between lower
limb muscles, which may be the result of intermuscular
coherence in healthy subjects modulating according to the
difficulty of the movement task [34]. This also demonstrated
the existence of multifunctional circuits, i.e., the ability to
produce different control schemes under different conditions
within a fixed pattern of muscle anatomical connections in the
human body [35]. Such circuits create the basis to support
increasingly complex behaviors driven by multiple circuits
acting in concert rather than a single, direct pathway. Some
neural patterns may limit the potential functional connectivity
of skeletal muscles [36].

The effect of gait speed changes on the functional muscle
networks manifests in different frequency ranges, suggest-
ing the multiplex network functionality. Various frequency
components correspond to varying levels of muscle function
connectivity. In particular, nonnegative matrix decomposition
extracted two different frequency components: 0-25 Hz
and 25-50 Hz. These two components may reflect the
spectral patterns of different pathways projecting to spinal
motor neurons. The unique topology of the cross-frequency
functional muscle networks suggests that different pathways
support common inputs in various frequency bands. These
different frequencies may play specific roles in encoding motor
signals. The lowest-frequency component of functional muscle
connectivity may be derived from the afferent pathway. The
higher-frequency component of functional muscle connectivity
may reflect relevant inputs from the downstream pathway [37].
It can be speculated that the central nervous system is
composed of multiple unique neural circuits, each responsible
for the co-modulation of certain muscles in a specific
frequency range. Although this study did not directly assess
the connections between the cerebral cortex and muscles,
it interpreted the different frequency ranges as distinct neural
pathways that might reflect afferent and efferent inputs to
spinal motor neurons, respectively [38]. A previous study
showed that functional connectivity in the beta band most
likely reflected corticospinal mapping [39].

This study found more localized functional connectivity at
low-, medium-, and high-speed gait conditions in the higher
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frequency components, which were sparser in the network
topology map. This more localized connectivity pattern may
reflect the propriospinal pathway [40]. This is consistent
with previous studies of cortical networks, where lower-
frequency ranges reflected more extensive coupling, while
higher-frequency ranges reflected local coupling [41]. The
brain’s control of muscles is not simply one-to-one control
but many-to-many modular control [42]. The brain controls
synergy between muscles during gait movements to simplify
control strategies.

The current study revealed that the synergistic muscles
observed in the muscle synergy analysis corresponded to
the muscle combinations with high coupling strength in the
constructed functional muscle networks. The muscle synergy
analysis revealed more substantial contributions from GM to
SO and ST to BF and the higher coupling strength between
GM and SO and ST and BF in the functional muscle networks.
This suggests that muscle synergy corresponds to functional
muscle networks, consistent with previous findings that muscle
synergy can be mapped into functional muscle networks. The
latter provides graphical information on muscle synergy for
inferring an understanding of functional connections between
muscles [43]. The muscle synergy analysis extracted motor
modules with synergistic relationships, and the functional mus-
cle networks quantitatively analyzed the coupling relationship
between synergistic and non-synergistic muscle pairs. From
the effective combination of both central neural control of
motor patterns and neural information transmission for motor
function evaluation.

In this study, we combined the muscle synergy analysis
with constructing functional muscle networks to investigate
the mechanisms of action of human lower limb muscles at
different gait speeds, including coordination between muscles
and the neural realization of muscle synergy. This study
did not directly assess the contributions from supraspinal
inputs; other directed information-theoretic measures were
used to determine these inputs [44]. Zandvoort et al. discussed
the contribution of the cortex to synergy formation by
combining electroencephalogram (EEG) with sEMG-based
synergy analysis [45]. The study by Artoni et al. showed
that the human motor cortex actively controls contralateral
leg muscles during walking, demonstrating a unidirectional
brain-muscle connection between proximal and distal muscles,
and that lower limb muscles are “finely” controlled during
stereotypic movements on a treadmill through a network
of areas in the motor cortex known to be involved in
nonstationary standing movements (e.g., precise stepping) and
motor planning [46]. In the follow-up study, network analysis
will assess functional interactions between the brain, spinal
cord, and skeletal muscles. This approach may open up new
perspectives for treating neurological diseases.

This study has certain limitations. First, only young
participants were recruited in this study. Aging has been shown
to affect the body’s motor system, and the difference in the
mechanism of lower limb muscle action between different age
groups is not clear. Secondly, only male participants were
recruited in this study, and the effect of gender differences
on gait movement was not considered, although there are

currently no consistent data showing convincing differences
in the sEMG responses of men and women during gait
movement, we may find more differences in the future. In the
future, based on the current research, we will further explore
the muscle coordination and functional muscle network
differences in gait movement between different populations.

V. CONCLUSION

Combining muscle synergy analysis with the construction
of functional muscle networks to study lower limb muscles in
humans under different gait speed conditions, we identified
a restructuring of muscle synergy, exhibiting functional
connections between multiple muscle groups at different
frequencies. The unique topology of the functional muscle
networks across frequencies indicated that different pathways
supported common inputs in various frequency bands. The
functional network in all muscle pairs was more localized
between muscles in the high-frequency range, suggesting a
stronger functional connection between muscles.
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