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Abstract— Ultrasonography is an important routine
examination for breast cancer diagnosis, due to its non-
invasive, radiation-free and low-cost properties. However,
the diagnostic accuracy of breast cancer is still limited
due to its inherent limitations. Then, a precise diagnose
using breast ultrasound (BUS) image would be significant
useful. Many learning-based computer-aided diagnostic
methods have been proposed to achieve breast cancer
diagnosis/lesion classification. However, most of them
require a pre-define region of interest (ROI) and then clas-
sify the lesion inside the ROI. Conventional classification
backbones, such as VGG16 and ResNet50, can achieve
promising classification results with no ROl requirement.
But these models lack interpretability, thus restricting
their use in clinical practice. In this study, we propose
a novel ROI-free model for breast cancer diagnosis in
ultrasound images with interpretable feature representa-
tions. We leverage the anatomical prior knowledge that
malignant and benign tumors have different spatial rela-
tionships between different tissue layers, and propose
a HoVer-Transformer to formulate this prior knowledge.
The proposed HoVer-Trans block extracts the inter- and
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intra-layer spatial information horizontally and vertically.
We conduct and release an open dataset GDPH&SYSUCC
for breast cancer diagnosis in BUS. The proposed model
is evaluated in three datasets by comparing with four
CNN-based models and three vision transformer mod-
els via five-fold cross validation. It achieves state-of-
the-art classification performance (GDPH&SYSUCC AUC:
0.924, ACC: 0.893, Spec: 0.836, Sens: 0.926) with the best
model interpretability. In the meanwhile, our proposed
model outperforms two senior sonographers on the breast
cancer diagnosis when only one BUS image is given
(GDPH&SYSUCC-AUC ours: 0.924 vs. readeri: 0.825 vs.
reader2: 0.820).

Index Terms—Breast cancer diagnosis, transformer,
ultrasound, anatomical structure.

|. INTRODUCTION

REAST cancer is the most commonly diagnosed cancer
and the leading cause of cancer death in women glob-
ally [1]. Early breast cancer diagnosis can reduce mortality
and increase survival rates [2]. Breast ultrasound (BUS) is
an important imaging modality for breast cancer diagnosis
and screening because it is low-cost, non-invasive, radiation-
free, and relatively more sensitive for dense breast tissue [3].
In addition, ultrasound is effective at the differentiation of
cysts from solid lesions [4]. Therefore, it is meaningful for
breast cancer patients if there exists a precise diagnostic

method for BUS, especially for the dense breast patients.
Currently, BUS evaluation generally relies on the subjective
evaluation of sonographers. However, the diagnostic accuracy
of ultrasound is constrained by the limited number of special-
ized sonographers. In addition, a high intra- and inter-observer
variability exists even among expert sonographers. To over-
come such difficulties, a series of computer-aided diagnosis
(CAD) systems [5], [6], [7] have been constructed to help
sonographers with a more efficient and more precise breast
cancer diagnosis. With the recent advancements of deep
learning models, the performance of the diagnostic models
even outperforms expert sonographers [8] and can reduce
the false-positive rate for sonographers [9]. Even though
existing models have already achieved outstanding diagnostic
performance, most of them are st ill a ‘black box’, which lacks
interpretability. Furthermore, since the open-source data in the
community is very limited, existing models either evaluated
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Fig. 1. Anatomical structure of breast in ultrasound images. (a) Malignant
tumor. (b) Benign tumor.

the performance on a relatively small open dataset (BUSI [10]
or UDIAT [11]) or their private datasets. The clinical usability
of the diagnostic model should be further assessed.

In this paper, we promote automatic breast cancer diag-
nosis in ultrasound images in the following two aspects,
data resources and methodology. First, we release a large
breast lesion classification dataset GDPH&SYSUCC, which
was collected from two medical centers with 886 benign and
1519 malignant images, for a total of 2405 BUS images.
We only provide the whole BUS images without ROI annota-
tions. Then, we propose an interpretable breast cancer diagno-
sis model for BUS. We find that the sequential data analysis
nature of the transformer perfectly fits the anatomical prior
of the breast ultrasound image. As shown in Fig. 1, there are
four layers from top to bottom, including subcutaneous fat
layer, gland layer, muscle layer and thorax layer. Malignant
tumors always start from the gland layer (horizontally) and
invade the deeper layers (vertically). Benign breast tumors
typically originated in the glandular tissue and destructed
the gland continuity (horizontally). Therefore, we design an
anatomy-aware model, called HoVer-Transformer (in short
HoVer-Trans), which considers the prior knowledge of the
anatomical structure in BUS. We propose a HoVer-Trans
block to extract the inter-layer spatial information horizontally
and the intra-layer spatial information vertically. In HoVer-
Trans, we introduce convolutional layers to joint two adjacent
transformer stages to fuse the horizontal and vertical image
features and to introduce inductive bias.

The proposed HoVer-Trans is evaluated by extensive exper-
iments, including comparisons with state-of-the-art (SOTA)
methods in several datasets, model interpretability and ablation
studies. HoVer-Trans achieves comparable quantitative perfor-
mance in all the datasets. The visualization heatmaps also
demonstrate that HoVer-Trans is able to pay attention to the
malignant lesion boundary (invasive margin), which proves the
horizontal and vertical design successfully learned anatomical
prior knowledge. Ablation studies demonstrate the effective-
ness of each specific technical design. We also compare our
proposed model with two senior sonographers. HoVer-Trans
outperforms both sonographers in the entire dataset and
Breast Imaging-Reporting and Data System(BI-RADS) sub-
group analysis under the same condition. The main contribu-
tions of this paper are summarized as follows.

e We release a new breast cancer classification dataset,

GDPH&SYSUCC which is the largest open dataset in
this field.

e We propose an anatomy-aware model HoVer-Trans to
fully automatically classify the breast lesion and achieve
comparable performance compared with six baseline
models.

e HoVer-Trans is able to provide the interpretable evidence
to support the decision of the model.

1. RELATED WORKS

Deep learning techniques have dominated almost all the
medical imaging modalities, including MRI [12], CT [13],
histopathological images [14] and etc. In this section, we sum-
marize the previous research works on breast cancer diagnosis
in ultrasound images [15] and the transformer-based medical
image classification models [16].

A. Breast Cancer Diagnosis in Ultrasound Images

Ultrasonography is one of the most common and
non-invasive imaging modalities for breast cancer screening
and diagnosis. Precisely detecting and diagnosing malignant
tumors allows early intervention to reduce mortality. There-
fore, CAD algorithms haven been designed to automatically
and objectively evaluate breast ultrasonography. With the
recent advances in deep learning [17], researchers started to
solve various clinical prediction applications in a data-driven
manner and achieved outstanding performances in breast can-
cer diagnosis, such as lesion classification [4], [18], axillary
lymph node status prediction [19], sentinel lymph node status
prediction [20] and even molecular status prediction [21].

Currently, deep learning-based models have already domi-
nated the breast lesion classification. Byra et al. [22] trans-
ferred the model pre-trained on ImageNet to fine-tune the
breast mass classification model, which is a popular way for
small- or mid-sized data. Some researchers [23] ensembled
the deep features from multiple classification architectures and
applied machine learning classifiers for breast ultrasonography
image classification. Zhuang et al. [24] proposed an image
decomposition and enhancement method to enrich the infor-
mation of the ultrasound image. Qian et al. [4] aggregated the
multimodal ultrasound images for an explainable prediction to
support the clinical decision-making of the sonographers and
increase the confidence levels of the decision. Cui et al. [25]
proposed an FMRNet to fuse combined tumoral, intratumoral
and peritumoral regions to represent the whole tumor hetero-
geneous. Zhang et al. [26] incorporated both classifying breast
tumors and interpretable morphological BI-RADS descriptors
for BUS images into the classification task. Zhang et al. [27]
converted BUS images to feature maps with BI-RADS fea-
tures. Feature maps were used to classify breast tumors under
semi-supervised learning and to reconstruct feature maps
guided by lesion classification under unsupervised learning.
Di et al. [28] introduced a saliency-guided approach to dif-
ferentiate the foreground and background regions by two
separated branches. A hierarchical feature aggregation branch
was proposed to fuse the features from both branches and
make the inference. Qi et al. [29] designed two identical CNN
backbones to identify the malignant tumor and solid nodule
separately. The class activation maps generated from two CNN
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backbones were used to guide each other. They validated the
proposed model in a large dataset with 8145 breast ultra-
sonography images. Unfortunately, the dataset in this paper
is private.

For the breast lesion classification, even though existing
models have already achieved comparable performance with
sonographers, it is still worth to keep discovering the potential
values of deep learning models from different perspectives.
People now pay more attention to clinical usability other than
only considering the accuracy. The clinical usability reflects in
the following factors. (1) Accuracy: Whether the model pre-
diction results are more accurate than sonographers. (2) Inter-
pretability: Whether the model can provide any sonographic
symptom or evidence to support the decision. (3) Model
Convenience: Whether the model is fully automated without
any user input, like manual segmentation or predefined ROISs.

B. Transformer-Based Medical Image Classification

Transformer [30] is originally designed for natural lan-
guage processing. It has been widely used in sequential data
analysis thanks to the elegant self-attention mechanism [31].
The invention of the vision transformer (ViT) [32] is leading
the transformer-based models toward the computer vision
applications by cropping the image into several small tiles
(visual words). Swim transformer [33] introduces multi-scale
information like a CNN model does by a hierarchical struc-
ture and shifted windows. Sooner, various transformer mod-
els [34] were proposed for medical image classification, such
as COVID-VIT for CT chest COVID-19 classification [35],
TransMIL for pathology image classification [36], MIL-VT
for fundus image classification [37] and etc.

Instead of designing a complex black-box model for breast
cancer prediction, we intend to take model interpretability,
generalizability and convenience into consideration. By for-
mulating the anatomical prior knowledge into the transformer
model design, the proposed model demonstrates superior
predictive ability while can provide interpretable features to
support the decisions.

I1l. METHODOLOGY

The anatomical structures of the breast can be observed in
the ultrasound images. The malignant tumor and the benign
tumor demonstrate different spatial relationship between the
lesion and different anatomical layers. By leveraging this prior
knowledge, we propose an anatomy-aware model for fully
automatic breast cancer diagnosis in ultrasound images. In this
section, we demonstrate the methodology of the proposed
model, shown in Fig. 2. First, we introduce the key idea of
the anatomy-aware formulation in Sec. III-A. Based on this
idea, the HoVer-Trans stage is proposed in Sec. III-B. Next,
we define the overall network structure of the proposed model
in Sec. III-C. Sec. III-D shows the implementation details.

A. Anatomy-Aware Formulation

According to the ultrasound imaging principles and the
anatomical structure of the breast, different breast tissues form
different layers clearly in the ultrasound images, as shown in

Fig. 1. The size, location and morphological appearance of the
lesion and the spatial relationship with different layers deter-
mine the malignancy of the lesion. Conventional CNN models
are good at extracting representative local features but show
less effective spatial relationship representation ability. That is
the reason why most of the existing breast cancer diagnosis
algorithms in ultrasound images need a pre-defined ROI of the
lesion to remove the redundant area and let the CNN model
classify the ROIL. The self-attention nature of the transformer
introduces strong spatial relationships of each visual word,
as shown in Fig. 3 (a). To further exploit the intra-layer
and inter-layer spatial correlations in BUS, we formulate the
problem by transforming the square-shape visual words into
horizontal and vertical strips to bring the anatomical prior
knowledge into the model, as shown in Fig. 3 (b).

B. HoVer-Trans Stage

Since our proposed model is constructed on top of the ViT
structure, we first briefly introduce ViT at the beginning of
this part. And then we show how the proposed HoVer-Trans
stage is constructed.

1) Vision Transformer: Vision transformer (ViT) [32] is the
first to bring the most popular technique in natural language
processing into the computer vision world. It tessellates the
input image x € R¥*WxC into patches x, € RVX(P*-C) angd
regards them as the visual words (tokens), where (H, W, C)
and (P, P, C) are the resolution with channels of the input
image and the patches, respectively. N is the number of
patches. For each visual word, they transform the 2D image
into a 1D vector, called patch embedding. Multi-head self-
attention mechanism builds spatial correlations across different
tokens. The formulation of ViT is shown as:

Z0 = [Xclass: x},E, xf,E, s XNE, 1+ E o,
E ¢ R(Pz-C)XD, E,os € RW+DxD (1)
z) = MSA(LN(z—1)) + 21—
z; = MLP(LN(z))) + z,
y = LN(@z}) @)

where E, E,,;, MSA, MLP and LN denote trainable lin-
ear projection, position embedding, multi-head self-attention
module, multi-layer perceptron module and layer norm,
respectively.

In our proposed HoVer-Trans, we use several ViT blocks
with exactly the same structure without class embedding to
construct the HoVer-Trans block. Thus, we denote all the ViT
blocks in the following as Trans(-).

2) Embedding: To formulate the anatomical prior knowl-
edge into the transformer model, we introduce additional
two embedding ways shown in Fig. 2 (a), following the
idea presented in Sec. III-A. Given the input BUS image
I € REXW>3 we first apply a convolutional stem [38] to
downsample the input image by four I’ € R#/4xW/4xC gpq
introduce early inductive bias. And then, patch embedding,
horizontal strip embedding and vertical strip embedding are
processed before feeding them into the model. Patch embed-
ding cuts I’ into N x N patches xg’c), where r and ¢ denote
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Fig. 2. Network architecture of the proposed model. It contains four stages, each of which consists of a flattening operation, several HoVer-Trans
blocks, a convolutional block and a pooling layer. (a) Three embedding ways of horizontal strip embedding, patch embedding and vertical strip
embedding. (b) HoVer-Trans formulates the anatomical prior knowledge in breast ultrasound images, which is designed to extract the intra-layer
and inter-layer relationships of the anatomical layers in the breast. It consists of four branches. The horizontal branch and the vertical branch are
designed to extract the inter-layer and intra-layer relationships respectively. H2V and V2H branches are introduced to fuse the horizontal and vertical
features. The output features from each branch in the HoVer-Trans block will be regarded as the input features of the next HoVer-Trans block.
(c) Conv block is applied to connect two adjacent stages and to introduce inductive bias.

Inter-layer visual words defined as:

()] H/4AMxW /4xC _
E Single patch visual word z, = {Xh |X eR }, r = 1, ey M (4)

Vertical strip embedding is introduced to represent the visual
words across anatomical layers with M strips, defined as:

= (xO|x e RI/MWAMXCy o 1 M (5)

e
™

3) HoVer-Trans Block: The architecture of the HoVer-Trans
block is depicted in Fig. 2 (b). We design a symmetry structure
with four branches in one HoVer-Trans block, H branch
(horizontal), V branch (vertical), H2V branch (horizontal to
(a) Original input form of ViT (b) Inter-layer and intra-layer input form vertical) and V2H branch (vertical to horizontal).

(for natural images) (for breast ultrasound images) Let us define the features at the [-th block in the s-th stage

s,0
Fig. 3. Comparison of two embedding ways. (a) ViT tessellates the as z{h v,h2v,02h}" HoVer-Trans block takes the outputs from the

image into several 16 x 16 patches (visual words). (b) We formulate the  previous block and generates the features for the next block,
anatomical structure of breast by the inter-layer visual words (horizontal defined as:
strips) and the intra-layer visual words (vertical strips). ’
s,1—1 sll s,[—1 sll
{Zh s U 5 ZhZU’ 1)2h} = f(Z > Ly s Zpoy > Lydp ) ()

where f(-) denotes the HoVer-Trans block. The inputs of
four branches in the first HoVer-Trans block (when [ = 1)

Zp = {Xg’c)lX € RA/ANXW/ANXCy = e =1, ...,N (3) are equivalent to the features from the previous HoVer-Trans
stage z° 1.

SpIom [ensiA IdAe[-enuy

the indices of the row and column. After a flattening operation,
we get a group of 1D vectors z,.

Horizontal strip embedding is introduced to represent the
visual words of the same anatomical layer with M strips, ?h],l),h2l) v2h) = =71 7
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H and V branches are two auxiliary branches to extract
the inter-layer and intra-layer spatial correlations, with two
identical H and V branches with horizontal strip embedding
(defined in Eq. 4) and vertical strip embedding (defined in
Eq. 5), respectively.

2! = Trans(z’ ") (8)

1 -1
z,' = Trans(z) ™) 9)

The anatomy-aware spatial features zil’l and zf;l will be
passed into the next two main branches (H2V and V2H). They
are also regarded as the inputs of the next HoVer-Trans block.

H2V and V2H branches are served as the main feature
extraction branches which fuse the features from two auxiliary
branches (H and V). For example in the H2V branch, the hori-
zontal features zz’l are added to the features from the previous
HoVer-Trans block z;lzl; ' After a transformer encoder, the
vertical features zf;l are added behind. The V2H branch is the
mirror of the H2V branch.

5,1 5,1 s,1—1
z;,, = Trans(Trans(z;” + 1z,

s,l s,1 s,—1
2,5, = Trans(Trans(z,” +z,),,

)+7,7)
)+ 2,

(10)
Y

The output features zi’zlv and zf)’zlh will be passed into the
next block. Note that, for the last HoVer-Trans Block in each
stage, the features will be passed into a Conv Block, described
as follows.

4) Conv Block: The transformer is good at processing
sequential data and extracting spatial correlations. But it lacks
inductive bias. In order to leverage the strength of both
transformer and CNN, we introduce a convolutional block
(Fig. 2 (c)) after the last HoVer-Trans block at each stage
to fuse the H2V and V2H features and introduce the inductive
bias.

zs+

= conv(z)s,,2)3,) (12)

As shown in Fig. 2 (c¢), the Conv block takes the output
1D feature vectors Zileu and zZ’zlh from two main transformer
branches as the inputs. These two feature vectors are reshaped
to 2D feature maps and concatenated together. After three
convolutional layers, the Conv block outputs the 2D feature
maps z*t! for the Stage. Note that, the settings of three
convolutional layers are shown in Fig. 2. The channel numbers
of each convolutional layer in four stages are S1 : {8, 16, 8},
S2 : {16,32,16}, S3 : {32,64,32} and S4 : {64, 128, 64}
respectively.

C. Overall Architecture

The overall structure of our model is shown in Fig 2. The
model consists of four stage modules. Each stage module
consists of several HoVer-Trans blocks, one Conv block and
one pooling layer.

Given a BUS image I € R¥*W>3 we first apply a con-
volutional stem for early visual processing. Comparing to the
patchy stem of original ViT, introducing early inductive bias by
an early convolutional stem [38] can improve the optimization
stability and the model performance. Then the dimension of
the input image / is reduce to H/4 x W/4 x C after the

convolutional stem, where C = 4 in practice. The sizes of the
feature maps in the next three stages are H/8 x W/8 x 2C,
H/16xW/16x4C, H/32x W /32x8C, which is similar to the
structure of the traditional convolutional neural network [39],
[40]. To fuse the horizontal and vertical information, a Conv
block is introduced to connect two adjacent stages. So the
input of each stage is a 2D image or 2D feature maps.
Embedding or flattening will be introduced to fit the input
of the transformer. In the last stage, the fully connected layer
is applied for inference. The model is optimized by the cross-
entropy loss.

D. Implementation Details

We use Python3.6 and PyTorchl.8 to implement all the
models. All the experiments are run with an 11 GB NVIDIA
GeForce RTX 2080Ti GPU. We build our model with
embedding dimensions of each stage of {4, 8, 16,32}, and
HoVer-Trans block numbers of each stage are {2,4,4,2}.
Head numbers of transformer block in each stage are
{2,4,8, 16}. We train for 250 epochs with the AdamW [41]
optimizer, a batch size of 32, weight decay of 0.1, 10 warm-
up epochs and an initial learning rate of 0.0001 with a
cosine decay learning rate scheduler. The augmentation strat-
egy includes blurring, noise, horizontal flip, brightness and
contrast. Because the order of the tissue layers is fixed, we do
not use vertical flip data augmentation. All the images will
be resized to 256 x 256. The source code is avaiable at
https://github.com/yuhaomo/HoVerTrans.

IV. DATASETS

In this paper, we use three datasets to evaluate the diagnostic
performance of our model, two of which are the public datasets
and one is our constructed dataset.

UDIAT': The first public dataset is a small dataset, named
UDIAT [11], which contains a total of 163 BUS images
with 109 BUS images of benign lesions and 54 BUS images
of malignant lesions. All the images were collected from
the UDIAT Diagnostic Centre of the Parc Tauli Corporation,
Sabadell, Spain. The average size of the images is 760 x
570 pixels and the range from 307 x 233 to 791 x 641.

BUSI?: The second dataset, BUSI [10], consists of a total
number of 780 BUS images from the Baheya Hospital for
Early Detection and Treatment of Women’s Cancer, Cairo,
Egypt. BUSI dataset includes 210 images with benign lesions,
437 images with malignant lesions, and 133 normal BUS
images without lesions. Furthermore, each image has the
pixel-level ground truth of the lesion. In this paper, since we
only differentiate the malignant and benign lesions, normal
BUS images are excluded. 647 images are finally utilized with
the average resolution of 608 x 494 pixels and the range from
190 x 335 to 916 x 683.

GDPH&SYSUCC?: In this study, we also construct a
publicly available dataset of BUS images for breast cancer
diagnosis. The BUS images came from two medical cen-
ters. 1) the Department of Ultrasound, Guangdong Provincial

1 https://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
2https://scholar.cu.cdu.cg/‘?q:afahmy/pagcs/datasct
3 https://github.com/yuhaomo/HoVerTrans
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(a) GDPH (b) sYsuCC

Fig. 4. Some examples of breast ultrasound images in two medical
centers, (a) GDPH and (b) SYSUCC. The red boxes are the foreground
images we extract.

TABLE |
DISTRIBUTION OF MASS ACCORDING TO BI-RADS STRATIFICATION.
BI-RADS STRATIFICATION ARE CATEGORIZED AS INTO 6 CLASSES.
CLASS 2 TO 5, INCLUDING 3 SUB-CATEGORIES 4A, 4B AND 4C

BI-RADS | Benign | Malignant | Total
2 66 0 66
3 610 101 711
4A 162 659 821
4B 38 495 533
4C 10 193 203
5 0 71 71
Total 886 1519 2405

People’s Hospital, Guangzhou, Guangdong, China (GDPH).
2) the Department of Ultrasound, Sun Yat-sen University
Cancer Center, Guangzhou, Guangdong, China (SYSUCC).
We exported the images and their corresponding BI-RADS
scores from the picture archiving and communication system
(PACS). The ultrasound images were acquired from following
equipments, including Hitachi Ascendus (Japan), Mindray
DC-80 (China), Toshiba Aplio 500 (Japan) and Supersonic
Aixplorer (France). All the images were labeled as benign or
malignant according to the pathology report after the biopsy or
surgery was performed. The dataset consists of 1519 malignant
BUS images from 676 patients and 886 benign BUS images
from 526 patients, for a total of 2405 BUS images. The
average size of the images is 844 x 627 and the range from
278 x 215 to 1280 x 800. Fig. 4 shows some examples of BUS
images in our dataset. To protect the privacy of the patients,
we mosaic the personal information. The distribution of the
BI-RADS scores and the statistics of the malignant tumors
and the benign tumors are shown in Table I.

We extract the image data from the original DICOM format
files of BUS and save them in PNG format. To exclude the
UI regions, we extract the foreground images by applying a
rectangle detection algorithm provided by the OpenCV library,
and manually check all the images to ensure the completeness
of the foreground images.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setting in
Sec. V-A, including the evaluation metrics and the competitors.
Then we show the quantitative results and the heatmap visual-
izations of three datasets in Sec. V-B. In Sec. V-C, we compare
our proposed model with two senior sonographers. Ablation
studies have been conducted in Sec. V-D. Heatmap visualiza-
tions of the model are shown in all the experiments to evaluate
the interpretability.

A. Experimental Setting

Evaluation Metrics: To comprehensively evaluate the per-
formance of the proposed model, we introduce the following
metrics, including area under the ROC curve (AUC), accuracy
(ACC), specificity, precision, recall and F1 score.

Competitors: In this paper, we compare our proposed
model with six SOTA models, including two most pop-
ular CNN-based classification models ResNet50 [39] and
VGG16 [40], three vision transformer models ViT [32], TNT-s
[42] and Swin-B [33] and two CNN-based models tailored
for breast cancer diagnosis in ultrasound images BVA-Net
(JBHI2020) [43] and MsGoF (MICCAI2020) [18]. Although
BVA-Net and MsGoF are both designed for breast cancer diag-
nosis, they are still different from our proposed model. Both
BVA-Net and MsGoF do not process the entire ultrasound
images. These two models have to first pre-define a region of
interest (ROI) of the mass, and then classify the malignancy
of the corresponding lesion. Furthermore, BVA-Net includes
additional BI-RADS scores in the training phase. So in the
existing two public datasets UDIAT and BUSI, the quantitative
performance of these two models is directly copied from
the corresponding papers. In the GDPH&SYSUCC dataset,
we compare our proposed model with the other four image
classification baseline models without ROIs of the lesions.
We also implement the model from BVA-Net [43] and test
it in the GDPH&SYSUCC dataset. Since BVA-Net requires
the pre-defined ROI of the lesion, we invited a sonographer to
label the bounding box of each lesion for this approach.

B. Comparisons With SOTA Approaches

Table II shows the quantitative results in three datasets.
In the UDIAT dataset, since MsGoF and BVA-Net classify the
lesion within the ROIs, it can alleviate the underfitting problem
when the dataset only contains 163 images by removing the
regions without lesions. Among the other five models, VGG16
and our model achieve promising classification results even
with such a small dataset. In the BUSI dataset (647 images),
the classification performance of our proposed model achieves
the best ACC of 0.855, the precision of 0.876, the recall of
0.867 and the F1-score of 0.872. A larger dataset with more
training samples allows the neural network models to learn
better feature representation. The performance of our model
in the BUSI dataset is comparable to the performance of the
ROI-based model BVA-Net.

Most of the existing approaches, including MsGoF and
BVA-Net, solve the BUS classification problem by a two-step
approach. Pre-defined ROIs can remove the regions without
tumors, which might be good for the small dataset. However,
when we have enough data, it is hard to say whether removing
these regions do more good than harm. Because it also loses
the spatial information of the tumor in the breast, which is also
an important clue for breast cancer diagnosis. In our dataset
GDPH&SYSUCC (2405 images), the proposed HoVer-Trans
achieves the best classification performance on AUC, ACC,
precision, recall and Fl-score. It outperforms all the baseline
models, including BVA-Net. When with enough training data,
the advantage of the anatomy-aware design is demonstrated.
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TABLE Il
QUANTITATIVE COMPARISONS WITH SOTA APPROACHES IN THREE DATASETS. THE LAST COLUMN SHOWS THE P-VALUE OF DELONG’S TEST
BETWEEN THE AUC OF EACH BASELINE MODEL AND HOVER-TRANS MODEL. P-VALUES LESS THAN 0.05 ARE MARKED AS *,
P-VALUES LESS THAN 0.01 ARE MARKED AS **, AND P-VALUES LESS THAN 0.001 ARE MARKED AS ***.
MODEL WITH ¥ MEANS THEY REQUIRE A PRE-DEFINED ROI

UDIAT
AUC ACC Specificity Precision Recall F1-score p-value
ResNet50 | 0.7784+0.059  0.743+0.073  0.899+0.118 0.676+0.146  0.4264+0.256  0.523£0.120 ok
VGG16 0.786£0.073  0.756+0.123  0.8004+0.106  0.65040.120  0.672+0.183  0.661+0.107 Ak
ViT 0.740£0.140  0.701£0.300  0.880+0.147  0.606+0.240  0.364+0.132  0.455+0.223 ok
TNT-s 0.627£0.082  0.626+0.089  0.7524+0.150  0.42640.276  0.370£0.241  0.396+0.160 ok
Swin-B 0.760£0.141  0.761£0.078  0.8954+0.119  0.6974+0.238  0.495£0.210  0.547+0.186 o
Ours 0.781£0.118  0.774+0.061  0.889+0.128  0.714+0.214  0.545+0.232  0.619+0.099 -
MsGoFt 0.939+£0.031  0.909+0.032  0.9274+0.106  0.900+0.044 - - -
BVA-Netf 0.870 0.859 0.685 0.945 0.840 - -
BUSI
ResNet50 | 0.8774+0.034  0.818+0.039  0.883+£0.030  0.738+0.049  0.68240.079  0.709+0.062 ok
VGGI16 0.898+0.037  0.832+0.041  0.778+£0.056  0.873+£0.054  0.862+0.096  0.867+0.063 o
ViT 0.834+0.062  0.811+0.052  0.9224+0.070  0.781+0.146  0.579£0.032  0.665+0.094 ok
TNT-s 0.852+£0.015  0.812+0.032  0.9084+0.035 0.763+0.057  0.611£0.104  0.679+0.057 ok
Swin-B 0.858+0.024  0.818+0.026  0.880+0.045 0.736+0.063  0.694+0.084  0.710£0.044 o
Ours 0.865+£0.066  0.855+0.050  0.838+0.053  0.876+0.062  0.867+0.115  0.872+0.080 -
BVA-Netf 0.889 0.843 0.758 0.883 0.751 - -
GDPH&SYSUCC
ResNet50 | 0.886£0.014  0.832£0.014  0.732£0.033  0.851£0.015  0.890+0.013  0.870£0.010 o
VGG16 0.919+£0.006  0.864+0.004  0.892+0.010 0.8114+0.009  0.814+0.007  0.813+0.003 *
ViT 0.806£0.021  0.734+0.029  0.69440.053  0.8094+0.047  0.758+£0.021  0.782+0.028 Ak
TNT-s 0.853+£0.010  0.781£0.015  0.618+0.059  0.793+0.050  0.879£0.028  0.834+0.015 ok
Swin-B 0.886+£0.024  0.824+0.025  0.7444+0.035 0.853+0.019  0.871£0.029  0.865+0.019 wE
Ours 0.924+0.016  0.893+0.021  0.836+0.038  0.906+0.023  0.926+0.019  0.916+0.019 -
BVA-Nett | 0.856+0.009 0.8114+0.022  0.859+0.038  0.8244+0.022  0.8914+0.028  0.856+0.020 ok
Considering both the tumor region and the surrounding area TABLE Il

can introduce more useful information for diagnosis. And the
horizontal and vertical formulation combined with the vision
transformer allows the model to analyze not only the tumor
region itself but also the spatial relationship between the lesion
and the different layers in the breast.

Besides the quantitative results, we also demonstrate where
the models focus by showing the heatmaps to evaluate
the interpretability of the models (in the GDPH&SYSUCC
dataset). Fig. 5 shows the heatmaps overlaid on the original
images. We point out the lesions on the original image by
white arrows in Fig. 5 (a) for better visualization. As can be
seen, three transformer-based models in Fig. 5 (e)-(g) cannot
focus on the lesions and contains false-positive highlighted
areas, which lead to poor specificity (TNT-s: 0.618, ViT:
0.694, Swin-B: 0.744) shown in Table II. Visualization of
two CNN-based models ResNet50 and VGG16 are shown
in Fig. 5 (c)&(d). ResNet50 also has the same problem
with transformer-based models. VGG16 can achieve better
visualization results compared with the previous three models.
But it also pays attention to the dark areas caused by signal
attenuation. Our proposed model in Fig. 5 (b) shows the best
visualization results with more accurate lesion locations and
more focused attention, thus achieving the best Fl-score of
0.916. Fig. 6 demonstrates more heatmaps of the HoVer-Trans
model in GDPH&SYSUCC.

C. HoVer-Trans Vs. Sonographers

A reader study is conducted to compare the classification
performance of HoVer-Trans with that of the experienced

HOVER-TRANS VS. SONOGRAPHERS IN THE ENTIRE
GDPH&SYSUCC DATASET AND TWO SUBGROUPS.
THE LAST COLUMN SHOWS THE P-VALUE OF DELONG’S
TEST BETWEEN THE AUC OF EACH READER AND
HOVER-TRANS. P-VALUES LESS THAN
0.001 ARE MARKED AS ***

GDPH&SYSUCC
AUC  ACC  Spec Prec Rec F1 p-value
reader] | 0.825 0.836 0.781 0.872 0.868 0.870 ok
reader2 | 0.820 0.838 0.751 0.859 0.889 0.874 ok
Ours 0.924 0.893 0.836 0.906 0.926 0.916 -
BI-RADS 2-3
reader] | 0.503 0.867 0.996 0.250 0.099 0.019 ok
reader2 | 0.669 0.828 0.883 0.368 0455 0.407 ok
Ours 0.886 0.870 0.879 0.500 0.812 0.619 -
BI-RADS 4-5
reader] | 0.510 0.821 0.090 0.873  0.929  0.901 ok
reader2 | 0.622 0.843 0.324 0.902 0920 00911 hkk
Ours 0.891 0.904 0.700 0.955 0.934 0.944 -

sonographers (YL and YW, at least ten years experience), one
from the Department of Ultrasound, Guangdong Provincial
People’s Hospital and the other from the Department of Med-
ical Ultrasonics, The First Affiliated Hospital of Guangzhou
Medical University. The entire GDPH&SYSUCC dataset is
presented to the readers in a random order to assess the
benignity or malignancy of the BUS lesion. To compare the
entire dataset, we aggregate the model prediction results of
each fold in the five-fold cross-validation.

The uppermost part in Table III shows the comparison
between our model and two readers in all the evaluation
metrics in the entire GDPH&SYSUCC dataset. Experimental
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(STh)N (€9)d

(8€6)N

(c) ResNet50 |

(a) Original (b) Ours

(d) VGG16

(e) TNT-s HOVIT (g) Swin-B

Fig. 5. The heatmaps of different models (GDPH&SYSUCC). We overlay the heatmaps generated by feature maps on the original BUS images.
(a) are the original images. (b)-(g) are the heatmap visualizations of different models. M and B indicate the images with malignant tumors and benign
tumors, respectively. The lesions are pointed by the white arrows.

B(191) B(433) B(441) M(10) M(100) M(1083) M(1090)

Fig. 6.  More visualization of HoVer-Trans. The top row shows the
original BUS images in GDPH&SYSUCC. The bottom row shows the
heatmaps overlaid on the original images. M and B indicate the images
with malignant tumors and benign tumors, respectively. The lesions are
pointed by the white arrows.

results show that our proposed model achieves more pre-
cise diagnostic performance than two readers in our dataset.
However, we also observe that the diagnostic performance
of two readers is lower than the one reported in the other
reference [9]. Because in this experiment, to make a fair
comparison with the Al model, readers assess only one image
each time. But the ultrasound examination is a dynamic
process, sonographers do not just read the static images but
observe the lesion from different views. Therefore, it is hard
for sonographers to precisely diagnose breast lesions with
only one image. It is also a limitation of this experiment.
Nevertheless, our proposed model outperforms sonographers
under the same condition.

Furthermore, we conduct BI-RADS subgroup analysis in
the lower part in Table III. We divide the entire dataset
into two subgroups by the BI-RADS scores, BI-RADS 2&3
and BI-RADS 4&S5. It can be observed that the consistency
between two readers is low reflected by the evaluation metrics,
for example, the specificity (readerl: 0.996, reader2: 0.879)
and the recall (readerl: 0.099, reader2: 0.455) in the BI-RADS
2&3 group. Such biases can be caused by different factors,
such as equipment bias, cognitive bias and etc. In addition,

missing clinical information may also impede the sonogra-
phers to achieve a comprehensive diagnosis. Readerl obvi-
ously tends to classify all the lesions with BI-RADS 2 or
3 as benign tumors, which may lead to undertreatment. Under
the same condition of assessing only one BUS image with-
out any additional information, our proposed model achieves
more stable diagnostic performance in both subgroups than
sonographers thanks to the data-driven nature.

D. Ablation Studies

In this part, we conduct several ablation studies to evaluate
the effectiveness of the anatomy-aware formulation, the associ-
ation between transformer and CNN and different transformer
configurations.

1) Effectiveness of Anatomical Prior Knowledge: We conduct
this experiment to evaluate the effectiveness of the anatomy-
aware formulation. Three variants are introduced in this exper-
iment. 1) H branch with horizontal strip embedding and V
branch with vertical strip embedding are removed, named
Model,. Only two main branches with patch embedding are
left. 2) We remove the H branch and retain the other three
branches, named Model,,. 3) We remove the V branch and
retain the other three branches, named Model, ;. The upper
part of Table IV demonstrates the five-fold cross validation
results. It can be observed that without the design of HoVer in
Model,, the performance of the metrics decreases by around
1%-3% except for the specificity and precision of Model .
When only removing H branch or V branch, the quantitative
results do not improve due to the asymmetric of the mod-
els. Fig. 7 (b)-(d) demonstrate the heatmap visualizations of
three model variants and Fig. 7 (i) demonstrates our results.
In Fig. 7 (b) we can observe that associating transformer with
CNN can obtain visually more convincing attention maps
better than transformer models only, shown in Fig. 6 (e)&(f).
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TABLE IV
ABLATION STUDIES OF ANATOMY-AWARE FORMULATION, ASSOCIATION BETWEEN TRANSFORMER AND CNN AND DIFFERENT
TRANSFORMER CONFIGURATIONS. (GDPH&SYSUCC)

Ablation study - Anatomy-aware formulation

Configurations AUC ACC Specificity Precision Recall Fl-score
Modely, 0.916£0.018  0.864+£0.015  0.802+0.016  0.887+0.012  0.9004+0.016  0.89340.013
Modelp v 0.919£0.022  0.880+0.018  0.849+0.037  0.910+0.023  0.898+0.018  0.90440.015
Modely, 1, 0.911£0.019  0.868+£0.019  0.818+0.021  0.894+0.014  0.897+0.022  0.896+0.015
Ours 0.924+0.016  0.893+0.021 0.836+0.038  0.906+0.023  0.926+0.019 0.916£0.019

Ablation study - Convolution

Conv Stem  Conv block AUC ACC Specificity Precision Recall Fl-score
- - 0.907£0.009  0.861£0.020  0.829£0.026  0.905+0.015  0.877£0.018  0.891£0.016
v - 0.916+0.016  0.873+0.012  0.900+0.011  0.827£0.026  0.826+0.013  0.826+0.010
v 1x1 0.926+0.015  0.881+£0.018  0.837£0.031  0.905+0.018  0.907+0.017  0.90540.015
- v 0.908+0.008  0.871+0.012  0.806+0.018  0.889+0.013  0.909+0.012  0.899+0.010
v v 0.924£0.016  0.893+£0.021 0.836+0.038  0.906+0.023  0.926+0.019  0.916=+0.019

Ablation study - Sizes of Different Embedding Ways

p h&wv AUC ACC Specificity Precision Recall Fl-score
2 1 0911+£0.024  0.880+0.014  0.82640.025  0.900£0.014  0.912+0.014  0.906+0.011
2 2 0.924+0.016  0.893+£0.021 0.836+0.038  0.906+0.023  0.926+0.019  0.916=£0.019
2 4 0.910£0.016  0.873£0.016  0.825+0.029  0.899+0.014  0.900£0.020  0.900+£0.012
4 1 0.904+0.027  0.877+0.021  0.83740.026  0.905£0.015  0.900+£0.021  0.903+0.016
4 2 0.919£0.015  0.883£0.014  0.841+0.017  0.908+0.010 0.907+£0.013  0.907+0.011
4 4 0.920£0.014  0.879£0.012  0.832£0.030  0.903£0.017  0.906£0.014  0.905+0.010
8 1 0.911£0.013  0.879£0.010  0.835£0.020  0.904£0.014  0.905£0.008  0.904=£0.009
8 2 0.914£0.019  0.879£0.014  0.820£0.023  0.897£0.016  0.913£0.011  0.905+0.012
8 4 0.900+£0.011  0.864+0.008  0.7924+0.019  0.882+0.010  0.906+£0.015  0.89440.007

(a) Original (b) Model, (c) Modelyp, (d) Model,y,

(e) w/o CS
w/o CB

(g) with CS
with Conv 1 x 1

(h) w/o CS
with CB

(f) with CS
w/o CB

(i) Ours

Fig. 7. The heatmaps of ablation studies. (a) shows the original images from the GDPH&SYSUCC dataset. Lesions are pointed by the white arrows.
(b)-(d) are the model variants of the ablation study in the anatomy-aware formulation. (e)-(h) are the model variants of the ablation study in the
convolution operations. CS and CB indicate the convolutional stem and Conv blocks, respectively. (i) shows the attention maps generated by our

final model.

However, the model focuses are still imperfect due to the
lack of H and V branches. When equipped with H or V
branch in Fig. 7 (c)&(d), the model can focus on the anomaly
regions horizontally or vertically, guided by the anatomical
prior. Thanks to the complete HoVer design shown in Fig. 7
(i), our proposed model achieves the best visualization results
with the most correct lesion location and attention.

2) Effectiveness of Convolution: In this experiment, we con-
duct an ablation study to evaluate the effectiveness of
associating convolutional operations with transformer, includ-
ing the early convolutional stem and the Conv blocks.

We compare our model with four variants. (1) Pure transformer
model without any convolutional layer. Maxpooling is applied
to downsample the input image. (2) Model with conv stem
only. (3) Model with conv stem and replacing the Conv block
with a 1 x 1 convolutional layer. (4) Model with Conv block
only. (5) Our final model. The quantitative results are shown
in the middle part of Table IV. The attention maps are shown
in Fig. 7 (e)-(1).

When without any convolutional operation in Model (1), the
evaluation metrics decrease around 1%-4% with less mean-
ingful attention maps shown in Fig. 7 (e). Introducing early
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conv stem can slightly improve the classification performance,
especially specificity. But the attention maps are non-local and
cannot focus on the lesion. When combining the conv stem
with a 1 x 1 convolutional layer, the quantitative performance
is further improved, but the attentions maps in Fig. 7 (g) are
still unsatisfactory. Because 1 x 1 convolutional layer only acts
like channel-wise pooling for reducing the feature dimension,
which is not able to aggregate the local contextual information.
The above three models demonstrate the importance of intro-
ducing inductive bias. Lack of inductive bias might not greatly
decrease the classification performance. But it will drastically
harm the locality of the model due the self-attention mecha-
nism in transformer. When equipped Conv blocks in Model
(4), it achieves moderate quantitative performance with much
better attention maps. Combining Conv blocks and the convo-
lutional stem, the final HoVer-Trans model achieves the best
classification results and the most interpretable attention maps.

3) Sizes of Different Embedding Ways: Since we introduce
three embedding ways in this model to formulate the anatom-
ical structure. In this ablation study, we further explore how
the sizes of different embedding ways affect the proposed
model, shown in Table IV. p = 2 means the visual tokens
of the patching embedding are with the resolution of 2 x 2.
h&v = 2 means the tokens of the horizontal strip embedding
and the vertical strip embedding are with the resolution of
2 x width and height x 2, respectively. In this experiment,
we let p = {2,4,8} and h&v = {1,2,4} and test all the
combinations.

It can be observed that the classification performance of
all the models is close. According to the quantitative results
in Table IV, we summarize some observations on how to
select these two hyper-parameters. First of all, we have to
select the proper token size of the horizontal and vertical strip
embeddings h&v. When h&o = 1, each token only contains
the horizontal or vertical information with only one-pixel
width or height, which is too limited. When h&v = 4,
the size of the token is too large, which may occupy more
computational resources. Therefore, we let h&v = 2 for the
horizontal and vertical strip embedding. For the token size of
patch embedding, we choose the value of p = 2 because we
want to let the token of patch embedding fit the token size of
horizontal and vertical strip embedding. Experimental results
prove that the configuration with p = 2 and h&v = 2 achieves
the best classification performance. We apply this setting in
our final model.

VI. CONCLUSION

In this paper, we propose a novel HoVer-Trans model,
which associates the transformer with CNN, for breast cancer
diagnosis in breast ultrasound images. An anatomy-aware
HoVer-Trans block is designed to formulate the anatomical
prior knowledge in BUS images. To achieve that, we incorpo-
rate three embedding ways, patch embedding, horizontal strip
embedding and vertical strip embedding to explore spatial
correlations of the inter-layer and intra-layer visual words.
There are several advantages to the above technical designs.
1) The proposed model is ROI-free which does not require
a pre-defined lesion ROI. Such a property greatly improves

the model flexibility in clinical practice. We also believe
that the whole image can deliver much more information
about the peritumoral context and the spatial relationship
between the lesion and different breast layers than the lesion
ROIs do. 2) The proposed model can provide interpretable
attention maps to support the model prediction results, which
is the key that most sonographers care about when using Al
algorithms to assist decision-making. 3) The proposed model
achieves the best classification performance against several
SOTA models in both quantitative evaluations and heatmap
visualizations.

Besides, there are still several future improvements that
have to be achieved. First, as we discussed in the AI vs.
sonographers experiment, the breast ultrasound examination
is a dynamic process. Our next plan is to aggregate the
BUS images from multiple views and achieve more precise
diagnostic performance, instead of just simply assessing one
BUS image. Furthermore, it will be a great breakthrough if
we can mimic how sonographers perform breast ultrasound
examination by keeping tracking the imaging signal along with
the ultrasonic probe and make a comprehensive diagnosis if
the hardware is capable.

Second, due to the model complexity, the proposed model
shows poor classification performance when trained by a
smaller dataset, such as UDIAT. That is the reason why we also
construct and release a larger dataset GDPH&SYSUCC for
breast cancer diagnosis in BUS images. We are also planning
to construct a way larger multi-center dataset to further explore
the capacity and the generalizability of the proposed model.
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