Abstract:
Convenient and painless blood pressure measurement can enable increased user adoption of regular monitoring and early intervention for hypertension, which is a significan...Show MoreMetadata
Abstract:
Convenient and painless blood pressure measurement can enable increased user adoption of regular monitoring and early intervention for hypertension, which is a significant cause of mortality worldwide. This paper introduces a finger-wearable blood pressure measurement device to enable frequent daytime and nocturnal monitoring. The blood pressure measurement is achieved using a two-dimensional capacitive tactile sensor array that is located next to a digital artery. A pumpdriven pneumatic bladder presses the tactile array and the finger towards each other to obtain a pressure sweep versus time. The digital artery pressure waveform data collected during this sweep are used to estimate arterial blood pressure. A clinical study (N =97) was conducted to obtain training (N =49) and validation (N =19) data for blood pressure algorithm development and test (N =29) data to determine the estimation accuracy compared to brachial dual-observer auscultation. On the test set, the mean and standard deviation of the error in the systolic blood pressure estimate are 0.9 mmHg and 6.9 mmHg, respectively, while the corresponding quantities for diastolic blood pressure are -3.2 mmHg and 7.0 mmHg, respectively. These results compare favorably to blood pressure accuracy requirements specified by international standards.
Published in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 18-21 July 2018
Date Added to IEEE Xplore: 28 October 2018
ISBN Information:
ISSN Information:
PubMed ID: 30441192