Abstract:
This paper is an concentrated overview of the Machine Learning Operations (MLOps) area. Our aim is to define the operation and the components of such systems by highlight...Show MoreMetadata
Abstract:
This paper is an concentrated overview of the Machine Learning Operations (MLOps) area. Our aim is to define the operation and the components of such systems by highlighting the current problems and trends. In this context we present the different tools and their usefulness in order to provide the corresponding guidelines. Moreover, the connection between MLOps and AutoML (Automated Machine Learning) is identified and how this combination could work is proposed. The novelty of our approach relies on the combination of state-of-the-art topics such as AutoML, exlainability and sustain-ability in order to overcome the current challenges in MLOps identifying them not only as the answer for the incorporation of ML models in production but also as a possible tool for efficient, robust and accurate machine learning models.
Date of Conference: 26-29 January 2022
Date Added to IEEE Xplore: 04 March 2022
ISBN Information: