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Improving Performance of Motor Imagery-Based
Brain–Computer Interface in Poorly Performing

Subjects Using a Hybrid-Imagery Method
Utilizing Combined Motor and

Somatosensory Activity
Sangin Park , Jihyeon Ha , and Laehyun Kim

Abstract— The phenomena of brain-computer interface-
inefficiency in transfer rates and reliability can hinder
development and use of brain-computer interface technol-
ogy. This study aimed to enhance the classification per-
formance of motor imagery-based brain-computer interface
(three-class: left hand, right hand, and right foot) of poor
performers using a hybrid-imagery approach that combined
motor and somatosensory activity. Twenty healthy subjects
participated in these experiments involving the following
three paradigms: (1) Control-condition: motor imagery only,
(2) Hybrid-condition I: combined motor and somatosensory
stimuli (same stimulus: rough ball), and (3) Hybrid-
condition II: combined motor and somatosensory stimuli
(different stimulus: hard and rough, soft and smooth, and
hard and rough ball). The three paradigms for all partic-
ipants, achieved an average accuracy of 63.60±21.62%,
71.25±19.53%, and 84.09±12.79% using the filter bank
common spatial pattern algorithm (5-fold cross-validation),
respectively. In the poor performance group, the Hybrid-
condition II paradigm achieved an accuracy of 81.82%,
showing a significant increase of 38.86% and 21.04% in
accuracy compared to the control-condition (42.96%) and
Hybrid-condition I (60.78%), respectively. Conversely, the
good performance group showed a pattern of increasing
accuracy, with no significant difference between the three
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paradigms. The Hybrid-condition II paradigm provided high
concentration and discrimination to poor performers in
the motor imagery-based brain-computer interface and
generated the enhanced event-related desynchronization
pattern in three modalities corresponding to different
types of somatosensory stimuli in motor and somatosen-
sory regions compared to the Control-condition and
Hybrid-condition I. The hybrid-imagery approach can help
improve motor imagery-based brain-computer interface
performance, especially for poorly performing users, thus
contributing to the practical use and uptake of brain-
computer interface.

Index Terms— BCI inefficient, brain-computer interface,
motor imagery, motor imagery training, somatosensory
stimuli.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are computer-
based systems that enable control of external devices

and applications directly through brain signals [1], [2]. BCI
systems independent of external stimuli are fully controlled
by self-initiation, and motor imagery (MI) is a well-
known stimulus independent BCI [3], [4]. MI is a cognitive
process in which mental stimulation of body movements
occurs without execution [5], [6], [7]. MI-based BCI can
efficiently control external devices based on intuitive mapping
between interfaces and control commands and is widely used
in various applications [8], [9]. However, MI-based BCI
reveals lower transfer rates and reliability in the recognition
of a subject’s intent than other BCI methods, and this
phenomenon is prominent in poorly performing users [9].
Low transfer rates and reliability due to errors are major
factors that disincentivize the use of BCI systems [10].
To improve MI-based BCI transfer rates, methods have been
proposed to respond to errors using error-related potentials
or negativity [11], [12], [13], [14], [15]. However, this
approach provides only a temporary solution, instead of
a resolution [9]. Generally, 15-30% of users who try to
control an external device or system using BCI systems
cannot show a sufficient level of accuracy (<70% after BCI
training). The phenomenon is known as “BCI illiteracy”
[16], [17] or “BCI inefficiency” [18], [19]. A performance
of 70% is the minimum classification accuracy required for
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reliable communication with external devices or systems by
BCI [20]. The cause of BCI illiteracy and inefficiency remains
unknown [18]. BCI inefficiency can hinder the development
and wide use of BCI technology; therefore, it is necessary to
alleviate this problem [9], [21]. Moreover, a large proportion
of stroke patients are struggling due to BCI-inefficiency [22].
Understanding the BCI-inefficiency phenomenon can con-
tribute to the clinical application of BCI-based motor function
rehabilitation [23], [24].

Improving the performance of poorly performing users
in MI-based BCI is divided into technological (improving
feature extraction or classification algorithms) and human
factors (generating good quality EEG patterns via improve-
ment in training or feedback [i.e., visual, tactile, and
neurofeedback]) [25]. Studies have attempted to enhance
the performance of MI-based BCI for poorly performing
users by improving the algorithm for feature extraction
or classification [18], [26], [27], [28], [29]. Although the
average classification performance of MI-based BCI has been
enhanced by improving algorithms, such as feature extraction
or classification, poorly performing users still do not reach
a sufficient level of communication with external devices
or systems [18]. Reducing the percentage of BCI-inefficient
subjects requires the development of effective experimental
paradigms and training protocols [19]. BCI requires learning
or training [30], and its success is a major determinant of
performance [31].

Thus, many studies have focused on improving perfor-
mance by training and have reported a noticeable positive
effect. There has been research on (1) training using
vibrotactile feedback [32], [33] and an augmented reality
environment [34], (2) enhancement of brain activity (i.e.,
theta, alpha, and beta oscillations) by neurofeedback in
the resting state [35], [36] and a real-time biofeedback
mechanism [29], and (3) enhancement of cortical activity
(i.e., event-related desynchronization) by transcranial magnetic
stimulation [24], [37]. Researchers have also tried to enhance
a user’s cortical activity using training methods with stimuli
to improve the performance of BCI-inefficient users. A hybrid
training approach combining MI and somatosensory stimuli
reported improvements in the performance of subjects in
the hybrid training group than that in MI alone [3], [32].
A hybrid training method combining two or more modalities
can potentially enhance the patterns of MI features caused by
BCI paradigm and improve performance in poorly performing
users [38]. Our previous study also confirmed that combining
brain activity from the motor and somatosensory cortex
by hybrid training using tangible objects (i.e., hard and
rough balls) demonstrated improved classification performance
of MI-based BCI (three-class) in the poorly performing
group [9]. Compared to our previous studies, this study
is consistent with our previous study in terms of using
hybrid imagery combining motor and somatosensory sensation
from tangible objects. However, while past studies have
used the same type of tangible objects for the three
modalities (i.e., both hands and right foot), the present study
proposes using different types of tangible objects for each
modality.

This study aimed to improve the MI-based BCI performance
(three-class: left hand, right hand, and right foot) of poor per-
formers using a hybrid training method that combined motor

and somatosensory activity. We focused on hybrid training
for three-class MI using independent somatosensory stimuli
from each modality. This approach was divided into execution
and imagery sessions. The execution session involved hybrid
training in the use of motor execution (ME) and sensations
from tangible objects with characteristics of different types
in each modality (i.e., right hand: hard and rough ball;
left hand: soft and smooth ball; right foot: soft and rough
ball). The imagery session required participants to imagine
trained sensations in both the motor and somatosensory
systems simultaneously. The proposed method in this study,
which focused on poorly performing users, was compared
with MI and our previous hybrid method. In a previous
study, we confirmed that hybrid training methods using
somatosensory stimuli improved the classification accuracy
by activating both the somatosensory and motor cortices.
We believe that hybrid training using somatosensory stimuli
with different characteristics will increase discrimination for
MI-commands and increase concentration for the imagery
paradigm.

II. MATERIALS AND METHODS

A. Subjects
Twenty healthy subjects participated in the experiments

(10 women, all right-handed, average age 26.4±3.9 years)
and were paid 120,000 KRW each. All subjects had prior
experience with the MI experiment. Before participation, all
subjects were informed of the experimental protocol and
signed informed consent forms. This study was approved
by the ethics committee of the Korea Institute of Science
Technology, Seoul, South Korea (approval number: 2021-012).

B. EEG Recordings
A BioSemi ActiveTwo system with 64 channels (BioSemi

BV, Amsterdam, Netherlands) mounted on an EEG electrode
cap arranged in an international 10–20 montage was used to
record EEG signals. Two additional electrodes, a common
mode sense active electrode and a driven right leg passive
electrode, were used as reference and ground, respectively,
according to BioSemi’s design. The EEG signals were
measured at a sampling rate of 2048 Hz and down sampled to
256 Hz. The common average reference was used for offline
analyses.

C. Experimental Protocol
This experiment consisted of three paradigms: MI, hybrid-

condition paradigm I (HCI), and hybrid-condition paradigm
II (HCII). All paradigms involved execution and imagery
sessions. The experimental protocol composition was the same
among the three paradigms, but the BCI task applied to
execution and imagery sessions was different. Each paradigm
started with an execution session and proceeded to an imagery
session. The subjects were divided into two groups, good and
poor performers (BCI inefficient), to determine the effect of
the proposed hybrid-imagery paradigm on poor performers.
BCI inefficient subjects had a classification performance of
<70% for three classes in the MI paradigm based on previous
studies [18], [39], and the remaining subjects were good
performers (>70% accuracy).
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Fig. 1. Overview of experimental environment. (A) Experimental
environment. (B) Control room: monitoring of experimental procedure
and subject’s behavior, and measuring EEG signals. (C) Control
condition (CC): kinesthetic imagery without somatosensory stimuli.
(D) Hybrid condition I (HCI): somatosensory stimuli of same type (hard
and rough ball). (E) Hybrid condition II (HCII): somatosensory stimuli of
different type (soft and smooth ball: left hand; hard and rough ball: right
hand; soft and rough half-ball: right foot).

The subjects comfortably sat a meter away from the monitor
screen in an electrically shielded room. They were asked to
perform a task. The screen presented cues as follows: At
the beginning of each trial (T=0 s), a fixation cross (“+”)
appeared at the center of the screen for 2 s. At T=2 s, a video
of the telepresence robot moving to a three-way crossroad
was presented until the rest period of each trial. Five types
of videos were presented at a count-balanced random. The
video involved a visual cue of arrow type in the left, right, and
forward directions. The target cue was highlighted when the
telepresence robot reached the three-way crossroad (T=4 s),
and the subjects were asked to perform execution or imagery
tasks for 3 s. The left, right, and forward arrows indicated the
left hand, right hand, and right feet, respectively. The classes
were presented at a count-balanced random. At T=7 s, the
subjects were instructed to relax until they received feedback
using a keypress. Each block consisted of 50 trials with an
inter-block interval of 60 s. The entire execution and imagery
task consisted of 150 trials (three blocks) and 300 trials (six
blocks), respectively. The subjects were asked to restrict eye
and body movements related to muscle contraction during
the imagery session but not during the training session.
Finally, we conducted a post-experimental interview. Subjects
were instructed to report their feelings or experiences for
each paradigm and the differences between them using the
following questions: (1) Question 1: Which method in each
paradigm is better for conducting a BCI-task? (2) Question 2:
Why do you think this method is better compared to others?
(open-ended questions). The experimental environment and
protocol are illustrated in Figs. 1 and 2, respectively.

1) Control-Condition Paradigm (CC): For the ME session,
subjects were instructed to perform clenching of the left and
right hands or step on the right foot according to the cue
on the screen. In the MI session, the subjects were asked to
mentally simulate their physical movements performed in the
ME session (i.e., kinesthetic imagery).

2) Hybrid-Condition Paradigm I (HCI): For HCI, same
somatosensory stimuli of ball type were applied to both
hands and the right foot (i.e., hard and rough tangible balls)
(Fig. 2(B)). During the execution of HCI (HCIE), the subjects
were instructed to clench hard and rough tangible balls in their
left or right hands or step on a hard and rough half-ball. In the
imagery task of HCI (HCII), subjects were required to imagine
both the motor and somatic sensory sensations from tangible
objects (i.e., hybrid-imagery) trained in HCIE even when there
was no physical movement or somatosensory stimuli.

3) Hybrid-Condition Paradigm II (HCII): Execution and
imagery sessions in HCII (HCIIE and HCIII) were consistent
with HCI but differed in the somatosensory stimuli applied in
both hands and the right foot. The left hand, right hand, and
right foot used hard and rough balls, soft and smooth balls,
and hard and rough half balls, respectively (Fig. 2(C)).

This study used a “within-subjects” design and all
participants performed the CC, HCI, and HCII paradigms.
The three paradigms were conducted on consecutive days,
at the same time of day for three days (e.g., first day, CC;
second day, HCI; third day, HCII), and the order between
the three paradigms was randomly assigned. Moreover, this
work attempted to minimize individual differences in the
force or speed of movements. The force and speed of hand
clenching involving mental simulation could affect brain
activities [40], [41]. Electromyogram (EMG) signals were
recorded from the left hand, right hand, and right foot during
the execution session. Subjects were asked to control the
force at 50% of their maximum voluntary contraction (MVC).
It was trained by feedback of force and speed results of each
trial using a sub-screen in only the execution session, and
they were required to maintain consistency in the imagery
paradigm. EMG signals were measured at 2048 Hz using
a BioSemi ActiveTwo system. MVC was calculated by:
(1) Down-sampling at 256 Hz. (2) DC component removal
using a 0.5 Hz high-pass filter. (3) Signal smoothing using
a 1 Hz low-pass filter. (4) Root-mean-square processing
(Fig. 3). EMG signal processing was performed using
MATLAB toolbox (2020b, Mathworks Inc., Natick, MA,
United States).

D. Feature Extraction and Classification
In this study, our goal is enhancing the performance of

MI-BCI in poorly performing users using the hybrid-imagery
method. We used the filter bank common spatial pattern
algorithm (FBCSP) [42]. FBCSP is the generally recognized
benchmark method in the MI-BCI field and also serves as the
baseline for comparison in most papers. Thus, we selected
a widely used feature extraction method to compare the
practical effect of the proposed method in this study with
that of previous studies. To obtain optimization results for
feature extraction and classification, we used “scikit-learn”
(ver. 0.24.2) in Python (ver. 3.6.9.).

We used thirty EEG channels that measured activation of the
supplementary motor area and both motor and somatosensory
cortices (FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, TP10,
CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, FT7, FC3, C1,
C5, TP7, CP3, CPz, CP4, TP8, C6, C2, FC4, FT8) [3], [43].
An infinite impulse response filter (4–40 Hz) was applied to
the selected EEG signals, and the EEG artifacts were removed
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Fig. 2. Overview of experimental protocol for the three paradigms. (A) Control-Condition Paradigm (CC): motor execution and imagery tasks
without somatosensory stimuli. (B) Hybrid-Condition Paradigm I (HCI): execution and imagery tasks using both motor and somatosensory stimuli of
same type (i.e., hard and rough ball). (C) Hybrid-Condition Paradigm II (HCII): execution and imagery tasks using both motor and somatosensory
stimuli of difference type (i.e., soft and smooth ball, hard and rough ball, and soft and rough half-ball).

Fig. 3. (A) Electrode positions of the three channels in the
electromyogram (EMG) to control the force and speed of movements
(i.e., left hand, right hand, and right foot) using feedback. (B) Signals
processing of EMG. (C) Monitoring screen for results of EMG.

using a wavelet-based neural network (WNN) [44]. The WNN
is widely used in electrooculogram artifact removal algorithms.
This algorithm combined the approximating capability of both
neural network and wavelet transform to locate and eliminate
artifacts.

Preprocessed EEG data were extracted from the time
window of the MI task (2.4–4.4 s). The time window was
determined by considering about 0.4 s was required for the
motor response preparation after the cue [45], [46]. For feature
extraction, FBCSP was conducted as follows [47], [48], [49].
We used a filter bank that decomposes the EEG signal into
multiple frequency pass bands using a total of 9 band-pass
filters, namely, 4 to 8 Hz, 8 to 12 Hz, 12 to 16 Hz, 16 to 20 Hz,
20 to 24 Hz, 24 to 28 Hz, 28 to 32 Hz, 32 to 36 Hz, and
36 to 40 Hz. We performed common spatial pattern (CSP)
spatial filtering, whereby each pair of band-pass and spatial
filters computes the CSP features that are specific to the band-
pass frequency range by linearly transforming the EEG signal.
We selected discriminative CSP features for the subject’s task
using the mutual information-based best individual feature
algorithm (MIBIF). Finally, we used support vector machine
to classify the selected CSP features [42]. We conducted this
procedure using 5-fold cross-validation.

E. Statistical Analysis
Repeated measures of classification performance of BCI

task on three paradigms were taken (i.e., CC, HCI, HCII)

for each participant within the same experiment. Thus,
in the statistical analysis, one-way repeated measures analysis
of variance (RM-ANOVA) was applied. RM-ANOVA (also
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TABLE I
CLASSIFICATION ACCURACY FOR THREE-CLASS MI-BASED

BCI IN THREE PARADIGMS (CC, HCI , AND HCII )

known as within-subjects ANOVA) was used to determine
whether three or more group measurements were significantly
different for the same participant in each group [50]. If the
distribution did not pass the normality test, the Friedman
test was conducted. It is a nonparametric alternative to
a one-way RM-ANOVA, repeated measures design whose
distribution is not normal [51]. To identify the statistical
significance of pairwise groups, post-hoc analyses were
conducted using a paired samples t-test (i.e., RM-ANOVA) and
the Wilcoxon signed-rank test (i.e., Friedman test) according
to the normality. Additionally, this study provides information
on the effect size to confirm the practical significance of
RM-ANOVA and Wilcoxon signed-rank test based on the

Fig. 4. Comparison of classification accuracy for three-class between
CC, HCI, and HCII paradigms with RM-ANOVA results. Error bars
indicate standard errors (ns: non-significant; ∗∗p < 0.01; ∗∗∗p < 0.001).

partial eta-squared value (ηp2) and the r statistic, respectively.
The standard values for practical significance of 0.01, 0.06,
and 0.14 in ηp2 were regarded as small, medium, and
large, respectively [52]. The effect size for the r values of
0.1, 0.3, and 0.5 was defined as small, medium, and large,
respectively [53]. All statistical data analyses were conducted
using IBM SPSS Statistics 21.0 for Windows (SPSS Inc.,
Chicago, IL, USA).

III. RESULTS

A. Classification Accuracy for Three-Class
We compared the classification performance of CC,

HCI, and HCII paradigms in distinguishing between the
three classes of MI-based BCI. CC, HCI, and HCII for
all participants, achieved the average accuracy (kappa) of
63.60±21.62% (0.45±0.33), 71.25±19.53% (0.57±0.30), and
84.09±12.79% (0.76±0.19) using FBCSP, respectively. All
data were subjected to the Shapiro–Wilk normality test with a
p-value (p) of 0.05, at the 5% significance level (p > 0.05).
One-way Rm-ANOVA with Greenhouse–Geisser correction
revealed statistically significant differences between the three
paradigms (F1971,37.444 = 8.877, p < 0.001, ηp2 = 0.200).
Post-hoc analysis with Bonferroni adjustments revealed a
statistically significant difference between the three paradigms:
HCI and HCII (M = −12.845, SE = 4.635, p < 0.05) and
CC versus HCII (M = −20.490, SE = 5.154, p < 0.01).
No significant differences were found between CC and HCI
paradigms (M = −7.645, SE = 4.941, p > 0.05) (Fig. 4).
The HCII paradigm achieved 9.13% and 7.51% larger CC and
HCI paradigms, respectively (Table I).

B. Comparison of Classification Accuracy Between
Good and Poor Performers for the Three Paradigms

Good and poor performers were defined based on 70%
classification accuracy in CC paradigm (i.e., poor performer >

70% ≥ good performer) [18], [39]. The subjects were divided
into two groups: (1) Good performer group (4 women, average
age 27.3±4.2 years): Sub. 2, 5, 8, 13, 15, 16, 17, 18, 19,
and 20. (2) Poor performer group (6 women, average age
24.9±2.1 years): Sub. 1, 3, 4, 6, 7, 9, 10, 11, 12, and 14.
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Fig. 5. Comparison of classification accuracy (three-class) for CC, HCI, and HCII paradigms between poor (A) and good performer groups (B) with
Friedman test results (C). Error bars indicate standard errors (ns: non-significant, ∗p < 0.05; ∗∗p < 0.01, ∗∗∗p < 0.001).

TABLE II
CLASSIFICATION AVERAGED ACCURACY FOR THREE-CLASS MI-BASED

BCI IN THREE PARADIGMS (CC, HCI , AND HCII ) BETWEEN GOOD

AND POOR PERFORMER GROUPS

Fig. 5 and Table II summarize the classification perfor-
mances of the good and poor performer groups in the three
paradigms. In the poor performer group, the HCII paradigm
achieved an accuracy of 81.82%, showing an increase of
38.86% and 21.04% in accuracy compared to CC (42.96%)
and HCI (60.78%) paradigms, respectively. In the good
performer group, the HCII paradigm achieved an accuracy
of 86.359%, showing an increase of 2.12% and 4.65%
in accuracy compared to CC (84.24%) and HCI (81.71%)
paradigms, respectively. Data from all groups did not pass the
Shapiro–Wilk normality test (p < 0.05), and we conducted the
Friedman test. In the poor performer group, the Friedman test
showed a statistically significant difference among the three
paradigms (X2(2) = 13.40, p < 0.001). The Wilcoxon signed-

rank test demonstrated significant differences in classification
accuracy between CC and HCII (T = −2.803, p < 0.01, r
= 0.84), and HCI and HCII (T = −2.293, p < 0.05, r =

0.51). However, no significant difference was found between
CC and HCI (T = −1.886, p < 0.05, r = 0.51). In the good
performer group, no significant difference was found using the
Friedman test (X2(2) = 1.28, p > 0.05).

We analyzed the power spectrum on mu- (8-12 Hz)
and beta-bands (18-25 Hz) to show event-related desyn-
chronization/synchronization (ERD/ERS) patterns (Fig. 6 and
Fig. 7). For time series plots for ERD with respect to
each class (right hand, left hand, and right foot), we used
C3, C4, and Cz, respectively. The topographies during
right hand task in all conditions are shown in Fig. 6 (A)
and Fig. 7 (A). Desynchronization at the contralateral motor
area was noticeable. In time series plots (Fig. 6 (A) and
Fig. 7 (A)), ERD was also noticeable (i.e., lower EEG power).
In each group, however, the desynchronization pattern of
poor performers on CC was weak relative to HCI and
HCII. As shown in time series plots during left hand task
in all conditions in Fig. 6 (B) and Fig. 7 (B), ERD at the
contralateral motor area was also noticeable. In each group,
however, ERD of poor performers on CC was weak relative to
HCI and HCII. As shown in Fig. 6 (C) and Fig. 7 (C), ERS at
Cz is apparent for all conditions, but ERD at C3 and C4 were
more noticeable in HCII. In Fig. 6 and Fig. 7, the topographies
in HCII in all groups showed the strongest deactivation pattern
in the primary somatosensory area (CPz).
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Fig. 6. Topographies and time series plots on mu-band (8-12Hz) power
in all trials among the three groups (all participants, good performers,
and poor performers) with respect to three conditions (CC: control
condition, HCI: hybrid condition I, and HCII: hybrid condition II). (A)
Topographies and time series plots during right hand, (B) left hand, and
(C) right foot conditions.

C. Classification Accuracy for Two-Class
For right and left hands, CC, HCI, and HCII for all partici-

pants achieved the average accuracy (kappa) of 72.32±19.69%
(0.45±0.39), 78.75±15.19% (0.58±0.30), and 87.59±15.35%
(0.75±0.31), respectively. In the good performer group, the
HCII achieved an accuracy of 90.81%, showing an increase of
0.98% and 5.64% in accuracy compared to CC (89.84%) and
HCI (85.17%), respectively. In the poor performer group, the
HCII achieved an accuracy of 84.36%, showing an increase of
29.55% and 12.03% in accuracy compared to CC (54.81%)
and HCI (72.33%), respectively, as shown in Figure 8(A).

For right hand and right foot, CC, HCI, and HCII
for all participants, achieved the average accuracy (kappa)
of 76.68±22.06% (0.53±0.44), 80.79±17.50% (0.62±0.35),
and 94.12±5.60% (0.88±0.11), respectively. In the good
performer group, the HCII achieved an accuracy of 92.80%,

Fig. 7. Topographies and time series plots on beta-band (18-25Hz)
power in all trials among the three groups (all participants, good
performers, and poor performers) with respect to three conditions (CC:
control condition, HCI: hybrid condition I, and HCII: hybrid condition II).
(A) Topographies and time series plots during right hand, (B) left hand,
and (C) right foot conditions.

showing a decrease of 1.24% and an increase 2.86% in
accuracy compared to CC (94.04%) and HCI (89.93%),
respectively. In the poor performer group, the HCII achieved
an accuracy of 95.45%, showing an increase of 36.12% and
23.81% in accuracy compared to CC (59.33%) and HCI
(71.64%), respectively, as shown in Figure 8(B).

For left hand and right foot, CC, HCI, and HCII
for all participants achieved the average accuracy (kappa)
of 74.08±19.57% (0.48±0.39), 80.60±17.58% (0.61±0.35),
and 89.42±13.89% (0.79±0.28), respectively. In the good
performer group, the HCII achieved an accuracy of 91.06%,
showing an decrease of 2.28% and an increase 2.30% in
accuracy compared to CC (88.77%) and HCI (88.75%),
respectively. In the poor performer group, the HCII achieved
an accuracy of 87.78%, showing an increase of 28.39% and
15.32% in accuracy compared to CC (59.39%) and HCI
(72.46%), respectively, as shown in Figure 8(C).
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Fig. 8. For CC, HCI, and HCII paradigms, comparison of classification
accuracy (two-class) between right and left hands (A), right hand and
right foot (B), and left hand and right foot (C). Filled circles denote poor
performers and squares denote good performers.

D. Results of Subject’s Interviews
1) Question 1: Which Method in Each Paradigm Is Better for

Conducting a BCI-task?: For question 1, the response rates for
CC, HCI, and HCII paradigms in the good performer group
(10 subjects) were reported as 8 (80%), 1 (10%), and 1 (10%),
respectively. Conversely, the response rates for CC, HCI, and
HCII paradigms in the poor performer group (10 subjects)
were 0 (0%), 1 (10%), and 9 (90%), respectively. The good and
poor performer groups had the highest percentage of choosing
the CC and HCII paradigms, respectively.

2) Question 2: Why Do You Think This Method Is Better
Compared to Others?: For question 2, many subjects in
the good performer group reported that previously experi-
enced CC paradigms were more familiar and helpful than
hybrid paradigms, and the hybrid paradigms felt confusing.
Conversely, the poor performer group reported that hybrid
paradigms were more useful and helpful in performing
kinesthetic MI because of the somatosensory stimuli. They

TABLE III
RESULTS OF SUBJECTIVE INTERVIEW FOR EXPERIENCE BETWEEN

THREE PARADIGMS

also experienced difficulties with MI. Further, HCII was more
helpful in specifying kinesthetic MI than HCI because it had
high discrimination by independence of somatosensory stimuli
applied to each modality (Table III).

IV. DISCUSSION

A. Summary of Findings
This study had aimed to improve the performance of

MI-based BCI in a poor performer group (i.e., BCI
inefficient subjects). Thus, this study proposes a unique
approach based on hybrid training and imagery paradigms
using somatosensory stimuli. The proposed approach (HCII
paradigm) achieved an average accuracy of 84.09% for
all participants, which was 20.49% and 12.85% greater
than that of CC (63.60%) and HCI (71.25%) paradigms,
respectively. In the poor performer group, the average
classification performance of HCII was 38.86% and 21.04%
higher than that of CC and HCI, respectively. However, the
good performer group showed a slight increase (2.12% and
4.65%) in performance in HCII compared with CC and HCI,
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respectively. This study confirmed that hybrid training and
imagery paradigms using different types of somatosensory
stimuli could improve the performance of MI-based BCI,
particularly in the poor performer group.

B. Improving the Classification Performance by Hybrid
Paradigms Compared to MI

Previous studies have reported that the hybrid-imagery
approach using motor and somatosensory stimuli could
enhance the performance of BCI compared to using only
motor function. A study [32] showed that the hybrid modality
group combined with motor and somatosensory attentional
orientation (SAO) (i.e., vibration stimulus) achieved an
average accuracy for two-class BCI 11.13% and 10.45%
higher than MI and selective sensation groups, respectively.
Another study reported that a hybrid modality (MI and
SAO) achieved an average classification accuracy for two
classes that was 7.70% and 7.21% larger than that of MI
and SAO alone, respectively [3]. Our previous study also
confirmed that a hybrid method of imagery that combines
ME and somatosensory sensation using a tangible object of
the same type (i.e., a hard and rough ball) could enhance
the average classification performance by 10.73% compared
to MI alone [9]. The hybrid-imagery approach can help
generate quality EEG patterns because somatosensory stimuli
are strongly related to consistent imagining [9]. BCI-inefficient
subjects reported difficulties in specifying their imaginations
in MI tasks [9], [17], and inconsistent MI can adversely affect
the quality of EEG patterns [54], [55]. Furthermore, SAO
and MI have distinctive neurophysiological origins, such as
the somatosensory and motor cortices, respectively [3], [56].
The hybrid-imagery approach induces activation of both the
somatosensory and motor cortices and can have a positive
effect on the EEG pattern’s quality [3], [9]. MI-based BCI
alone probably has already reached the limit of enhancement
of classification performance [9], [57]; thus, a new approach
is needed to improve performance (i.e., BCI-inefficient
users) [58]. This approach complements previous research
based on technological factors in MI, which has improved the
performance of BCI-inefficient subjects exclusively by feature
extraction and classification algorithms [59], [60].

C. Novel Hybrid-Approach to Enhance BCI Performance
in BCI-Inefficient Subjects

This study proposes a development approach from our
previous study [9] to enhance the three-class BCI performance
of BCI inefficient users by hybrid-imagery activating both
the motor and somatosensory cortices using the sensation
of tangible objects. We attempted to increase discrimination
for three modalities (i.e., both hands and right foot) by
differentiating the somatosensory stimuli applied to each
modality (i.e., tangible objects: hard and rough, soft and
smooth balls, and hard and rough types), including the effect
of the hybrid-imagery paradigm. The proposed method (HCII)

significantly increased classification performance by 8.01%
and 13.09% compared to our previous research (HCI) and
CC, respectively, in the poorly performing group. Conversely,
the good performer group showed an increasing trend in

performance with no significant difference between the three
paradigms.

We believe that there are multiple reasons for the enhanced
classification performance in the poor performer group.
The first is the materialization of the imagery procedure
and high concentration on the BCI task by different
types of somatosensory stimuli. Different stimuli applied to
each modality increased the discrimination of the subject’s
imagination process for tasks of the three classes. We believe
that HCII positively helped poorly performing subjects who
had difficulty conducting MI alone and specified and discerned
the object of imagination. Our interpretation is supported by
the results of the post-experiment interviews on the subject’s
experience with the experimental paradigms. Subjects in
the poor performer group preferred the hybrid paradigm
compared to MI alone; moreover, HCII had different types
of somatosensory stimuli that helped them focus and specify
their imagery procedure. The good performer group reported
that the established MI approach was more familiar among
the hybrid paradigms and felt confused about the new
approach. Second, the different types of somatosensory stimuli
generated a quality EEG pattern in both the motor and
somatosensory area by discrimination enhancement. That
is, different types of stimuli applied to each modality of
three-class caused enhanced ERD patterns of mu- and beta-
bands in the primary motor area. As shown Fig. 6 and
Fig. 7, EEG activities of good performers were naturally
the same as in previous studies, regardless of condition
[61], [62]. However, EEG activities of poor performers were
different than those of the good performers. As shown in
topographies and time-series plots for the right hand of poor
performers, ERD patterns appeared strongly at HCII. These
trends were similar to those of good performers. Similarly,
in other classes (left hand and right foot), EEG activities of
poor performers were similar to those of good performers.
Previous studies reported that somatosensory stimuli, which
differs in its pattern or type, induces other patterns of
cortical activity [63], [64], [65], [66]. In addition, imagery
and execution of somatosensory stimulation can facilitate
cortical excitability [67], [68]. In this study, our results for
HCII also indicated that the EEG activities (deactivation) at
somatosensory area (CPz) appeared strong not only in poor
performers, but also good performers. We believe that the
activity pattern in the somatosensory area can be influenced
by different types of tangible objects, which lead to improved
classification performance in HCII compared to that in HCI by
increasing discrimination and generating quality EEG patterns.

D. Limitations
MI-based BCIs are used in neurorehabilitation therapy

to restore impaired motor function in stroke patients [69].
Because a large proportion of stroke patients is closely related
to BCI-inefficiency users [22], the proposed approach may
help those who are unable to perform voluntary movements,
restoring motor function by applying passive movement using
external devices. However, this study recruited only healthy
participants. The limitations of validation for stroke patients
need to be considered in further studies. Moreover, the MI-BCI
familiarity of subjects might have influenced the conclusion
of this study, because this study only recruited subjects who
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had prior experience in MI experiments. The performance
enhancement of MI-BCI on new users who have no or little
experience cannot be guaranteed by the findings of this work,
and this needs to be considered in further studies.

V. CONCLUSION

Using a modality-independent somatosensory stimulus and
the hybrid-imagery paradigm to simulate both motor and
somatosensory stimuli significantly enhanced the three-class
BCI performance in the poor performer group. A modality-
independent somatosensory stimulus provided high concentra-
tion and discrimination to poor performers during MI-based
BCI and generated a quality EEG pattern to represent MI.
This improved classification accuracy compared to MI alone
and a previous approach. The hybrid-imagery approach can
help improve MI-BCI performance, address BCI illiteracy, and
will be applicable to neurorehabilitation research to restore
impaired motor functions. Our findings can contribute to the
practical use and uptake of BCI. We believe that various
types of somatosensory stimuli or modalities combinations
may significantly improve BCI performance and should be
investigated in the future.
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