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Abstract—To improve the efficiency of deep reinforcement
learning (DRL)-based methods for robot manipulator trajectory
planning in random working environments, we present three
dense reward functions. These rewards differ from the traditional
sparse reward. First, a posture reward function is proposed to
speed up the learning process with a more reasonable trajec-
tory by modeling the distance and direction constraints, which
can reduce the blindness of exploration. Second, a stride reward
function is proposed to improve the stability of the learning
process by modeling the distance and movement distance of
joint constraints. Finally, in order to further improve learning
efficiency, we are inspired by the cognitive process of human
behavior and propose a stage incentive mechanism, including a
hard-stage incentive reward function and a soft-stage incentive
reward function. Extensive experiments show that the soft-stage
incentive reward function is able to improve the convergence
rate, get higher mean reward and lower standard deviation after
convergence.

Index Terms—Deep reinforcement learning (DRL), dense
reward function, stage incentive mechanism, trajectory planning.

I. INTRODUCTION

IN ORDER to use a robot manipulator to complete a
task, it is essential to realize trajectory planning of the

robot manipulator. The results of trajectory planning directly
determine the quality index of the task carried out by the
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robot manipulator [1], [2]. Traditional trajectory planning
for robot manipulators mainly includes artificial potential
field methods [3], [4], segmented geometry method [5], and
polynomial interpolation [6], [7]. These methods have low
intelligence, poor dynamic planning, and no self-learning
ability. In recent years, deep reinforcement learning (DRL)
has been applied to trajectory planning of robot manipu-
lators [8], [9], [10], [11]. This method can allow a robot
manipulator to learn autonomously and plan an optimal path
in a complex and random environment.

He et al. [8] developed a reinforcement learning control
strategy that is based on actor–critic structure to enable vibra-
tion suppression while retaining trajectory tracking for the
manipulator. Katyal et al. [9] used only the original image
of the working environment as the state space, and demon-
strated robust and direct mapping from the image to the
action domain by exploiting simulation for learning based
on DRL. The method is robust to environmental changes. It
can learn a manipulation policy, which authors show takes
the first steps toward generalizing to changes in the envi-
ronment and can scale to new manipulators. But because
the state space is an image, dimensionality disaster is likely
to occur. Kamali et al. [10] proposed a Dynamic-goal DRL
method to address the problem of robot arm motion planning
in telemanipulation applications. This method intuitively maps
human hand motions to a robot arm in real time while avoid-
ing collisions, joint limits, and singularities. Wen et al. [11]
proposed to use a DRL method to plan the trajectory of a
robot arm to realize obstacle avoidance. In their approach, the
rewards are designed to overcome the difficulty in the con-
vergence of multiple rewards, especially when rewards are
antagonistic to each other. Sangiovanni et al. [12] proposed
a hybrid control methodology to achieve full body colli-
sion avoidance in robot manipulators, which improves clas-
sical motion planning algorithms by using a DRL approach
for performing obstacle avoidance, while achieving a reach-
ing task in the operative space. James and Davison [13]
innovatively presented an attention-driven robotic manipula-
tion reinforcement learning algorithm, which can be applied
to a range of sparse-rewarded tasks, given only a small
number of demonstrations. Kumra et al. [14] defined a
task progress-based Gaussian (TPG) reward function that
computes the reward based on actions that lead to suc-
cessful motion primitives and progress toward the overall
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Fig. 1. DRL framework.

task goal, which can speed up the learning process of the
agent.

As shown in Fig. 1, the three components of DRL are
environment, agent, and reward function. The agent in DRL
performs exploration to identify the possible actions. The robot
manipulator executes the action in the environment and feeds
back the reward value to the agent according to the defined
reward function. Through the iterative update method, the
agent learns better strategies of trajectory planning.

In the history of the development of DRL, a typical method
is the deep Q-learning network (DQN) [15], [16]. However, its
spaces of output action are discrete, so it is difficult to apply
to continuous action spaces such as the trajectory planning of
robot manipulators. Subsequently, deep deterministic policy
gradient (DDPG) [17] based on the actor–critic (AC) archi-
tecture, asynchronous advantage AC (A3C) [18], proximal
policy optimization (PPO) [19], and soft AC (SAC) [20] were
proposed one by one. Otherwise, multiagent DRL has attracted
a lot of attentions of scholars in recent years [21], [22], which
makes the model in line with the actual situation. But there
are challenges to be addressed. For example, goal consis-
tency between agents, model extensibility, and environmental
instability.

However, there are still problems in DRL methods, such as
randomness and blindness. The key to these problems is the
reward function, which is an important part of DRL, but it
can lead to a large amount of useless exploration and, thus,
decrease the efficiency of the algorithm [23], [24]. To solve
the problem, we present a stage incentive mechanism based
on human behavior cognition for robot trajectory planning in
DRL. The primary contributions of this article are summarized
as follows.

1) Combining the characteristics of trajectory planning
and work environment, three brand-new dense reward
functions are proposed. Dense reward functions pro-
vide nonzero rewards, and they differ from the sparse
reward function in that they provide more information
after each action, which can reduce invalid and blind

exploration of DRL during trajectory planning for the
robot manipulator.

2) A posture reward function and a stride reward function
are proposed. The posture reward function includes a
position reward function and a direction reward function:
the position reward function is composed of the task
status item (whether or not the task is completed) and
the distance guide item (the Euclidean distance between
the end of the robot manipulator and the random tar-
get), and the direction reward function is modeled by
the angle between the expected direction vector and
the actual direction vector. The stride reward function
includes a position reward and a movement distance
reward. The position reward is the same as that men-
tioned above, and the movement distance reward is
composed of the average movement distance of each
joint of the robot manipulator. Together, the posture
reward function and the stride reward function can make
the robot manipulator explore more efficiently under rea-
sonable constraints in position, direction, and movement
distance, and reduce invalid and blind exploration.

3) In order to further improve learning efficiency, we are
inspired by the cognitive process of human behavior and
propose a stage incentive mechanism. The hard-stage
incentive mechanism is established by combining the
posture reward function and stride reward function. To
improve its potential stability hazards, a soft-stage incen-
tive mechanism is further proposed. With this innovative
structure, we have increased the expected return obtained
by the algorithm while ensuring the stability of the algo-
rithm, which has improved the overall efficiency of the
algorithm.

The remainder of this article is organized as follows. The
structures of the posture reward function and stride reward
function are presented in Sections II and III. In Section IV, the
stage incentive mechanisms are introduced, including the hard-
stage incentive reward function and the soft-stage incentive
reward function. The implementation of the reward functions
is illustrated in Section V, mainly how to implement the
proposed reward functions in the current mainstream DRL
methods. Then, experimental results are demonstrated and dis-
cussed in Section VI. Finally, the conclusions are drawn in
Section VII.

II. POSTURE REWARD FUNCTION

For DRL-based methods, the robot manipulator performs
a great deal of ineffective exploration in a complex random
environment, which is the main reason for reducing the effi-
ciency of the algorithm. A posture reward function restricts the
relative position and relative direction of the endpoint of the
robot manipulator and target reasonably by using a position
reward function and a direction reward function, respectively.
Therefore, a posture reward function can make the algo-
rithm generate more reasonable actions to be executed by the
robot manipulator and thereby improve the efficiency of the
algorithm.
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A. Position Reward Function

In a random environment, the Euclidean distance between
the end of the robot manipulator and target can be used to
reflect the current state of the robot. The position reward func-
tion is designed in this article consists of two items: 1) the task
status and 2) the distance guide. The task status item reflects
the result of the trajectory planning, that is, whether the robot
manipulator reaches the position of the target that appears in
space randomly. The purpose of the distance guide item is to
motivate the robot manipulator to approach the target point
quickly.

Distance Guide Item: In order to motivate the robot manipu-
lator to approach the target point T quickly, the distance guide
item is represented by the Euclidean distance DPT , between
the end of the robotic arm P and the target T.

Task Status Item: The task status item is modeled by DPT .
The smaller the DPT , the more likely it is that the robot manip-
ulator will reach the target. The task status item is represented
by parameters Jreach: as shown in

Jreach =
{

0, DPT > β

1, DPT < β
(1)

where β is adjustable according to the actual requirements of
the environment, the value of β is set to 0.01 in this article.

By combining the task status item and distance guide item,
the position reward function is designed as shown in

Rposition(DPT) = Jreach − DPT . (2)

B. Direction Reward Function

On the basis of the guidance of the position reward function,
by adding a direction guide, the robot manipulator can obtain
more information and reach the target faster.

The direction reward function is modeled by the relationship
between two vectors in three-dimensional space: the expected
direction and the actual direction of the end of the robot
manipulator. As shown in Fig. 2, PT is the expected motion
direction, which is represented by

−→
VPT , and PP′ is the actual

motion direction, which is represented by
−−→
VPP′ . The arithmetic

expressions of
−→
VPT and

−−→
VPP′ are formulated in (3) and (4) as

follows:

−→
VPT =

〈
(Tx − Px),

(
Ty − Py

)
, (Tz − Pz)

〉
(3){−−→

VPP′ =
〈 (

P′x/temp
)
,

(
P′y/temp

)
,

(
P′z/temp

) 〉
temp = sin

((
P′w

)) (4)

where Tx, Ty, and Tz are the coordinates of the target, Px, Py,
and Pz are the coordinates of the end of the robot manipulator
in the current state, P′x, P′y, P′z, and P′w is the quaternion
of the end of the robot manipulator in the current state, and ϕ

represents the angle between
−→
VPT and

−−→
VPP′ , which is applied

to measure the deviation between the motion vector planned
by the algorithm and the expected motion vector. The smaller
the ϕ, the lower the deviation. The arithmetic expressions of

Fig. 2. Scheme of the direction reward function.

ϕ are formulated in⎧⎪⎪⎨
⎪⎪⎩

ϕ =
∣∣∣∣∣∣cos−1

−→
VPT ·−−→VPP′√(−−→

VPT ·−→VPT

)
×

(−−→
VPP′ ·−−→VPP′

)
∣∣∣∣∣∣

ϕ ∈ [0, π ].

(5)

The direction reward function designed in this article is
shown in

Rdirection(ϕ) = �ϕ�∗/2π (6)

where �ϕ�∗ represents an operation in which the value of the
function is output normally when the calculation result in �·�∗
is less than π/2; otherwise, the result is π − ϕ.

C. Modeling of the Posture Reward Function

In the process of trajectory planning of the robot manipula-
tor, if only the position reward function or only the direction
reward function is used, the performance of the algorithm will
be poor. Instead, the position reward function and direction
reward function can be combined to form a posture reward
function Rposture, as shown in

Rposture(DPT , ϕ) = Rposition(DPT)− Rdirection(ϕ). (7)

III. STRIDE REWARD FUNCTION

The purpose of the stride reward function is to not only
enable the robot manipulator to reach the target accurately
but also make the movement distance of the robot manip-
ulator is as small as possible for the optimal trajectory we
expect. This allows the manipulator to reach the target quickly
and reduces the energy consumption during the operation of
the robot manipulator. The stride reward function is modeled
by the position reward function and the movement distance
reward function. The position reward function remains the
same as in Section II-A.

A. Movement Distance Reward Function

In this article, we take the average movement distance of
each joint as a constraint condition while the robot manip-
ulator is running and model the movement distance reward
function. It is difficult to obtain the movement distance of
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each joint directly during the operation of the robot manipu-
lator. Therefore, we start from the speed of each joint of the
robot manipulator to calculate the distance of each joint. We
define the joint velocity vector of the robot manipulator as
−→
V = [

v1, v2, v3, . . . , vN
]
, N = number of joints. (8)

The movement distance reward function Rmove is shown in

Rmove

(−→
V

)
= �t ∗

(−→
V · −→V

)
/N (9)

where �t represents the working frequency of the robot manip-
ulator, that is, the robot manipulator runs according to the
speed command every time at �t. N is the number of joints
of the robot manipulator. In this article, we set �t as 0.05,
and N as 6.

B. Modeling of the Stride Reward Function

The stride reward function proposed in this article is a com-
bination of the position reward function and the movement dis-
tance reward function. We use the position and the movement
distance of each joint of the robot manipulator as constraints
to promote the policy of the trajectory planning learned by
the algorithm, which can ensure the target is reached and the
movement distance of each joint of the robot manipulator is
reduced.

The stride reward function designed in this article is
shown in

Rstride

(
DPT ,

−→
V

)
= Rposition(DPT)− Rmove

(−→
V

)
. (10)

IV. STAGE INCENTIVE MECHANISM

The stride reward function will restrict the motion of the
robot manipulator. Actually, at the beginning of the task, we
do not hope the robot was restricted, we hope the robot manip-
ulator can move boldly to approach the target at this time.
Therefore, we proposed a stage incentive mechanism.

A. Hard-Stage Incentive Reward Function

We use an adjustable coefficient γ to achieve the differ-
ent reward functions at different stages of the task during
the operation of the robot manipulator. The mechanism of
the hard-stage incentive divides the task of trajectory plan-
ning into two stages, including the fast approach area and
the slow adjustable area, as shown in Fig. 3. In the fast
approach area, the posture reward function is used to prompt
the robot manipulator to approach the target quickly. In the
slow adjustable area, the stride reward function is used as an
incentive mechanism.

In this article, we use DPT = 0.5 as the boundary to
divide the fast approach area and the slow adjustable area.
(If DPT > 0.5, the posture reward function has short time to
work, this will reduce the exploration of algorithm, and mean-
while the stride reward function has long time to work, this
will result in slow convergence of the algorithm; If DPT < 0.5,
it means that when the robotic manipulator is closed to the
target, the algorithm switches the reward function. At this
time, there is not enough space for agent to adapt the stride

Fig. 3. Scheme of the hard-stage incentive reward function.

Fig. 4. Diagram of the adjustable coefficient γ .

reward function, which will keep the algorithm from con-
verging. Therefore, in order to avoid the above situation, the
mean value of DPT is usually taken.) The relationship between
the adjustable coefficient γ and the motion area of the robot
manipulator is shown in Fig. 4.

The value of γ can be calculated by

γ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
γposture = 1
γ stride = 0

]T

, P ∈ fast approach area

[
γposture = 0
γ stride = 1

]T

, P ∈ slow adjustable area.

(11)

The mechanism of the hard-stage incentive reward function
RHAR we proposed is shown in

RHAR = γ
[
Rposture(DPT , ϕ) Rstride

(
DPT

−→
V

)]T

= [
γposture, γstride

][
Rposture(DPT , ϕ) Rstride

(
DPT

−→
V

)]T
.

(12)

B. Soft-Stage Incentive Reward Function

Although the hard-stage incentive reward function achieved
good results in experiments, we found that it has potential
stability problems. That is, the adjustment process is rough,
as it is easy to cause fluctuation of the reward curve when
changing the reward function, which results in unstable fac-
tors for the algorithm. The switching process of the hard-stage
incentive reward function is similar to the bang-bang control
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Fig. 5. Diagram of the training process for DRL with an AC frame.

in the classic control, and the method is bound to affect the
stability of the algorithm. To solve this problem, we proposed
the soft-stage incentive reward.

In this article, the weight coefficient α = [α1 α2] is intro-
duced to model a soft-stage incentive reward function, as
shown in

α1 = f (DPT) = 1− �DPT�−σ1 (13)

α2 = f (DPT) = �DPT�−σ2 (14)

where �·�− represents an operation constraining the value of
DPT in the range [0, 1], and σ1 and σ2 can be adjusted accord-
ing to the actual situation of the task. In this article, we set
σ1 = σ2 = 1 according to experimental experience.

The soft-stage incentive reward function, which adjusts
the proportions of different reward functions through α, is
defined as

RSAR = α1Rstride

(
DPT ,

−→
V

)
+ α2Rposture(DPT , ϕ). (15)

The soft-stage incentive reward function does not need to
divide the working space of the robot manipulator. According
to the real-time change of the weight coefficient α, the reward
function is adjusted dynamically and continuously.

V. IMPLEMENTATION OF THE REWARD FUNCTION

As shown in Fig. 5, the learning process of the robot
manipulator mainly consists of four stages: initialization,
action generation, reward calculation and network training.
The overall process is summarized in Algorithm 1.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In the experiment, we set 10 000 episodes, and each
episode has 50 steps. We used four indicators to evaluate the
performance of our method: 1) convergence rate (expressed
by the episode Estart (0< Estart < 10 000) when the algorithm
starts to converge); 2) the reward of each episode Repisode is
shown in (16) (during the experiment, we set any time step N
in an episode to complete the trajectory planning and to imme-
diately stop the current episode and enter the next episode;
therefore, the total reward was calculated within the time step
before completing the trajectory planning in each episode.);

Algorithm 1 Trajectory Planning Algorithm With the Soft-
Stage Incentive Reward Function
Input: Environment state space S.
Output: Action a

1: Initialize Actor Network μ(S|θμ) and Critic Network
Q(S|θQ)

2: for episode = 1 to M do
3: for t = 1 to T do
4: at ← μ(S|θμ)

5: RSAR ← F(s, a)

6: reward = RSAR

7: Update weight of Actor Network θμ

8: Update weight of Critic Network θQ

9: end for
10: end for

Fig. 6. Simulation environments for the robot manipulator.

3) the average number of steps to complete the task (it is
impossible for the robot manipulator to complete the task of
trajectory planning in one step); and 4) standard deviation
VSTDEV is shown in (17), is used to judge the stability and
robustness of the algorithm

Repisode =
N∑

s=1

Reward (1 ≤ N ≤ 50) (16)

⎧⎨
⎩

R = 1
(10000−Estart+1)

∑i=10000
i=Estart

Repisode

VSTDEV =
√∑n

i=Estart

(
Ri

episode− R
)2

n−1 (n = 10000).

(17)

Simulation experiments were conducted in V-REP [25]. A
random environment was initialized as shown in Fig. 6. The
red ball is the target that randomly appears in the workspace.
An additional reward of +20 was given after each task is
successful.

A. Posture and Stride Reward Function

In this section, three types of reward functions, basic [a
sparse reward function as shown in (18)], posture, and stride,
were applied to two DRL methods. (According to experimental
verification, DDPG and SAC could not converge even after a
long training period based on a sparse reward function, so we
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TABLE I
RESULTS WITH THE STAGE INCENTIVE REWARD FUNCTION

Fig. 7. Diagram of the convergence process with the different reward
functions in the training.

do not discuss these scenarios.) During the experiments, we
initialized the same working environment 20 times

Rbasic =
{

1, task is done
0, task not done.

(18)

After all the methods converged, we calculated the conver-
gence rate, the mean reward of each episode, the average steps
to complete the task, and the standard deviation of the latter,
as summarized in Table I. The changing process of the reward
and the average steps to complete the task in the training for
each method are displayed in Fig. 7, and the changing process
in the evaluation is shown in Fig. 8.

From Table I, we can see that SAC converged faster in
general. The convergence rate of SAC with posture reward
function was 10.8% faster than that of DDPG with the pos-
ture reward function, and the convergence rate of SAC with
the stride reward function was 17.9% faster than that of DDPG
with the stride reward function. Compared with the stride
reward function, the convergence rate of the posture reward
function increased by 22.6%–26.4%. However, the standard
deviation of the stride reward function was 23.7%–46.4%
lower than that if the posture reward function, and the mean
reward of the stride reward function was 3.2% higher than that
of the posture reward function in DDPG.

As shown in Fig. 7, during the training, the posture reward
function fluctuated to a large extent after convergence; in con-
trast, the stride reward function converged slowly, fluctuated

Fig. 8. Diagram of the process with the different reward functions in the
evaluation.

greatly before convergence, and was stable after convergence.
The reason is simple, the posture reward function guides the
robot manipulator closer to the target with distance and direc-
tion constraints, which is more oriented to complete the task.
However, its stability is poor, and slight interference can make
the manipulator move away from the target quickly, resulting
in mission failure. The stride reward function takes the dis-
tance and the movement distance of each joint of the robot
manipulator as constraints to guide the robot manipulator to
approach the target. Hence, the manipulator will not suddenly
move significantly. Compared to the posture reward function,
the stride reward function is more cautious. The fluctuations in
training are caused by the agent’s exploration. Under the dual
effects of exploration and the stride reward function’s own
characteristics, the robot manipulator cannot reach the target
quickly.

During the evaluation, we conducted 500 random trials, used
the trained model to realize the trajectory planning with the
robot manipulator, and calculated its success rate. As shown
in Table I, the success rates of DDPG and SAC based on the
posture reward function were 90.4% and 89.2%, respectively,
and the success rates of DDPG and SAC based on the stride
reward function were 88.6% and 90.8%, respectively.

Generally speaking, the posture reward function completes
trajectory planning with fewer average steps, and the stride
reward function obtains more rewards. In terms of improv-
ing the convergence rate, the posture reward function is
more advantageous. The stride reward function plays a more
important role in improving algorithm stability.

B. Hard-Stage Incentive Reward Function

It can be seen from the above experiments that in a complex
environment, the dense reward function will achieve better
results, but there are still some defects. In this section, we
applied our hard-stage incentive reward function (hereafter
referred to as HAR) to SAC and DDPG, and the convergence
results are shown in Table I. In the training, the changing pro-
cess of the reward and the average steps to complete the task



3572 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 6, JUNE 2023

in the training for each method are shown in Fig. 7, and in the
evaluation, the changing process for each method is visualized
in Fig. 8.

As shown in Table I, in the process of training, for robust-
ness, the standard deviation decreased by about 42.6% with
HAR compared to the posture reward function. The conver-
gence rate of the HAR reward function was about 20.4% faster
than that of the stride reward function, but it was slower than
the posture reward function. When the mechanism of the hard-
stage incentive adjusted the reward function used in different
stages, the switch-type adjustment method was adopted with-
out a smooth transition process. This is also one of the reasons
why the SAC with HAR fluctuated greatly in the training, as
shown in Fig. 7(a), although its performance was not obvious
in the DDPG.

In the evaluation, SAC and DDPG were greatly improved
in both convergence performance and robustness when HAR
was used. The reward increased to 24.7%, the average steps
decreased by 16.7%–27.2%, and the success rate for trajectory
planning increased by 2.4%–5.2%.

C. Soft-Stage Incentive Reward Function

Although HAR is able to offer improvements in both the
training and evaluation processes, its learning efficiency and
robustness still need to be improved.

In the last set of experiments, the soft-stage incentive reward
function (hereafter referred to as SAR) was used. As shown in
Table I, the results of SAR were superior in all cases. In the
training, the changing process of the reward and the average
steps to complete the task in the training for each method are
shown in Fig. 7, and the changing process in the evaluation is
shown in Fig. 8.

In the training, compared with the above three reward func-
tions, the convergence rate was accelerated by 18.7%–40.1%
in DDPG and by 31.4%–46.9% in SAC. For the convergent
mean reward, the promotion was between 4.6%–15.5% in
DDPG and 4.4%–9.5% in SAC. The performance of robust-
ness was also excellent; the standard deviation decreased
by 35.9%–63.2% in DDPG and by 21.9%–26.7% in SAC.
This shows SAR has a great convergence rate, stability, and
robustness. Why does it work so well? One reason is that it
combines the advantages of the posture reward function and
the stride reward function to ensure fast and stable conver-
gence in the early stages of exploration. Another reason is that
it solves the switch adjustment mode of HAR by smoothing
the transition between different reward functions in different
stages.

The convergence rate of SAR in DDPG was slower than that
of SAR in SAC, but other indicators were better in DDPG than
in SAC. With the use of the model obtained by the DDPG with
SAR for evaluation, the success rate of the trajectory plan-
ning reached 99.6%. The average number of steps to complete
the trajectory planning was 5. From Fig. 8, compared with
the other three reward functions, we can observe that SAR
needs fewer steps to realize trajectory planning of the robot
manipulator, obtains more rewards, and is more stable.

VII. CONCLUSION

To deal with the inefficiency, instability, and blindness
of DRL-based methods in trajectory planning, this article
proposed three dense reward functions: 1) the posture reward
function; 2) stride reward function; and 3) the mechanism of
stage incentive. The posture reward function can reduce the
blindness of exploration to accelerate the learning process,
and the stride reward function can make the learning process
more stable. However, the soft-stage incentive reward function
exhibits the advantages of both, offering faster convergence,
higher stability, and greater robustness. The experimental
results showed that state-of-the-art DRL methods using the
proposed reward functions will have the best performance.

In the future, we will further explore the mechanism of
reward shaping, and we plan to apply DRL methods to other
complex tasks with robot manipulators.
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