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ABSTRACT In the last decades, deep learning (DL) has emerged as a powerful and dominant technique for
solving challenging problems in various fields. Likewise, in the field of digital image forensics, a large and
growing body of literature investigates DL-based techniques for detecting and classifying tampered regions
in images. This article aims to provides a comprehensive survey of state-of-the-art DL-based methods for
image-forgery detection. Copy-move images and spliced images, two of the most popular types of forged
images, were considered. Recently, owing to advances in DL, DL-based approaches have yielded much
better results as compared to traditional non-DL-based ones. The surveyed techniques were proposed by
developing or fusing various efficient DL methods, such as CNN, RCNN, or LSTM to adapt to detecting
tampered traces.

INDEX TERMS Copy-move image, image forgery, spliced image.

I. INTRODUCTION
Digital content, such as images, videos, and audios,
is uploaded to social networks every day, with images being
the most popular shared resource. However, owing to the
enormous popularity of cutting-edge image-editing software,
images can be easily edited without leaving perceptible
traces. Therefore, it is difficult for practical users to manually
identify manipulated images [1], [2]. The field of multime-
dia forensics, which aims to validate the integrity of digital
content, has received considerable scholarly attention. Image
forgery, also known as image tampering, imagemanipulation,
or image forensics, is a research branch in which manipu-
lated images are studied to address challenging tasks such as
localizing the regions that have been tampered with [1], [2],
[3], validating the integrity of images [4], [5], [6], [7], and
identifying the source or provenance of tampered images [8],
[9], [10], [11].

The images that have not undergone any editing are
referred to as authentic images [1], [2], [3], [4], [5], [6], [7],
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[8], [12], [13], [14], pristine images [15], [16], [17], [18],
[19], genuine images [20], or un-tampered images [21], [22].
Several popular types of image forgery in which images are
composed from authentic images are as follows:

• Inpainted images are created by modifying a region of
the image through merging a large number of small
neighboring components [23], [24], [25]. In particular,
the content of the new region is interpolated based on
the information from its adjacent pixels/regions.

• Copy-move or copy-paste images are composed from
an authentic image by copying one or several regions
and moving (pasting) them to other regions [1], [14],
[15], [26]. The original copied regions and the pasted
regions are referred to as the source and target regions,
respectively.

• Spliced images are formed by copying one or several
regions from an authentic image and pasting these into
another authentic image [7], [13], [27]. The two images
are respectively referred to as the source and target
images [10], or the donor and host images [9], [28], [29].

• Object removal images are created from an authen-
tic image from which objects are removed by either
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FIGURE 1. Illustration of the composition of two copy-move images (left) and two spliced
images (right) from two authentic images (middle). The red solid and blue dashed arrows
represent copy-move and splicing operations, respectively. The tampered region can be
rotated, scaled, or flipped from the source region or may undergo post-processing
operations to thwart forgery detection. Several tampered regions may also be copied from
a single source region.

inpainting or copying-moving as defined above [20],
[30], [31]. Therefore, copy-move images are occasion-
ally considered as object removal images. The major
difference is that in object removal images, the objects
to be removed are semantic regions, such as a person
or a car in the background [31]. In contrast, the objects
to be copied and pasted to other regions in copy-move
images (source regions) are not necessarily semantic
regions [2]. To be more specific, the copied regions can
be any random region in the image, such as a small
part in the sky, while the moved (pasted) regions can
be a random sky region (non-semantic) or a flying bird
(semantic). In addition, an object removal image is a
special case of image inpainting.

• Retouched images are generated by performing image
processing operations, such as smoothing, sharpen-
ing, and contrast enhancement, to improve the visual
quality [32], [33].

Meena and Tyagi [34] classified these tampering operations
into two main categories: dependent and independent opera-
tions. Image splicing and copy-move belong to the dependent
category, whereas the remaining forgery operations are in
the independent category. Dependent tampering operations
are those in which the tampered regions depend on (or are
copied from) other regions of the source images. These two
dependent types of tampering, image splicing and copy-
move, which are also two of themost popular types of forgery,
are covered in this survey. Figure 1 presents the detailed
composition of spliced and copy-move images.

Examples of copy-move and spliced images together with
their corresponding authentic images and ground truth are
shown in Figures 2(a) and 2(b), respectively. We noticed
that in a pair of spliced images and their corresponding
host (authentic) images, the authentic image could be

FIGURE 2. Examples of (a): copy-move images and (b): spliced images.
The tampered images appear in the middle row, their corresponding
authentic images in the top row, and the ground-truth images of
tampered regions (highlighted in white) appear in the bottom row.

misconstrued as the object removal image generated from
the spliced image. In other words, the relationship between
different types of image forgery is complicated.

In image forgery problems, the term ‘‘detection’’ has been
used in two different types of problems with different mean-
ings. Image splicing detection (ISD) usually refers to the clas-
sification problem between authentic and spliced images [4],
[5], [6], [7]. However, it occasionally refers to the spliced
region localization problem [21], [28], [35]. Nonetheless,
image splicing localization (ISL) has been used more fre-
quently to address the splicing localization problem [3], [36],
[37], [38], [39]. By contrast, copy-move forgery detection
(CMFD) aims to localize tampered regions, including source
(copy) and target (move/paste) regions [2], [26]. In this sur-
vey, we used the term image forgery detection (IFD) for the
problem of tampered region localization of both copy-move
and spliced images.
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The remainder of this paper is organized as follows.
Section II provides an overview of state-of-the-art surveys
on IFD problems. DL backbone networks are discussed in
Section III. We then describe DL-based IFD methods in
Section IV. The experimental results of the reviewedmethods
on several benchmark datasets are presented in Section V.
Section VI provides possible future directions and concludes
the study.

II. REVIEW OF RECENTLY PUBLISHED SURVEYS ON IFD
PROBLEMS
In this Section, we analyze IFD survey papers that have
been published in the last five years and that focus on the
examination of targets with DL-based techniques.

Several recent investigations into image forgery detection
have been reported [34], [40], [41], [42], [43], [44], [45],
[46], [47], [48], [49] of which a few reviewed deep learning
(DL)-based techniques [50], [51], [52]. In this survey,
we investigate recent trends in image forgery detection
approaches for two of the most popular types of image
forgery: copy-move images and spliced images.

Four types of forgery detection, splicing, copy-move,
resampling, and retouching, were reviewed [34]. All the IFD
methods examined in this survey used handcrafted features
to detect tampering. These types of tampering were also
analyzed using DL-based methods [50]. Nonetheless, these
researchers mainly discussed detection techniques in dif-
ferent categories without providing deep insights into DL
architectures. Camacho andWang [51] surveyed a wide range
of problems such as double JPEG compression detection,
forgery detection, camera identification, and deep fake detec-
tion. The extent to which DL-based methods have been used
to solve IFD problems is therefore limited. Abidin et al. [52]
briefly reviewed DL-based CMFD papers and compared
the differences in the detection pipelines of traditional and
DL-based methods.

III. OVERVIEW OF DEEP NEURAL NETWORK
ARCHITECTURES
DL has dominated research in various fields over the past
decade [53], [54]. In the last five years, DL-based methods
have surpassed traditional physics-based methods for solv-
ing IFD problems [42], [43], [44], [55], [56]. The general
DL-based image forgery detection pipeline is illustrated in
Figure 3 where the entire input image or divided patches are
fed into a deep neural network (DNN) for feature extraction.
These two approaches are known as image-wise and patch-
wise approaches. In patch-wise methods, the divided patches
can be overlapping or non-overlapping. The final binary out-
put image of this network was the detected forgery image.

Image segmentation and IFD problems are closely related
because both are pixel-based classifications and DL net-
works applied to one problem could also be effective for
the other [57], [58], [59]. In image semantic segmentation,
recent advanced DL techniques have achieved great success
in segmenting images into m regions with n labeled classes,

where n ≤ m [60], [61], [62]. IFD can be considered a
traditional type of image segmentation with m = n = 2,
where two classes are classified: objects (the foreground) and
the background. Similarly, object detection-based methods,
such as region-based convolutional neural network (R-CNN),
Mask R-CNN, have also found wide application in tampering
detection. DL techniques, including long short-termmemory
(LSTM) and recurrent neural network (RNN), that are usually
used in the language modeling or speech recognition fields
have been widely employed in IFD.

In this Section, we provide a brief overview of backbone
DL networks for IFD problems.

A. CONVOLUTIONAL NEURAL NETWORK
CNNs are among the most popular deep learning architec-
tures with applications in many fields [63]. A typical CNN
consists of three main layers: a convolutional layer, a pooling
layer, and a fully connected layer [64]. Figure 4 illustrates a
simple representation of a CNN, in which each convolutional
layer is followed by a pooling layer to reduce the complexity
of further layers while maintaining prominent features [64],
[65]. Each neuron in the fully condensed layer is connected to
every neuron in both the previous and next layers, as shown
in Figure 4. The vast number of parameters in the fully
connected layers gives rise to high computational complexity.
In this survey, the term CNN represents the classical CNN
mentioned above, whereas the various successive deep net-
works are mentioned with specific terminologies.

B. ENCODER-DECODER AND AUTO-ENCODER NETWORKS
The encoder–decoder is an unsupervised neural network that
can be simplified into three components: the encoder, latent
space representation, and decoder. The input is encoded to
generate the latent vector in the hidden state, and this vector is
then decoded to obtain the closed reconstructed version of the
input or intended output. In the encoder-decoder network, the
spatial resolution is encoded in exchange for learning features
or finding details in the inputs. The encoder and decoder
were trained to minimize the reconstruction error. Figure 5
shows an example of an encoder–decoder network for IFD
problems.

An auto-encoder is a special case of an encoder–decoder
network with a single hidden layer, and it reconstructs the
inputs from the encoded data. Auto-encoders are typically
applied to various problems, such as denoising data, classi-
fication, clustering, and anomaly detection [67].

C. R-CNN AND ITS DERIVED NETWORKS
R-CNN [68] and its extensions, including Fast R-CNN [69],
Faster R-CNN [70], and Mask R-CNN [58] have achieved
spectacular success with object detection problems using
region-based approaches.

R-CNN is a neural network for object detection that feeds
region-of-interest (ROI) bounding boxes into a CNN to clas-
sify regions. Fast R-CNN was developed to overcome the
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FIGURE 3. General pipeline of deep-learning-based image forgery detection methods, where image-wise or patch-wise methods are usually
applied. In the patch-wise approaches, the input images are divided into overlapping and non-overlapping patches. Then single or fused neural
networks are used to detect the manipulation, and a segmentation is performed to generate the final localization results.

FIGURE 4. Simple illustration of the convolutional neural network used for solving IFD problems. This figure
was redrawn from [66].

shortcomings of selective search in R-CNN, which generates
thousands of forward passes for each image. In Fast R-CNN,
the input image is directly fed into the CNN instead of region
proposals to create a convolutional feature map.

Faster R-CNN improves on Fast R-CNN by using a region
proposal network (RPN) instead of a selective search for ROI
generation. Mask R-CNN was built on top of Faster R-CNN
to generate the object masks.

D. U-NET
U-Net, a U-shaped neural network with simple architecture,
was originally developed for image segmentation [59], [71],
[72]. U-Net consists of convolutional, ReLU, max pooling,

and up- convolutional layers designed for down- and
up-sampling to capture context and symmetric features via
contracting paths. In this network, the up-sampling layers
replace pooling operators to localize the features at the pixel
level. One of the advantages of this network is that it can
achieve highly precise segmentation with very few images
used for training, owing to the augmentation of available
annotated samples.

E. LSTM
The LSTM architecture applied in [20], [73], [74], and [75],
illustrated in Figure 6, is the most popular among many vari-
ants of the LSTM architecture [76], [77]. The current LSTM
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FIGURE 5. Encoder-decoder network used for solving IFD problems. This figure was redrawn from [66].

FIGURE 6. Illustration of adjacent cells in LSTM architecture applied in [20], [73], [74], and [75]. For k ∈ {f , i, o, c}, Wk ∈ Rm×n are input-to-hidden
transformations, Uk ∈ Rm×m are hidden-to-hidden transformations, and bk ∈ Rm are bias vectors. The current cell is highlighted in light pink background
with explanation for cell states using formulas. This figure was drawn on the basis of the idea in [76].

cell at time step t , represented by the rectangle in the middle
in Figure 6, is connected to neighboring cells, as depicted in
the blurred rectangles. The cell state ct of the current cell
is controlled by the gating mechanism of the forget gate f,
input gate i, and output gate o. Cell t uses xt ,ht−1, ct−1 as
inputs and produces ht , ct via the intermediate equations in
Figure 6. For k ∈ {f , i, o, c},Wk ∈ Rm×n are input-to-hidden

transformations, Uk ∈ Rm×m are hidden-to-hidden trans-
formations, and bk ∈ Rm are bias vectors. The forget
gate ft is the sigmoid layer, which takes xt and ht−1 as
inputs and decides to retain or forget the previous memory
cell ct−1:

ft = σ (Wf xt + Uf ht−1 + bf ), (1)
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FIGURE 7. Classical feature matching method to detect copy-move
tampering. The target region is scaled up 150% and rotated by 45◦.
Figure reproduced with permission from [1].

where σ denotes sigmoid function. The input gate determines
whether to write the data to the cell state.

it = σ (Wixt + Uiht−1 + bi) . (2)

A candidate vector created by a tanh layer controls the data
to be written to the cell state.

c̃t = tanh (Wcxt + Ucht−1 + bc) . (3)

The current cell state is updated as follows:

ct = ft ⊙ ct−1 + it ⊙ c̃t , (4)

where ⊙ is pointwise multiplication operator. The hidden
state in which the output is produced, controlled by the output
gate, is defined as follows:

ot = σ (Woxt + Uoht−1 + bo). (5)

The cell state is filtered by a sigmoid layer and thenmultiplied
by the hidden state in which the output is produced to obtain
the cell output.

ht = ot ⊙ tanh(ct ). (6)

IV. DEEP-LEARNING-BASED IMAGE FORGERY
DETECTION MODELS
In this Section, we presented in detail how the backbone
networks reviewed in Section III and their adapted variants
are used in IFD problem. Before the widespread use of DL in
various fields, traditional physics-based methods were popu-
lar for solving IFD problems. During preprocessing, the input
images might be converted to the frequency domain using
methods such as discrete cosine transform (DCT) [4], [78],
[79] or discrete wavelet transform (DWT) [27], or they may
be converted to another color space, such as YCbCr . Various
types of image features, such as scale-invariant feature trans-
form (SIFT) [1], [2], [12], [80], speeded-up robust features
(SURF) [81], [82], [83], local binary pattern (LBP) [4], [84],
and Zenike moments [2], were extracted in block-based or
keypoint-based methods. Usually, the final stages are fea-
ture matching and filtering to generate detected heatmaps.
Figure 7 illustrates feature matching in copy-move image

detection using classical methods, where SIFT keypoints
were extracted in the source and target regions. In various
computer vision tasks, features designed by DL models are
more robust than handcrafted features [63], [85], [86], par-
ticularly in problems with large-scale data [87]. Figure 8
presents the timeline of notable DL-based IFD techniques and
their backbone networks to show the research trend in this
field.

A. CNN-BASED METHODS
Since the dawn of DL, convolutional neural networks (CNN)
have been the most commonly applied artificial neural net-
works to solve visual imagery problems such as detection,
recognition, classification, and segmentation [88].

Bondi et al. [17] proposed a CNN to detect splicing traces
based on camera characteristics. In this study, the input
images were divided into non-overlapping patches of size
64 × 64 and fed into a CNN model to discover the camera
model that had been used to capture the image patches. To this
end, a pretrained CNNmodel was utilized to extract a feature
vector f of size Ncams, where Ncams is the number of cameras
used for training. The ith element fPi of the feature vector fP

represents the confidence score of patch P captured using the
ith camera in the list and

∑Ncams
i=1 fPi = 1. For camera models

not included in the dataset that was used to train the CNN
model (referred to as unknown camera models), the feature
vectors f of the corresponding patches captured by the same
camera behave similarly because of the coherence of the
image patches [89]. The splicing localization of this method
was determined at the patch level, where a binary mask M̂
was computed based on the k-means clustering algorithm
using all feature vectors f and a confidence score matrix. This
method achieved detection accuracies of 90.8% and 81% for
known and unknown camera models, respectively. Similarly,
Cozzolino et al. [18] utilized camera noiseprint features in
their CNN-based method.

The limitations of CNN-based methods using camera
features [17], [18], [89] are as follows: (i) these meth-
ods localized splicing regions at a patch size of 64 × 64;
(ii) these methods may fail to detect spliced images if the
tampered and pristine regions are composed from images
captured by the same camera model; (iii) the spliced images
with small tampered regions might be detected as authentic
images; (iv) these methods assumed that the majority of the
patches belong to the pristine region, whereas the minor-
ity of the patches belong to the spliced region; therefore,
they are not robust to images with large spliced regions and
spliced regions could be detected as pristine regions, and vice
versa.

In [90], Rao et al. proposed a network of 10 convolu-
tional layers, where mean or max pooling was performed in
the second and sixth layers. The first layer was responsible
for pre-processing, and the weights were computed using
30 high-pass filters used in the estimation of residual maps
in a spatially rich model [91]. Fn(X), the feature map in layer
n of input X, was computed from kernel Wn and bias Bn as
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FIGURE 8. DL-based IFD reports in the literature and their corresponding DL backbone networks denoted by colored circles.

follows:

Fn(X) = pooling(f n(Fn−1(X) ⊙ Wn
+ Bn)), (7)

where f n(.) was the activation function. In this network, only
the last layer was fully connected to reduce the parameter
training complexity and avoid possible overfitting.

A back-to-back CNN named C2RNet, including
Coarse-CNN, followed by Refined-CNN was proposed for
splicing detection in [21]. The input image was fed into the
Coarse-CNN with 13 convolutional layers, five max pooling
layers, and two fully connected layers to detect suspicious
coarse spliced regions by extracting the differences between
the authentic and spliced regions. The output feature map
of the Coarse-CNN was then fed into the Refined-CNN
with 16 convolutional layers, five max pooling layers, and
three fully connected layers to refine the detected results.
Furthermore, post-processing operations, including morpho-
logical operations, adaptive filtering, and convex-full filling,
were performed to refine the detected splicing results using
C2RNet. However, the adaptive filter was not guaranteed to
precisely remove inaccurately detected edges of authentic
regions, and the convex-full filling algorithm might fail to
detect non-simply connected spliced regions.

B. ENCODER-DECODER-BASED MODELS
The encoder–decoder network in [74] is based on SegNet
[57]. Unlike other traditional encoder–decoder architectures,
the latent representation in this work was a combination of

the outputs of its encoder and the LSTM network adopted
from [20]. The LSTM branch of this hybrid network is dis-
cussed in Section IV-D.

The image-splicing localization network proposed by
Mazaheri et al. [75] has three main components: LSTM,
encoder–decoder, and skip connections. The LSTM part
of this method is similar to that of [20] and [74]. The
encoder–decoder of this method is different from that in [74]
because it was inspired by U-Net [59]. The encoder part
included convolutional layers, max-pooling, batch normal-
ization, and a rectified linear unit (ReLU) was used as the
activation function. In the residual blocks of the encoder,
both long and short skip connections were used to obtain
Because it was a hybrid LSTM–encoder–decoder method, the
combination of LSTM and encoder outputs was combined to
feed into the decoder.

Another encoder–decoder network was proposed in [92],
in which the encoder was adopted from ResNet [93]. A full-
size image with zero padding was used as input. In each stage
of the encoder, the image resolution was halved, while the
depth was doubled.

C. R-CNN-BASED METHODS
The IFD problem, which attempts to localize regions that
have been tampered with, benefited from these object detec-
tion studies because a number of studies on IFD involved a
R-CNN [21], [28], [94], [95], [96], [97].
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Zhou et al. [98] proposed a two-stream Faster R-CNN
network using the input RGB image and its noise stream
as the inputs for the convolutional layers. In this method,
both streams utilize region proposals obtained from the RGB
convolutional layers. The ROI features were generated for
both streams from the ROI pooling layer. Both feature maps
were passed through FCN and softmax layers to predict the
tampering map, whereas the bounding box was predicted
from the RGB ROI features.

Similar to [98], Yancey et al. [99] also adopted a Faster
R-CNN network with two input streams, where the JPEG
compression stream, which was generated from the Block
Artifact Grid and Error Level Analysis, replaced the noise
stream. The spatial features were selected by the ROI pooling
layer from each stream to generate a fixed-length feature
vector, which was then used for localization.

In [28], the features of the input image were extracted from
one of two ResNet architectures: ResNet-50 and ResNet-101
[93]. The ResNet backbone network was followed by a
CNN with four convolutional and pooling layers, where the
feature map of the convolutional layer n, Fn(X), is repre-
sented by Equation 7; therefore, it was named ResNet-conv.
This method simplifies ResNet by utilizing convolutional
layers instead of the feature pyramid network (FPN) [100]
to slightly increase the convergence speed. This idea was
based on the observation that the tampering features can
be learned in the first several layers. The feature map was
then trained using Mask R-CNN to detect the tampering
regions. Specifically, the first stage of the Mask R-CNN, the
region proposal network (RPN), which processes the CNN
feature output to generate the ROI, was adopted from Faster
R-CNN [70] whereas the second stage was entirely from
Mask R-CNN [58]. Another major contribution of this
method is the construction of a forgery image dataset for
training.

D. LSTM-BASED METHODS
Resampling features were exploited to feed into LSTM
in [20], [73], [74], and [75] based on the assumption that neg-
ative correlations were usually observed at the boundaries of
the tampered regions. LSTMwas effectively utilized tomodel
chronological sequences such as language or speech [105],
[106]. LSTM [107] was designed to alleviate the problem of
an exploding or vanishing gradient of classical RNN [108].

When solving IFD problems, the chain-like structure of
LSTM has the advantage of learning the correlations of
adjacent blocks; therefore, it is capable of capturing the
discrepancy at the boundaries of manipulated regions [20].
An image-splicing detection method using resampling fea-
tures was proposed [73]. In this study, the resampling fea-
tures were extracted from overlapping patches with a size of
64 × 64 and stride of 8 to generate a multichannel charac-
teristic heatmap, where each channel represented one type
of resampling in image patches. Image patches were trained
using two separate deep learning architectures to detect

six resampling features: JPEG compression, upsampling,
downsampling, clockwise rotation, counterclockwise rota-
tion, and shearing. The resampling features, represented as
periodic correspondences, were effectively extracted in the
densely overlapping patches using the Radon transform and
fast Fourier transform (FFT) in two fully connected neural
networks. These two networks are designed to handle dif-
ferent types of resampling. The resampling feature map was
divided into blocks sized 8 × 8, and then these blocks were
sequentially fed into an LSTMwith three stacked layers, each
of which had 64 cells. The LSTM cells were connected to
their neighbors by an input gate, a forget gate, and an output
gate. The cell state and output state of the current cell t were
denoted as ct and ht , respectively. c̃t denotes the new cell state
candidate produced by ct . The output state of the current cell
t is defined as

ht = ot ⊙ tanh(ct ), (8)

where⊙, i, f, o denote pointwisemultiplication, input, forget,
and output, respectively. In the last layer of the LSTM, each
cell generated a 256- dimensional feature vector, which was
fed into a softmax classifier to predict the label (with or
without tampering) for each patch. Finally, two segmenta-
tion methods, Otsu’s thresholding and Random Walk, were
employed to extract the localization results from the heatmap
extracted by the softmax classifier.

A hybrid CNN-LSTM network was proposed [20], with
LSTM adopted from Bunk et al. [73]. Two convolutional
layers were used in the preprocessing step to extract low-level
image features, such as edges and textures. The output feature
map of this step was then divided into patches sized 8 × 8 to
be fed into the LSTM with three stacked layers, as described
in [73]. The LSTM generates patch labels and a 2D feature
map, which are then fed into the last three convolutional
layers of the network to segment the manipulation result at
the pixel level. The final result, the detection of a tampered
image, was augmented using patch-wise tampering classi-
fication (patch labels generated by LSTM) and pixel-wise
manipulation segmentation. The method proposed in this
study localizes three types of forgery traces: splicing, copy-
move, and removal. However, only the target regions were
localized in the copy-move images, while the copy regions
were not specified. The presence of noise is an important
indicator of forgery in IFD [13], [14], [95]. Therefore, in this
method, max pooling is used only in the third layer to avoid
information loss.

Bappy et al. developed fused architecture comprising an
LSTM and encoder-decoder [74] based on their previous
studies [20], [73], where a novel localization framework
employed features in both the frequency and spatial domains
for tampering localization. Specifically, the resampling fea-
tures in the frequency domain obtained from non-overlapping
patches sized 8 × 8 were fed into the LSTM, whereas the full
image was encoded by the four-layer encoder. The detected
tampering mask was finally generated by decoding the fusion
of the feature vectors from the LSTM and encoder. This
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study utilized the image and divided patches as the inputs for
two different DL networks; therefore, it can detect traces of
tampering in local and global contexts.

The method proposed by Mazaheri et al. [75] adopted
a two-layer LSTM network with resampling features from
8 × 8 non-overlapping patches in the frequency domain [74]
for their hybrid architecture. The contribution of this research
to the design of a novel encoder-decoder network is presented
in section IV-B.

In these LSTM-based IFD methods [20], [73], [74], [75],
the cross-entropy loss was used as the training loss function,
as follows:

L(θ ) =
−1
M

M∑
m=1

1∑
n=0

δ (Ym, n) log (Ym = n | ym; θ) (9)

where δ denotes the Kronecker delta function,M denotes the
number of pixels, and ym and Ym represent themth pixel values
of the input image and the detection mask, respectively.

The detailed architectures and a few remarks relating to the
reviewed papers, categorized according to their backbone DL
networks, are listed in Table 1.

V. EXPERIMENTAL COMPARISONS
A. IMAGE FORGERY DATASETS
This section provides a brief overview of popular datasets
used for IFD problem solving. Usually, researchers only con-
ducted their experiments using several among many of the
public datasets. Detailed information on the image forgery
datasets reviewed in this survey is provided in Table 2.

1) COLUMBIA DATASETS
The Columbia Image Splicing Detection Evaluation
Dataset [117] was the first dataset designed to contain spliced
images and was published in 2004. All 933 authentic and
912 spliced images in this dataset were black-and-white with
a resolution of 128× 128 and included simple splicing oper-
ators. In the second version, the Columbia Uncompressed
dataset consisted of only 183 authentic and 180 spliced
images in color. In this version, the image size is approxi-
mately five to six times larger. The manipulation operations
used to tamper with the images in this dataset were also
simple, such that human eyes could easily identify forgery.

2) CASIA DATASETS
CASIA forensic datasets are arguably the most popular
datasets used for IFD problems. Two versions of the CASIA
image forgery datasets were constructed: CASIA v1 and
CASIA v2 [111], where the latter is an extension of the
former. Because these datasets were provided without offi-
cial ground-truth images, the third-party ground-truth dataset
created by Pham et al. [10] has been widely used for bench-
marking. The first version includes 800 authentic images
and 921 tampered images, whereas the extended version
includes 7200 authentic images and 5123 forged images.

Both CASIA datasets contain multiple categories of images,
such as architecture, nature, indoors, and animals. Tampered
regions of various sizes, ranging from small to very large,
were created. The preprocessing operations include rotation,
resizing, distortion, and the fusion of two of these three oper-
ations. In the post-processing step, the dataset was manually
edited using Photoshop to make it more realistic. However,
the images in these datasets were low resolution, with less
than 1000 pixels in each dimension.

3) FORENSICS DATASET
The forensic dataset [118] was published in the first IEEE
Forensics challenge by the Information Forensics and Secu-
rity Technical Committee (IFSTC) in 2013. This dataset com-
prises 450 training and 700 testing images sized 2018×1536.

4) CoMoFoD DATASET
CoMoFoD [112], a dataset comprising copy-move images,
is an acronym for Copy-Move Forgery Detection. This
dataset consists of 200 sets of small images, 512 × 512,
and 60 sets of large images, 3000 × 2000. In this dataset,
the tampered regions account for 0.11% to 17.34% of the
images. A small number of tampered images have multi-
ple copied regions. Five types of copy-move manipulations
were conducted to create this dataset: translation, rotation,
scaling, combination, and distortion. After the manipulation,
post-processing, such as JPEG compression, blurring, noise
addition, and color reduction, was also performed to make
the dataset more challenging. Each post-processing opera-
tion was performed with multiple parameters, for example,
nine JPEG compression quality factors, three sigma val-
ues for image blurring, and three noise-averaging filters.
In total, 10,400 small and 3120 large copy-move images were
produced.

5) GRIP DATASET
The GRIP dataset [15] consisted of 80 copy-move images
and 80 corresponding authentic images of XGA size. All
copy-move images in this dataset have a single tampering
region ranging from small to medium in size. The images in
GRIP were manipulated using only copy-move translation,
without any rotation or scaling.

6) COVERAGE DATASET
COVERAGE [113] is a copy-move image dataset with similar
genuine objects in the copied regions. Because of this unique
property, COVERAGE has presented a challenge for tradi-
tional keypoint-based matching detection methods. Six types
ofmanipulation operationswere employed to create tampered
images: translation, scaling, rotation, free-form transforma-
tion, illumination change, and fusion. Among these six types
of manipulation, the former three operations were consid-
ered simple tampering, and the latter three were complex
tampering.
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TABLE 1. Details of DL-based methods for solving IFD problems. The abbreviations used in this table are as follows: IW, image-wise; PW, patch-wise; O,
overlapping; N-O -, non-overlapping; CM, copy-move; Sp, spliced.

TABLE 2. Details of forgery image datasets. In the column listing the sizes of the tampered regions, S, M, and L denote small, medium, and large,
respectively. The manipulation types are denoted as follows: a) rotation, b) scaling, c) JPEG compression, d) noise addition, e) blurring, f) illumination
changing, g) contrast adjustment, and h) distortion.

7) MICC-F600 DATASET
The MICC-F600 dataset [115] consists of 440 authentic
images and 160 copy-move images with the corresponding

ground truth images. However, the copy-move images in
this dataset were not created skillfully; hence, the manipu-
lation could be easily recognized by the human eye. Other
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TABLE 3. Percentage of pixel-wise splicing detection of some representative methods.

MICC datasets, including MICC-F8multi, MICC-F220, and
MICC-F2000, were not considered here because they did not
provide ground truth images.

8) FAU DATASET
The FAU dataset [114] contains 48 authentic medium-
to high-resolution images that were adopted from the
MICC-600 dataset. A handcrafted copy-move image was
created from each authentic image. The tampered regions
accounted for approximately 10% of the average image size.
In addition, JPEG compression, noise addition, rotation, and
scaling were used to tamper with the images. Because the
manipulations were performed skillfully, all the copy-move
images of this dataset appeared realistic.

B. EVALUATION METRICS
Copy-move detection studies differentiate between the source
and target regions [12], [29]. However, almost all the
approaches

To evaluate the performance of manipulation localization
quantitatively, localization methods use pixel-oriented met-
rics, precision P and recall R, which are defined as follows:

MP =
# correctly detected pixels

# all detected pixels
, (10)

and

MR =
# correctly detected pixels

# all spliced pixels
. (11)

A trade-off exists between precision and recall; conse-
quently, to consider both of these measures, their harmonic
mean MF , the F1score, is computed as follows:

MF =
2MPMR

MP +MR
. (12)

C. BENCHMARKING THE METHODS
To the best of our knowledge, although several image forgery
datasets have been published in this field, a standard dataset
that contains images that meet all of the following experimen-
tal criteria: ground-truth images, data for training, testing,
and validation, has not yet been constructed. Therefore, each
method was used to conduct experiments on its own setup
with several specific datasets, and it is difficult to compare
the performance of IFD methods in the field.

Table 3 lists the image splicing detection results for popular
forgery datasets. The best detection results for each dataset
are highlighted in bold font.

VI. CONCLUSION
In this study, we surveyed DL-based methods published in
the last five years for IFD problems. We categorized papers
in which methods based on the well-known DL backbone
architectures, such as CNN, LSTM, encoder-decoder, U-Net,
and R-CNN, were reported. A large number of state-of-the-
art methods and the most popular datasets were included in
this survey. The methods were discussed according to the
categories of backbone DL architectures and feature vectors.
Although DL-based IFD methods have achieved promising
results compared with traditional methods using handcrafted
features, there is room for different DL-based methods with
modifications to be considered in future research.
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