Loading [MathJax]/extensions/MathMenu.js
Quantum-inspired evolutionary algorithm for a class of combinatorial optimization | IEEE Journals & Magazine | IEEE Xplore

Quantum-inspired evolutionary algorithm for a class of combinatorial optimization


Abstract:

This paper proposes a novel evolutionary algorithm inspired by quantum computing, called a quantum-inspired evolutionary algorithm (QEA), which is based on the concept an...Show More

Abstract:

This paper proposes a novel evolutionary algorithm inspired by quantum computing, called a quantum-inspired evolutionary algorithm (QEA), which is based on the concept and principles of quantum computing, such as a quantum bit and superposition of states. Like other evolutionary algorithms, QEA is also characterized by the representation of the individual, evaluation function, and population dynamics. However, instead of binary, numeric, or symbolic representation, QEA uses a Q-bit, defined as the smallest unit of information, for the probabilistic representation and a Q-bit individual as a string of Q-bits. A Q-gate is introduced as a variation operator to drive the individuals toward better solutions. To demonstrate its effectiveness and applicability, experiments were carried out on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that QEA performs well, even with a small population, without premature convergence as compared to the conventional genetic algorithm.
Published in: IEEE Transactions on Evolutionary Computation ( Volume: 6, Issue: 6, December 2002)
Page(s): 580 - 593
Date of Publication: 31 December 2002

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.