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ABSTRACT Intelligent models for predicting hemodialysis-related complications, i.e., hypotension and the
deterioration of the quality or obstruction of the AV fistula, based on machine learning (ML) methods were
established to offer early warnings to medical staff and give them enough time to provide pre-emptive
treatment. A novel integration platform collected data from the Internet of Medical Things (IoMT) at a
dialysis center and inspection results from electronic medical records (EMR) to train ML algorithms and build
models. The selection of the feature parameters was implemented using Pearson’s correlation method. Then,
the eXtreme Gradient Boost (XGBoost) algorithm was chosen to create the predictive models and optimize
the feature choice. 75% of collected data are used as a training dataset and the other 25% are used as a
testing dataset. We adopted the prediction precision and recall rate of hypotension and AV fistula obstruction
to measure the effectiveness of the predictive models. These rates were sufficiently high at approximately
71%-90%. In the context of hemodialysis, hypotension and the deterioration of the quality or obstruction of
the arteriovenous (AV) fistula affect treatment quality and patient safety and may lead to a poor prognosis. Our
prediction models with high accuracies can provide excellent references and signals for clinical healthcare
service providers.

INDEX TERMS  Arteriovenous fistula obstruction, electronic medical records, hemodialysis complication
prediction, hypotension, Internet of Medical Things.

Clinical and Translational Impact Statement—With the integrated dataset collected from IoMT and EMR,
the superior predictive results of our models for complications of hemodialysis patients are demonstrated.
We believe, after enough clinical tests are implemented as planned, these models can assist the healthcare team
in making appropriate preparations in advance or adjusting the medical procedures to avoid these adverse
events.

I. INTRODUCTION

The prevalence of hemodialysis in Taiwan ranks in the top
three globally [1]. The increasing demand for hemodialysis
has been caused not only by an aging population but also by
the rapid increase of patients with chronic obesity, diabetes,
hypertension, and cardiovascular disease (CVD), as well
as the progress of diagnostic and therapeutic techniques.

According to the Health Promotion Administration statistics,
the number of Taiwanese patients who have ever undergone
hemodialysis treatment reached 90,000 in 2019 [2]. Because
the national health insurance system provides comprehensive
medical care [3], the relatively high quality of treatment and
low mortality are ensured for most Taiwanese patients with
kidney disease [4]. Hemodialysis is a treatment that removes
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excess toxins and liquid and rebalances blood components.
With vascular access, a hemodialysis patient’s blood is led
to an artificial kidney with the assistance of a hemodialy-
sis machine, where the blood is exchanged with a special
dialysate in excellent artificial fibers by a semipermeable
membrane. Then, the unwanted toxins and liquid are removed
via the dialysate, and the electrolytes and pH can be adjusted
during this process. Because too much water may be drained
during the process of hemodialysis and the blood components
may change abruptly, adverse reactions such as hypotension
and even shock often occur. Therefore, the hemodialysis pro-
cedure must be conducted with adjustable parameters such as
dehydration rate and dry weight after evaluation by doctors.
The treatment process also needs to be closely monitored
by nursing professionals to ensure the patient’s safety and
health. Moreover, given that hemodialysis involves routine
treatment, the arteriovenous (AV) fistula must be repeatedly
pricked. The long-term change of AV-fistula-caused pressure
difference in blood vessels also often causes vascular inti-
mal hyperplasia and obstruction or increased venous return
pressure. These may lead to blood insufficiency. At this time,
there is a need to consult with a cardiologist to perform
percutaneous transluminal angioplasty to eliminate blocking
factors and maintain optimal hemodialysis.

Hypotension and AV fistula events often occur during
hemodialysis treatment, and they affect the treatment quality
and patient safety and result in a poor prognosis [5]. To pre-
dict hypotension and AV fistula obstruction, there is a need
to collect large-scale clinical data and perform close obser-
vations during the process of hemodialysis. Hemodialysis
should be provided to the patients for a sufficient interval [5],
but too much dehydrating volume may cause hypotension,
which raises a dilemma. Although the obstruction and dete-
riorated quality of the AV fistula can be judged successfully
using photoplethysmography (PPG) or Doppler sonography
supported by palpation, this process is laborious and expen-
sive [6], [7].

If artificial intelligence (AI) techniques could be intro-
duced into medical systems, smart predictive models could
plausibly provide early warnings of possible future events to
medical staff. Based on theoretical considerations, the com-
bination of multimodal data streams should further enhance
the prediction results. Therefore, the major advantage of our
method is that we established a novel integration platform
to collect clinical data coming from the Internet of Medi-
cal Things (IoMT) and inspection data stored in electronic
medical records (EMR) to establish a so-called human digital
twin (HDT) [8]. This HDT not only can predict complica-
tions arising from hemodialysis well but also can act as an
intelligent assistant to remind the medical team to modify the
treatment procedure to avoid a worse outcome. Furthermore,
it may provide precision medicine [8] after this prediction
model is trained to be a personalized HDT. In this way,
the medical team would have enough time to respond to
these events or even prevent them, thereby avoiding unnec-
essary impairments. After reviewing the literature [9], [10]
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and testing several well-known machine learning (ML) algo-
rithms, i.e., decision tree, random forest (RF), support vector
machine (SVM), we adopted the eXtreme Gradient Boost-
ing (XGBoost) algorithm [11], [12] to establish models
for predicting hypotension and AV fistula obstruction in
hemodialysis patients. Moreover, we chose Pearson’s corre-
lation coefficient (PCC) [13], [14], [15], [16] to determine the
linear correlation between variables in this study. In this way,
the more critical parameters will be selected beforehand.

Another advantage of the established models is that they
are very suitable for further experiments and tests in future
clinical research since they demonstrated really good pre-
clinical performance. These models could be monitored by
medical professionals in order to measure their effectiveness
in future clinical practice. The establishment of a smart and
efficient HDT to assist nephrologists would be our long-term
goal.

Il. RELATED WORK

A. INTERNET OF MEDICAL THINGS

An IoMT system has been used to assess the heart and
lung sound quality of neonates [17]. Specifically, Grooby
et al. designed a method that can automatically evaluate
signal quality to improve the accuracy and reliability of heart
rate and breathing rate from noisy neonatal chest sounds
using dynamic selection classification. In another study [18],
a wearable device with a biosensing facial mask was pro-
posed to detect the pain intensity of a patient using a facial
surface electromyogram. The devices were connected to an
IoT system for remote pain monitoring. This system can
provide an alternative for patients who are unable to self-
report. Another wearable continuous-temperature monitor,
called Verily Patch, was adopted in [19]. The authors eval-
uated if it could estimate body temperature precisely and
detect fevers early. The experimental results showed that
Verily Patch reliably measured body temperatures with an
error of 0.35 + 0.88°F. Chiang et al. [20] investigated the
relationships between blood pressure and lifestyle factors
using blood pressure monitors and wearable activity trackers.
Then the time series data were collected and analyzed by
using an ML algorithm. In another study [21], [oMT and
deep learning (DL) were combined to propose a system for
the remote diagnosis of obstructive sleep apnea (OSA). The
physiological signals of human sleep were sent to a cloud
server through the IoT, and a DL-based model was used to
detect OSA. Elsewhere, Shih et al. [22] retrieved data from
the IoMT in a hemodialysis room to establish an early warn-
ing system for hemodialysis complications. The predicted
symptoms included hypotension, hypertension, and cramp.
In this study, it was found that, even though substantial data
of IoMT could be recorded, the medical staff did not make
regular marks for clinical or uncomfortable events. Therefore,
insufficient data were provided to build an early warning
system, and the precision of the convolutional neural network
learning decreased. It is difficult to confirm the relevance

VOLUME 11, 2023



W.-H. Hsieh et al.: Model for Predicting Complications of Hemodialysis Patients

|EEE Journal of Translational

Engineering in
Health and Medicine

between massive data and target events only using data col-
lected by IoMT, without necessary and appropriate clinical
marks generated by healthcare service providers.

B. APPLICATIONS OF Al IN HEMODIALYSIS

Chen et al. [23] used DL to predict the occurrence of
hypotension during dialysis, mainly exploring the relation-
ship between hypotension and relevant clinical factors. The
results showed that hypotension was positively correlated
to body mass index, complications of hypertension, and
ultrafiltration volume but negatively related to ultrafiltration
rate. In addition, Decaro et al. [24] used ML to predict the
blood parameters of dialysis patients, and the visible spec-
trum parameters of blood were used to train the SVM and
artificial neural network model and were then applied to
the prediction of hemoglobin (Hb) and oxygen saturation.
The study results showed that SVM offered good effective-
ness. Moreover, Chiang et al. [25] used the data of a novel
PPG and the classification method of SVM to evaluate the
quality of dialysis patients’ AV fistula, involving the blood
flow volume and degree of stenosis. The experimental data
showed that with PPG data, the SVM-based prediction of
fistula obstruction could reach a precision of 87.84% and the
prediction of blood flow volume could reach a precision of
88.61%. However, as emphasized earlier, the use of PPG or
Doppler sonography supported by palpation is laborious and
expensive.

With the progression of chronic kidney diseases, the com-
plication of hypertension gradually appears, causing venous
incompetence and finally resulting in AV fistula failure. Thus,
Bhatia et al. [26] only used data related to the condition of
patients’ AV fistula to predict survival using an ML method
without using ultrasound. Moreover, with the waveform of
arterial blood pressure as input data, Hatib et al. [27] applied
an ML algorithm to predict hypotension events because the
early changes of the waveform may generate cardiovascu-
lar compensatory mechanisms in advance, affecting preload,
afterload, and contractility. Gémez-Pulido et al. [28] trained
models of ML to predict the possibility of hypotension dur-
ing hemodialysis. By contrast, Huang et al. [10] further com-
pared the effects of applying different Al prediction models
to predict blood pressure during dialysis. The study results
showed that RF and XGBoost performed better in the predic-
tion. As end-stage renal disease (ESRD) patients often suffer
from CVDs, Mezzatesta et al. [29] adopted an ML method
to predict the likelihood of dialysis patients suffering from
a CVD. They selected nonlinear SVM, added a radial basis
function kernel, supported by a grid search for optimization,
and obtained the best effectiveness. The study results also
showed sound effects.

Barbieri et al. [30] applied ML techniques to predict
the response to anemia treatment. Anemia is one of the
most common complications of ESRD patients, and iron
and an erythropoiesis-stimulating agent (ESA) are the pri-
mary means of treating it. However, the decision on the
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therapeutic dose is quite difficult and is often averaged.
Researchers applied an ML module and confirmed that
iron/ESA performed better than traditional methods. The
mean absolute error of the hemoglobin generated was pre-
dicted to be < 0.6 g/dL. In addition, Brier and Gaweda [31]
applied Al techniques to ESRD patients to predict changes
in hemoglobin by selecting the optimal ESA dose to improve
anemia. The Al suggestions showed that the ESA dose could
be lowered. Moreover, Makino et al. [32] used a natural lan-
guage processing technique to analyze patients’ medical data
and conduct a timing analysis. They also established diabetic
nephropathy (DN) prediction model using ML, with 24 fac-
tors being selected. This model achieved high precision of
71% in the successful prediction of DN aggravation, and
the DN aggravation group had a significantly high risk of
dialysis within 10 years. Furthermore, Goldstein et al. [33]
imported five different risk prediction models, which were
trained with hemodialysis patients’ electronic health record
data to predict the mortality rate. The results showed that
a predictive model built with simple methods might not
perform worse than those with many complicated methods.
Saadat et al. [34] also used a classification tree and a simple
Bayes classifier to predict changes in the quality of life of
dialysis patients and created an early warning system. Finally,
Xiong et al. [35] discussed an important prediction model,
which was built based on left ventricular mass (LVM). As the
heart would weigh more upon the overhydration of dialysis
patients, LVM could be considered a basis for predicting dial-
ysis duration. Even though many research results regarding
the application of Al in hemodialysis have been reported, few
studies have been performed on the training of ML algorithms
with physiological data from the IoMT in the dialysis room
and inspection data from the EMR at the same time for
predicting hypotension and AV fistula obstruction. We think
these predictive models investigated and accomplished by a
research team including clinical doctors, ML experts, and
IoMT engineers can independently play as smart HDTs to
improve clinical utility after sufficient confirmation of their
reliability is ensured.

lll. METHODS AND PROCEDURES
The IoMT information system was built by the Industrial
Technology Research Institute in a dialysis room at Chang-
Hua Hospital of the Ministry of Health and Welfare (MOHW)
in Taiwan in 2018. Since the system was introduced in 2019,
clinical data related to the dialysis process and physiological
data from other medical things such as sphygmomanometers,
scales, thermometers, etc. of all patients have been collected
for quite a long time. Moreover, to improve the effectiveness
of predictive models, an integration platform was established
to not only store data from the IoMT system but also retrieve
individual-case-related inspection data from the EMR as
demonstrated in Fig. 1.

This research was approved by the Institutional Review
Boards (IRB) of Feng Yuan Hospital of the MOHW under
IRB110014. We expected to find the most critical features
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FIGURE 1. Integration platform of loMT and EMR.

that may cause the complications of hypotension and AV fis-
tula obstruction in hemodialysis patients from more compre-
hensively collected data. Accordingly, predictive tools with
higher precision and recall rates could be developed to assist
therapists and nursing staff in early treatment or prevention.
We administered approximately 2,500-2,700 hemodialysis
treatments per month. A data subset regarding each dialysis
procedure of one patient is considered one data unit. On aver-
age, three dialysis procedures should be carried out in one
week for each patient and one dialysis procedure should be
implemented for around four hours. Thus far, enough units
of data have been collected to train and test our predictive
algorithms.

Many well-known ML algorithms, such as SVM, decision
tree, RF, XGBoost, etc. have been tested, and we adopted
the XGBoost algorithm to establish models for predicting
hypotension and AV fistula obstruction because of its excel-
lent performance. XGBoost is a widely used ML algorithm,
proposed by Chen and Guestrin [11] in 2016. It achieved
some impressive feats in many international competitions
on ML. Moreover, compared with other learning algorithms,
it has the following characteristics and advantages [12]: 1)
Owing to the use of parallel processing technology, it can
return the output faster than the gradient boosting method
does. 2) It can handle and control the problem of overfitting.
3) It provides better learning results on many datasets. 4) It is
an algorithm with a decision tree structure. 5) It uses a self-
defined loss function to implement classification, regression,
and ranking. 6) It can process the situation of sparse data.
7) Through cross-validation, the process of constructing the
tree can be stopped in advance when the prediction results
are already promising. This can speed up training. 8) Finally,
it supports the practice of differentiating sample weights.
By adjusting the weights, we can emphasize specific samples.

Moreover, we chose PCC to pick more critical parameters
beforehand. Pearson’s correlation is a statistical method used
to measure the linear dependence between variables X and
Y [13]. Therefore, PCC can describe the degree of correlation
between variable X and variable Y. On the basis of the well-
known definition, the coefficient between two variables X and
Y when applied to a population is denoted by pxy and can be
calculated as follows [13], [14]:

cov(X,Y)

PXY = Vvar(X)var(¥)’

ey
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where cov(X, Y) is the sample covariance of X and Y,
Jvar(X) is the sample variance of X, and +/var(Y) is
the sample variance of Y. When applied to a sample with
paired data Y (x1, y1), (x2,¥2), - .., (xn, yn)}, the coefficient
is denoted as follows [13], [14]:

S D i =Xy — Y
Xy - >
\/Z?:l (Xi - 502\/2?:1 (Y1 - )_})2

where x and y are the sample means.

PCC has the following characteristics [15]:

a) The coefficients for the population and the sample are
between —1 and 1. Therefore, the absolute value is <1.

b) If all sample data points fall precisely on a straight line,
the absolute value of the correlation coefficient is equal to 1.

¢) The change in the position and scale of the two variables
does not cause the coefficient to change. Therefore, the coef-
ficient is a constant.

d) PCC is symmetric, that is to say, pxy = pyx and

@

Fxy = Fyx.

We would like to observe and find how a series of time-
varying data streams subtly affect the occurrence of compli-
cations if we expect to predict them accurately. Therefore,
in our model for predicting hypotension, data of dialysis
patients around 2-week treatments (i.e., approximately six
units of data) were used to predict whether hypotension would
occur in the next 2 weeks. In our model for predicting AV
fistula obstruction, data of dialysis patients around 3-week
treatments (i.e., approximately nine units of data) were used
to predict whether AV fistula obstruction would occur in the
next 2 weeks. All targets and necessary works can be roughly
divided into three stages: (1) integrated data collection and
cleanup, (2) selection of critical features, and (3) model
buildup and improvement.

(1) Integrated data collection and cleanup: All of the exist-
ing inspection data of EMR and physiological parameters of
IoMT were collected via the integration platform. As some of
the data from other medical things such as sphygmomanome-
ters, scales, and thermometers were manually inputted and
marked using mobile devices, there were often missing and
abnormal values in the database. Therefore, all of the col-
lected data must be cleaned through our cleaning programs.
We delete any records with no value in all columns. If there
are missing values in the record, they are filled up with
zeros [36], [37]. This is because we do not want to affect
the training processes by introducing our estimations. Finally,
a complete dataset was organized, as shown on the left of
Fig. 2 (cleaned EMR data and cleaned IoMT data).

(2) Selection of critical features: The datasets organized in
the first stage were subjected to the PCC method, as shown
in Fig. 2, to conduct importance ranking by evaluating the
impacts of the features. Then, the less essential factors were
removed to reduce disturbance. After further selection based
on importance, the remaining features were provided for later
training and testing of the predictive models for predict-
ing hypotension and AV fistula obstruction of hemodialysis
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patients. In this way, we believed that the effectiveness of

prediction model

——> Prediction output

TABLE 1. Features collected from emr and iomt.

prediction by our models, such as the precision and recall

rates, should be improved. lns[;;;::on Hemoglobin | Hematocrit Platelet Total protein
(3) Model buildup and further improvement: The filtered ] Glutamic Glutamic i
.. . .. . White blood - . Alkaline
dataset was randomly divided into a training set with 75% of cell oxaloacetic pyrwvic | phatase
the data and a testing set with the remaining 25%. The training fransaminase | transaminase —

. . Cholesterol | Triglyceride Creatine Uric acid
set was used to train and build the XGBoost models. Our Ca P Na
objective was to predict the probability of hypotension and Glucose concentration | concentration | concentration
AV fistula obstruction in a time interval of the next 2 weeks. c K | EMR number
The testing set tested the above predictive models to esti- Before concentration cgizirgrlf::;n
mate their precision and recall rates. Some features may be Dialysis Weight nitrogen before
1terat1ve!y deleted ba'sed on pred'lct}ve performan'ce. Finally, D]‘)l:m'lgl Systolic blood Diastolic blood| [, \ Blood flow
we considered applying the predictive models built from the 1a%ysis pressure pressure

1d fh dialvsi tients t ist clinical staff i Venous Body Ultrafiltrate | Ultrafiltrate
gctua .atao emodialysis patients to assist clinical staff in pressure temperature rate removed
improving the outcomes and quality of medical treatments. Dialysis Final Bicarbonate
The detailed modeling and predictive processes are shown in temperature | conductivity | conductivity
Fi During |Systolic blood |Diastolic blood
ig. 2. e Pulse Blood flow
Dialysis 2 pressure pressure
Venous Body Ultrafiltrate | Ultrafiltrate
IV. RESULTS pressure temperature rate removed
A. DATA SOURCE Dialysis gina} ' Biczrbopqte
" . . temperature | conductivity | conductivity
To' confirm t.he' effect1venes§ of the corpphcated mod'els During _|Systolic blood | Diastolic blood ol iood 1
built for predicting hypotension and AV fistula obstruction Dialysis 3 | _ pressure pressure e ood How
in hemodialysis patients, we used actual data provided by Venous Body Ultrafiltrate | Ultrafiltrate
Chang-Hua Hospital of the MOHW. The ToMT had been used g;slizz temggzlmre Bic;?gnate removed
to collect dialysis data of 264 patients from May 2019 to temperature | conductivity | conductivity
March 2021. This included a total of 52,929 dialysis proce- During |Systolic blood|Diastolic blood
R . . Dialvsis 4 Pulse Blood flow
dures. The inspection data, doctors’ comments, and digital 1a%ys1s li;ess‘“e prgszure Sifias T O
. . . . . €nous oay rarltrate rafltrate
mar1.<s of clinical events.that occurred during the dialysis pressure temperature rate removed
sessions of these 264 patients were also collected from the Dialysis Final Bicarbonate
EMR system. 68 parameters relevant to the complications temperature | conductivity | conductivity
of dialysis were taken into account. These 68 parameters After Weight Blood urea ni?rl)ogz(i‘;r_zy
collected from EMR and IoMT and considered critical for Dialysis nitrogen after later

hemodialysis-related complications are listed in Table 1.

B. PREDICTION OF HYPOTENSION

1) DATASET

We used the data of dialysis patients collected within approx-
imately 2 weeks (six hemodialysis treatments because dial-
ysis patients got three a week) to predict the probability of
hypotension occurring in the next 2 weeks. All parameters,
except the EMR number, were sextupled, so there were a total
of 67 x 6 + 1 =403 parameters. After data cleaning, pre-
processing, and integration had been completed, there were
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a total of 49,570 units of data in the hypotension prediction
dataset. Then, this dataset was randomly divided into a 75%
training dataset with 37,177 units and a 25% test dataset with
12,393 units. Moreover, 42,269 units of data belonged to the
normal condition, and 7,301 units indicated the occurrence of
hypotension.

To evaluate the performance of the predictive models,
accuracy (A), complication precision (P), and complication
recall rate (R) as described in Eqs. 3—-5 were employed. They
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TABLE 2. Confusion matrix.

Predicted normal
False negative (FN)
True negative (TN)

Predicted complication
True positive (TP)
False positive (FP)

Actual complication
Actual normal

were defined based on the confusion matrix in Table 2. The
accuracy was considered to evaluate the total precision. The
reason why we chose complication precision and complica-
tion recall rate was based on clinical needs. The healthcare
service providers expected the high percentage of positive
cases were actual complications so the false alarm rate was
low. Therefore, the complication precision should be high
and the effort of pre-intervention was not wasted. They also
preferred that the high percentage of actual complications
were predicted and identified then the missing rate was less as
well. Accordingly, the complication recall rate must be good
enough and fewer cases missed the preventive treatments.

TP + TN
Accuracy = , 3
TP+ TN + FP+ FN
.. TP
Precision = ———, 4)
TP + FP
TP
Recall rate = ——. ®)]
TP + FN

2) PCC FOR FEATURE SELECTION

The original dataset included 403 parameters. We consid-
ered that eliminating less critical parameters should reduce
interference from them and increase the effectiveness of the
XGBoost model. Thus, Pearson’s correlation algorithm was
adopted to quantify the relationship between hypotension
and these 403 parameters. In general, a larger r value of
PCC between hypotension and one specific parameter rep-
resents a higher correlation. After much trial and error, the
best value of 0.003 was selected. Therefore, 345 parameters
with higher importance were chosen for the next stage of
XGBoost.

3) XGBoost MODEL #1

The XGBoost predictive model with 345 input parameters is
indexed as model #1. The resulting accuracy was 0.920, the
hypotension precision was 0.775, and the hypotension recall
rate was 0.644.

4) XGBoost MODEL #2

The hypotension precision rate of 77.5% for model #1
was acceptable, but its recall rate was only 64.4%, which
means that approximately 36% of patients were ignored.
We considered that this unsatisfactory result may have
been due to substantial interference caused by less crit-
ical parameters. Therefore, the parameters with a score
lower than 0.0025 based on the feature importance obtained
from XGBoost model #1 were dropped, and only the first
161 parameters were used for model #2. After training and
testing, the resulting accuracy was 0.926, the hypotension
precision was 0.767, and the hypotension recall rate was
0.716.
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TABLE 3. Confusion matrix of XGBoost model #3 for hypotension.

Predicted hypotension | Predicted normal
Actual hypotension 1430 (TP) 395 (FN)
Actual normal 447 (FP) 10121 (TN)

5) XGBoost MODEL #3

The hypotension precision rate of 76.7% for model #2 was
acceptable, but we still speculated regarding whether its recall
rate of 71.6% could be further improved. Therefore, the
parameters with a score lower than 0.005 based on the feature
importance obtained from XGBoost model #2 were dropped,
and only the first 107 parameters were used for model #3.
After training and testing works were performed, we obtained
a confusion matrix as shown in Table 3.

The resulting accuracy was 0.932, the hypotension preci-
sion was 0.762, and the hypotension recall rate was 0.784.
The precision rate of model #3 only changed slightly, but
the recall rate significantly increased from 71.6% to 78.4%.
We thus wanted to build a better model by reducing the
number of input parameters to 93. The resulting accu-
racy was 0.929, the hypotension precision was 0.762, and
the hypotension recall rate was 0.751. The precision was
almost unchanged, but the recall rate decreased. Furthermore,
we analyzed these 107 — 93 = 14 eliminated parameters and
found that some of them are closely related to vascular
dynamics, including weight, dehydration, dialysis rate, blood
pressure, and pulse. These parameters should not be excluded
based on thorough discussions with nephrologists and health-
care service providers. Accordingly, we choose model #3 as
a suitable predictive model. Thus, we implemented fourfold
cross-validation for model #3. The mean accuracy was 0.932,
the mean precision rate was 0.769, and the mean recall rate
was 0.766. We considered that our model might also perform
well on other datasets based on the abovementioned experi-
mental results.

Based on the feedback collected from nephrological physi-
cians, the performance at this level is good enough to pro-
vide clinical assistance. Although there are a few similar
research papers predicting hypotension for chronic hemodial-
ysis, they select very different prediction targets and per-
formance indexes. Therefore, it is not easy to compare the
prediction efficiency. Ref. [38] built models to predict intra-
dialytic hypotension at the next blood pressure measurement
with a sensitivity of 86% and specificity of 81% for both
nadir systolic blood pressure <90 mmHg and <100 mmHg.
Ref. [39] used a recurrent neural network model to predict
intradialytic hypotension occurred within 1 hour. This model
achieved an area under the receiver operating characteristic
curve of 0.94, 0.87, and 0.79 for three different definitions of
hypotension respectively.

C. PREDICTION OF AV FISTULA OBSTRUCTION

1) DATASET

We attempted to use the data of dialysis patients from approx-
imately 3 weeks (nine hemodialysis treatments, given that
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TABLE 4. Confusion matrix of XGBoost model for AV fistula obstruction.

Predlctefi AV fistula Predicted normal
obstruction

Actual AV fistula

obstruction 185 (TP) 75 (FN)

Actual normal 19 (FP) 11947 (TN)

dialysis patients got them three times a week) to predict the
probability of AV fistula obstruction in the next 2 weeks.
One more tag parameter indicating if there is an AV fis-
tula obstruction event or not was added to the dataset for
each hemodialysis procedure. All parameters were nonupled,
with the exception of the EMR number, giving a total of
68 x 9+ 1 = 613 parameters. After the data cleaning and
integration had been completed, there were 48,902 units of
data in the AV fistula obstruction prediction dataset. Then,
this AV fistula obstruction prediction dataset was randomly
divided into a 75% training dataset with 36,676 units and a
25% test dataset with 12,226 units. Moreover, 47,863 units
belonged to the normal condition, and 1,039 units of data
indicated AV fistula obstruction. In addition, accuracy, com-
plication precision, and complication recall rate were also
used here for the evaluation of performance.

2) PCC FOR FEATURE SELECTION

The original dataset included 613 parameters. We considered
that eliminating less critical parameters should reduce the
disturbance and increase the effectiveness of the XGBoost
predictive model. Thus, Pearson’s correlation algorithm was
adopted to quantify the relationship between AV fistula
obstruction and these 613 parameters collected in IoMT and
EMR. In general, a larger r value of PCC between AV fistula
obstruction and one specific parameter represents a higher
correlation. After much trial and error, the best value of
0.005 was chosen. Therefore, 269 parameters with higher
importance were chosen for the next stage of XGBoost.

3) XGBoost MODEL

XGBoost with 269 input parameters was selected as
the model for predicting AV fistula obstruction. Then,
we obtained a confusion matrix, as shown in Table 4. The
resulting accuracy was 0.992, the AV fistula obstruction pre-
cision was 0.907, and the AV fistula obstruction recall rate
was 0.712.

This AV fistula obstruction prediction model had an accu-
racy rate of more than 99%, a precision rate of approximately
90%, and a recall rate of more than 71%, indicating its
outstanding performance in predicting the occurrence of AV
fistula obstruction from a clinical perspective. To test the
effect of fewer features, we reduced the number of parameters
to 225. The resulting accuracy was 99.1%, the AV fistula
obstruction precision was 86.7%, and the AV fistula obstruc-
tion recall rate was 70.4%. We considered that the precision
and recall rates were reduced, so some critical parameters
had probably been excluded. Furthermore, we analyzed these
269 — 225 = 44 eliminated parameters and found that some
of them, such as pulse and ultrafiltration rate, are closely
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related to the vascular condition. These parameters should
not be excluded based on thorough discussions with some
nephrologists and healthcare service providers. Therefore,
we concluded that XGBoost with 269 input parameters is a
suitable model for predicting AV fistula obstruction. Next,
we implemented fourfold cross-validation. The mean accu-
racy was 0.992, the mean precision rate was 0.881, and the
mean recall rate was 0.702. To the best of our knowledge, less
research focuses on predicting the complications related to
the AV fistula. Furthermore, nephrological physicians believe
that this performance is acceptable based on the clinical point
of view.

D. DISCUSSION

The XGBoost model has been tested many times experimen-
tally. It was found that, while excluding some less important
parameters according to the ranking result of the model, the
updated XGBoost algorithm for hypotension demonstrated
a better recall rate but lower precision. The complication
of hypotension is closely related to the dynamics of blood
vessels, so these parameters of vascular dynamics are rela-
tively important. Therefore, more parameter data related to
vascular dynamics were inputted into the prediction model,
and its precision should be higher. Consequently, it is easy
to understand why model #1 with 352 parameters had high
predictive precision of 77%. However, too many similar
features of vascular dynamics may confuse each other for
the predictive model, reducing the recall rate. It is not that
easy to distinguish potential hypotension from normal status.
Therefore, the recall rate significantly increased for predic-
tive models with fewer features, but the precision decreased.
We found that most of the excluded parameters are related to
vascular dynamics, so its precision would naturally decrease.
However, the reason for this may be that so many essential
parameters related to vascular dynamics are deleted and the
inspection data and medical record data are left. We think
that this situation is due to the field design of the original
dataset. The data from EMR were only provided once or
several times every month, but the vascular dynamics data
from IoMT were collected many times during each dialysis
procedure. Because of this significant disparity in quantity,
it is possible that the essential parameters of vascular dynam-
ics were diluted and finally ranked with lower importance.
Then, they were often excluded during parameter selection
based on a specific threshold score. However, it is not accept-
able to exclude too many vascular dynamic parameters with
predictive function because they are major factors in blood
pressure based on consideration of the physiology theory.
This is why we chose model #3 as our suitable predictive
scheme. For the complication of AV fistula obstruction, PCC
generated a good set of features. Then, no more selection
steps were necessary.

In the process of hemodialysis treatment, a large amount of
blood leaves the human body and enters the dialysis system,
which naturally contains a large number of risks. Mild
hypotension cases may cause discomforts such as cramps,
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dizziness, or vomiting. In severe cases, fainting, irregular
heart rate, or sudden death could happen. Once the vascular
channel used in dialysis is blocked, infected, or bleeding,
it may result in the extra use of medicine, invasive treatment,
or even hospitalization and surgery. To avoid these adverse
dialysis complications, it depends on intensive patient mon-
itoring. However, this consumes a lot of time and energy
of healthcare service providers. If the IoMTs are used to
collect data from the dialysis machines, sphygmomanometer,
scale, thermometer, etc. and the inspection data from EMR
are integrated to build a more comprehensive dataset, then
we think the excellent predictive models for the above com-
plications can be built. As long as the models’ accuracies and
reliabilities are sufficient, they may play as faithful HDTs
in clinical treatment to greatly reduce the risk of patients
during dialysis, improve the quality of treatment, and lower
the burden on the medical staff. This can also promote the
future development of HDTs and precision medicine.

V. CONCLUSION
Most patients undergoing dialysis procedures have chronic
kidney disease, so long-term dialysis is required. Therefore,
there is a high risk of suffering from complications during
treatment. Hypotension and the deterioration of the quality
or obstruction of the AV fistula are diagnostic and treatment
problems for dialysis patients. After the diagnosis is con-
firmed, it can be well dealt with according to the current
medical capability in Taiwan. However, for healthcare ser-
vice providers on the dialysis team, the most critical issue
is predicting the likelihood of these complications in dial-
ysis patients in the short term. Then, the medical team has
enough time to modify the treatment procedure to avoid
the worse outcome. Owing to the abovementioned factors,
we collected many parameters of dialysis patients from the
IoMT and EMR. We then built predictive models to pre-
dict the probabilities of complications for dialysis patients.
We found correlations between the collected parameters and
complication themes by learning from statistical principles,
ML algorithms, and subtle changes among these appropriate
parameters. From the experimental results regarding data
from Chang-Hua Hospital of the MOHW, we could use the
essential parameters collected during dialysis procedures and
inspection data in the past few weeks to successfully predict
the possibility of hypotension and AV fistula obstruction in
the next 2 weeks. The precision and recall rates reached
approximately 71%-90%, which are good enough to act as
clinical references. It also means that the false omission rate
of our model is low. Suppose that we predict that a dialysis
patient will have complications with a high enough precision
during the next 2 weeks. In that case, the healthcare team
can make appropriate preparations for these complications in
advance or modify the medical procedures to avoid compli-
cations. This is much better than providing patients with the
diagnosis and treatment every time a complication occurs.
The prediction period for hemodialysis complications is
selected as 2 weeks. Also, the threshold of hypotension is
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fixed in all experiments. These two limitations of our research
could be released in the future. We think the prediction of
hemodialysis complications with high precision for the next
dialysis procedure is more helpful to the healthcare team and
the threshold of hypotension should be decided according to
the unique constitution of each patient.

Although the inspection data of EMR have been added for
prediction, there should be more related factors causing the
occurrence of hypotension and AV fistula obstruction, such
as other diseases of the patient, medicine in use, nutritional
status, etc. The follow-up research may consider adding more
personalized medical information so as to increase prediction
accuracy. In addition, the dialysis procedure is not performed
every day, the physiological parameters during the dialysis
process are not measured continuously and the actual adverse
events may not occur during the dialysis process. To solve
these problems, the wearable measuring instrument for vital
signs could be a good choice to collect more patients’ data.
Although the accuracies, precisions, and recall rates of our
models have reached a superior level, they are still in the
stage of data validation. In the near future, we expect to carry
out pre-intervention in the clinical treatment according to its
early warning information, such as performing angiography
or adjusting medical prescriptions. Then we may randomly
assign dialysis cases to the experimental group and control
group individually to observe whether the predictive models
can reduce the occurrence of hypotension and AV fistula
obstruction in the dialysis room.
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